
Errata on the paper “End-to-End Kernel Learning
with Supervised Convolutional Kernel Networks”

Julien Mairal

This note describes a minor issue in the gradient formula presented in [3], which
was noticed by Dexiong Chen when we started working on [1] in 2017. When the
experiments of [3] were conducted, the computation of the gradient was regularly
checked numerically with finite differences without exhibiting significant discrepancy
(for a reason we describe later in this note), suggesting that the effect of this mistake
should be minor from a numerical point of view. Indeed, the code accompanying [3]1,
which uses the right formula, reproduces closely the results published in [3].2

Yet, when using other tasks or datasets, using the correct formula may be important.
Below, we briefly review the Nyström kernel approximation method, and show how
to do back-propagation with the corresponding encoding function.

Reminder about Nyström encoding. Given data points x,x′ living in Rm, the
paper [3] considers a dot-product kernel κ(x>x′) using a smooth enough function
κ : R → R. Then, Nyström’s approximation relies on a set of p anchor points
represented as the columns of a matrix Z in Rm×p, and encode an input vector x with
the formula

ψ(x) = κ(Z>Z)−
1
2κ(Z>x),

where, with an abuse of notation, the function κ is applied pointwise.

In [3], the anchor points Z are learned by back-propagation, which requires differen-
tiating ψ(x) with respect to Z. This is not difficult if one knows how to differentiate
with respect to the inverse square root of a positive definite matrix (which was the
source of the mistake in [3]). The reason why the formula from [3] did not lead to
numerical problems is that the formula was correct to a first approximation, assuming
the matrix A = κ(Z>Z) to be diagonally dominant. This turned out to be the case
in practice in our experiments, preventing us to numerically spot the issue.

Below, we now provide the correct derivation.
1available here https://gitlab.inria.fr/mairal/ckn-cudnn-matlab
2Note that the code of the follow-up work [1], available here https://gitlab.inria.fr/dchen/

CKN-seq, also uses the right formula.

1



Differentiating with respect to A−1/2 when A is symmetric p.d. First, let
us differentiate with respect to the inverse matrix A−1:

A−1A = I =⇒ A−1dA+d(A−1)A = 0 =⇒ d(A−1) = −A−1dAA−1.

Then, by applying the same (classical) trick,

A−
1
2 A−

1
2 = A−1 =⇒ d(A−

1
2 )A−

1
2 +A−

1
2d(A−

1
2 ) = d(A−1) = −A−1dAA−1.

Consider now the eigenvalue decomposition A = U∆U>, where U is orthogonal
and ∆ is diagonal with eigenvalues δ1, . . . , δp. Then, by multiplying the last relation
by U> on the left and by U on the right.

U>d(A−
1
2 )U∆−

1
2 + ∆−

1
2 U>d(A−

1
2 )U = −∆−1U>dAU∆−1.

Note that ∆ is diagonal. By introducing the matrix F such that Fkl = 1√
δk
√
δl(
√
δk+
√
δl)
,

it is then easy to show that

U>d(A−
1
2 )U = −F ◦ (U>dAU),

where ◦ is the Hadamard product between matrices. Then, we are left with

d(A−
1
2 ) = −U(F ◦ (U>dAU))U>.

When doing back-propagation, one is usually interested in computing a quantity Ā
such that given B̄ (with appropriate dimensions), we have

〈B̄, d(A−
1
2 )〉F = 〈Ā, dA〉F ,

see [2], for instance. Here, 〈, 〉F denotes the Frobenius inner product. Then, it is easy
to show that

Ā = −U(F ◦ (U>B̄U))U>.

References

[1] Dexiong Chen, Laurent Jacob, and Julien Mairal. Biological sequence modeling
with convolutional kernel networks. Bioinformatics, 2019.

[2] Mike B Giles. Collected matrix derivative results for forward and reverse mode
algorithmic differentiation. In Advances in Automatic Differentiation, pages 35–
44. Springer, 2008.

[3] Julien Mairal. End-to-end kernel learning with supervised convolutional kernel
networks. In Advances in Neural Information Processing Systems, 2016.

2


