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Graph-structured data is everywhere

(a) molecules (b) protein regulation

(c) social networks (d) chemical pathways
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Learning graph representations: challenges

Expressiveness: Find a representation (vector) that is able to discriminate graphs with
different structures (distinguish non-isomorphic graphs, to some extent).

Tractability: The representation should be efficiently computable on modern hardware.

Learnable: One should be able to adapt the representation to the task and to the data.

Taking into account physics: long-range potentials, 3D geometry, symmetries. . .
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Graphs with node attributes

u

G = (V,E, a) with a : V → R3

a(u) = [0.3, 0.8, 0.5]

We consider graphs G = (V,E, a) where V and E are the sets of vertices and edges,
and a : V → Rp is a function assigning attributes to each node.
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Graph kernel mappings

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G to a vector Φ(G) in H, which lends itself to learning tasks.

A large class of graph kernel mappings can be written in the form

Φ(G) :=
∑
u∈V

φbase(ℓG(u)) where φbase embeds some local patterns ℓG(u) to H.

[Shervashidze et al., 2011, Lei et al., 2017, Kriege et al., 2019]
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K(G,G′) =

〈∑
u∈V

φbase(ℓG(u))︸ ︷︷ ︸
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Kernel representations with substructure enumeration

Find a high-dimensional representation Φ(G) in H for which we can efficiently compute

K(G,G′) = ⟨Φ(G),Φ(G′)⟩H.

There is a very rich literature about
graph kernels performing (implicitly or
explicitly) substructure enumeration.

subgraphs and path kernels (NP-hard, [Gärtner et al., 2003]).

walk kernels [Kashima et al., 2003, Mahé et al., 2004].

shortest-path kernels [Borgwardt and Kriegel, 2005].

graphlets kernels [Shervashidze et al., 2009].

Weisfeiler-Lehman kernels [Shervashidze et al., 2011].
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Find a high-dimensional representation Φ(G) in H for which we can efficiently compute

K(G,G′) = ⟨Φ(G),Φ(G′)⟩H.

There is a very rich literature about
graph kernels performing (implicitly or
explicitly) substructure enumeration.

For a review, see the course material

https://mva-kernel-methods.github.io/course-2023-2024/
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Learning graph representations with deep learning

Graph neural networks with message passing

multi-layer construction.

sequence of local operations.

limited expressivity [Xu et al., 2018].

u1

u3

u4u5 u2 u6
m24

m14

m34

Graph transformers

non-local operations with attention.

challenge: encoding the graph
structure.

u1

u3

u4u5 u2 u6

For a detailed review, see

survey on graph transformers: [Müller et al., 2023].

course material from Xavier Bresson https://lnkd.in/dZZWay3Z.

Julien Mairal From graph kernels to graph transformers 8/50

https://lnkd.in/dZZWay3Z


From Weisfeiler-Lehman to graph neural networks

and an abstract multilayer graph kernel

u1

u3

u4u5 u2 u6
m24

m14

m34
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Principles of the Weisfeiler-Lehman kernel

Consider a graph G = (V,E, a) with discrete labels l0(u) = a(u) at each vertex u.

This is a multi-layer construction producing new labels lk(u) for each vertex at layer k.
A label lk(u) represents (lk−1(u), {lk−1(v) : v ∈ N (u)}).
Based on the graph isomorphism test of Weisfeiler and Lehman, 1968.

Pictures courtesy of Shervashidze et al. [2011].
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Principles of the Weisfeiler-Lehman kernel

The final representation is a histogram of label occurences.

Extensions with substructure enumeration.

Pictures courtesy of Shervashidze et al. [2011].
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Principles of the Weisfeiler-Lehman kernel

Given a graph G = (V,E, a) with discrete labels l0(u) = a(u) in A0 for all u in V .

The Weisfeiler-Lehmann kernel representation

Representation at layer k: Label lk(u) ∈ Ak for all u in V .

Construction of layer k (message passing):

lk(u) = Relabel(lk−1(u), {lk−1(v) : v ∈ N (u)}).

Last layer representation with global aggregation:

ΦWL(G) =
∑
v∈V

one-hot-encoding(lK(u)) ∈ R|A|.
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Principles of graph neural networks with message passing

Given a graph G = (V,E, a) with continous attributes f0(u) = a(u) in Rp0 for all u in V .

Canonical form of message passing architecture

Representation at layer k: fk(u) ∈ Rpk for all u in V .

Construction of layer k (message passing):

fk(u) = Process(fk−1(u), {fk−1(v) : v ∈ N (u)})
=

∑
v∈N (u)∪u

ReLU(Z⊤
k fk−1(v)) (for example)

Last layer representation with global pooling:

fGNN(G) =
∑
v∈V

fK(u) ∈ RpK .
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An abstract multi-layer graph kernel [Chen et al., 2020]

Consider graph G = (V,E, a) with attributes φ0(u) = a(u) living in some RKHS H0.

Multilayer kernel construction

Representation at layer k: φk(u) ∈ Hk for all u in V .

Construction of layer k (message passing):

Define a kernel Kk on features from layer k − 1. Call Hk its RKHS and ϕk : Hk−1 → Hk

the corresponding kernel mapping.

Aggregate with message passing

φk(u) =
∑

v∈N (u)∪u

ϕk(φk−1(v)).

Last layer representation with global pooling:

ΦMLGK(G) =
∑
v∈V

φK(u) ∈ HK .
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An abstract multi-layer graph kernel [Chen et al., 2020]

Dot-product or RBF kernels are natural candidates for Kk:

K(a, b) = κ(⟨a, b⟩) or ∥a∥∥b∥κ
(〈

a

∥a∥ ,
b

∥b∥

〉)
or e−α∥a−b∥2 .

Is the resulting kernel K(G,G′) = ⟨Φ(G),Φ(G′)⟩ easily computable?

Can we improve its expressiveness?

Can we make it “trainable”?
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The Nyström approximation for dot-product kernels

and its connection to neural networks

Hilbert space H

F

ϕ(x)

ϕ(x′)
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Nyström aproximation for dot-product kernels

Consider a dot product kernel K(a, b) = κ(a, b) where a, b are in Rp.

an approximate finite-dimensional embedding: The Nyström method [Williams and
Seeger, 2001] provides a function ψ : Rp → Rd such that

κ(a, b) = ⟨ϕ(a), ϕ(b)⟩H ≈ ⟨ψ(a), ψ(b)⟩Rd .

Geometric interpretation: The method performs orthogonal projections onto a
finite-dimensional subspace spanned by some anchor points ϕ(z1), . . . , ϕ(zd) in H.

Analytical formula: Given the anchor points z1, . . . , zd in Rp,

ψ(a) = κ(Z⊤Z)−1/2κ(Z⊤a),

where Z = [z1, . . . , zd] is in Rp×d.
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Nyström aproximation for dot-product kernels

ψ(a) = κ(Z⊤Z)−1/2κ(Z⊤a),

How to find good anchor points Z?

random data samples: the original method.

unsupervised learning: set the anchor points as the centroids of a K-means algorithm
on observed patterns [Zhang et al., 2008].

back-propagation: This embedding may be interpreted as a neural network layer which
is compatible with end-to-end learning [Mairal, 2016]. Given a p.d. symmetric matrix A,

d(A−1/2) = −U(F ◦ (U⊤(dA)U))U⊤ where A = U∆U⊤

and Fkl =
1√

δk
√
δl(

√
δk +

√
δl)
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Graph convolutional kernel networks [Chen et al., 2020]

the abstract multilayer graph kernel for continuous attributes.

+ the Nyström approximation to make everything computable and learnable.

+ an extension with paths enumeration to gain expressiveness.

=
kernel viewpoint: an unsupervised (relatively high-dimensional) representation
performing well with two layers on benchmarks from 2020.

deep learning viewpoint: a learnable lower-dimensional representation performing
equally well (and probably better on large datasets).
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Basic kernels: walk and path kernelsWalks 6= paths

433 / 666

Path kernels are more expressive than walk kernels, but less preferred for
computational reasons.

PL(G, u) := paths of length L from node u in G.

Φ(G) can be interpreted as a histogram of paths occurrences (label sequences);

Julien Mairal From graph kernels to graph transformers 20/50



An abstract multi-layer graph kernel [Chen et al., 2020]

Consider graph G = (V,E, a) with attributes φ0(u) = a(u) living in some RKHS H0.

Multilayer kernel construction

Representation at layer k: φk(u) ∈ Hk for all u in V .

Construction of layer k (message passing):

Define a kernel Kk on features from layer k − 1. Call Hk its RKHS and ϕk : Hk−1 → Hk

the corresponding kernel mapping.
Aggregate with message passing

φk(u) =
∑

v∈N (u)∪u

ϕk(φk−1(v)).

Last layer representation with global pooling:

ΦMLGK(G) =
∑
v∈V

φK(u) ∈ HK .
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An abstract multi-layer path kernel [Chen et al., 2020]

Consider graph G = (V,E, a) with attributes φ0(u) = a(u) living in some RKHS H0.

Multilayer kernel construction

Representation at layer k: φk(u) ∈ Hk for all u in V .

Construction of layer k (message passing):

Define a kernel Kk on paths of length L from layer k − 1. Call Hk its RKHS and
ϕk : HL

k−1 → Hk the corresponding kernel mapping.
Aggregate with message passing

φk(u) =
∑

p∈PL(G,u)

ϕpathk (p).

Last layer representation with global pooling:

ΦMLPK(G) =
∑
v∈V

φK(u) ∈ HK .
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The graph convolutional kernel network model [Chen et al., 2020]

Consider graph G = (V,E, a) with attributes ψ0(u) = a(u) living in Rp0 .

Multilayer kernel construction

Representation at layer k: ψk(u) ∈ Rpk for all u in V .

Construction of layer k (message passing):

Define a kernel Kk on paths of length L from layer k − 1. Call Hk its RKHS and
ψpath
k : Rpk−1L → Rpk the Nyström approximation with parameters Zk.

Aggregate with message passing

ψk(u) =
∑

p∈PL(G,u)

ψpath
k (p).

Last layer representation with global pooling:

ΨGCKN(G) =
∑
v∈V

ψK(u) ∈ RpK .
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Construction of one-layer GCKN

u

a(u) ∈ Rd

(V, E, a : V → Rd)

path extraction

kernel mapping
path aggregation

u

u

φ1(u) ∈ H1

u u u

p1 p2 p3

φRBF(a(p1))
φRBF(a(p2))

φRBF(a(p3))

kernel mapping

H1

path aggregation

φ1(u) := φRBF(a(p1)) + φRBF(a(p2)) + φRBF(a(p3))

(V, E, φ1 : V → H1)
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Benchmark on graphs with discrete attributes (2020)
MUTAG

PROTEINS

PTC

NCI1IMDB-B

IMDB-M

COLLAB

-10

0

10
12

WL subtree
GNTK
GCN
GIN
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement with
respect to the WL subtree
kernel.

GCKN-path already
outperforms the baselines.

Increasing number of layers
brings larger improvement.

Supervised learning does not
improve performance, but leads
to more compact
representations.

[Shervashidze et al., 2011, Du et al., 2019, Xu et al., 2019, Kipf and Welling, 2017]
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Benchmarks on graphs with continuous attributes (2020)
ENZYMES

PROTEINS

BZR

COX2 -5

0

5

WWL
GNTK
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement with
respect to the WWL kernel.

Results similar to discrete case.

[Du et al., 2019, Togninalli et al., 2019]
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Graph transformers, GraphiT and CSA

u1

u3

u4u5 u2 u6

G. Mialon, D. Chen, M. Selosse, and J. Mairal. GraphiT: Encoding Graph Structure in
Transformers. arXiv:2106.05667. 2021.

R. Menegaux, E. Jehanno, M. Selosse and J. Mairal. Self-Attention in Colors: Another
Take on Encoding Graph Structure in Transformers. TMLR. 2023.
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From GNNs to Graph transformers

An example of GNN layer (GCN, Kipf and Welling, 2017)

fk(u) = ReLU

Z⊤

 1

|N (u)|+ 1

∑
v∈N (u)∪u

fk−1(v)

 .

The basic transformer layer with self attention

fk(u) = ReLU

(
Z⊤

(
fk−1(u) +

∑
v∈V

Auvfk−1(u)

))

with A = Softmax

(
fk−1W

⊤
QWKf

⊤
k−1√

d

)
.

(Note that a classical residual connection has been removed for simplicity).
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From GNNs to Graph transformers

The basic transformer layer with self attention

fk(u) = ReLU

(
Z⊤

(
fk−1(u) +

∑
v∈V

Auvfk−1(u)

))

with A = Softmax

(
fk−1W

⊤
QWKf

⊤
k−1√

d

)
.

Challenges

How to encode the graph structure?

How to take into account edge features?
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Graph transformers: recipes

How to take into account edge features?

treat edge features as node features with additional variables Ek(u, v) undergoing
“similar” updates.

Local structure encoding

Enrich input features. A successful feature is based on the diagonals of random walk
kernels

p(u) = [RWuu, . . . , RW
p
uu]

where RW p
uu probability for a p-step random walk to loop back to node u:

[Dwivedi and Bresson, 2020, Rampášek et al., 2022, Lim et al., 2022]
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Graph transformers: recipes

Modulate the attention matrix with relative positional encoding

Graphormer computes an average of the dot-products of edge feature and a learnable
embedding along shortest paths

A = Softmax

(
fk−1W

⊤
QWKf

⊤
k−1√

d
+Bshortest-paths

k

)
.

GraphiT weights the attention with a diffusion kernel. This captures both short-range
and long-range graph topology

A = Normalize

(
Exp

(
fk−1W

⊤
QWKf

⊤
k−1√

d

)
◦Kσ

)
.

[Ying et al., 2021, Mialon et al., 2021]
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Graph transformers: recipes

Modulate the attention matrix with relative positional encoding

GraphiT uses a hard-coded kernel and does not include edge features in the attention.

CSA first enriches original edge features with random walks kernels:

Erw
uv = [RWuv, . . . , RW

p
uv]

and then learns how to exploit these features to modulate the attention matrix

A = Softmax

(
fk−1W

⊤
QWKf

⊤
k−1√

d
+W⊤

EEk−1

)
.

Additional tricks

introduce features for structures that are known to be useful (carbon rings).

[Menegaux et al., 2023]
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All of this summarized in a pretty picture
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Visualizing self attention
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Benchmarks
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Benchmarks
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Just in case: diffusion kernels

Given a function f on the graph with Laplacian L, f⊤Lf =
∑

u∼v(fu − fv)
2 can be

interpreted as a way to quantify the smoothness of f .

The Laplacian is often used via its eigenvalue decomposition L =
∑

i λiuiu
⊤
i .

A whole family of kernels on graphs are defined as Kr =
∑

i r(λi)uiu
⊤
i .

With r(λ) = e−βλ, we obtain the diffusion kernel:

Kr = e−βL = lim
p→+∞

(
I − β

p
L

)p

.

With r(λ) = (I − γL)p, we obtain the p-step random walk kernel

Kr =

(
I − β

p
L

)p

.

[Smola and Kondor, 2003, Kondor and Lafferty, 2002, Belkin and Niyogi, 2003]
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Conclusion

Many ideas from the kernel world naturally appear in the graph neural networks
literature, in particular for transformers.

Encoding prior information within graph transformers makes a difference, in particular
for medium-sized datasets.
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Ongoing Work and Challenges: Physics and Geometry

Ex: Molecular graphs (e.g., ZINC or OGB datasets)

Nodes are atoms, edges are bonds.

Node features can be atom-type, spatial position, . . .

Edge features are bond types (single,double, triple).
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Ongoing Work and Challenges: Physics and Geometry

Challenges

Is there another structure within the graph? (e.g., chain of amino acids for proteins).

Is the graph part of a larger structure (crystallography)?

Does the representation model the right symmetries and inv/equivariances?

Is the graph construction satisfactory? What about long-range potentials?
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Challenges

Is there another structure within the graph? (e.g., chain of amino acids for proteins).

Is the graph part of a larger structure (crystallography)?

Does the representation model the right symmetries and inv/equivariances?

Is the graph construction satisfactory? What about long-range potentials?

Useful material

see the survey on graph neural networks for 3D atomic systems [Duval et al., 2023].
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Bonus Story:

On the Benefits of Large Learning Rates for Kernel Methods
Slides courtesy of Gaspard Beugnot

Gaspard Beugnot Alessandro Rudi

G. Beugnot, J. Mairal, and A. Rudi. On the Benefits of Large Learning Rates for Kernel
Methods. International Conference on Learning Theory (COLT). 2022.
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In brief

Motivation: common choice of learning rate for SGD in deep learning results in poor
optimization but provides better generalization

Approach: a simple convex model where the training loss/generalization error are
quadratic functions in a RKHS. This extends an intuition from Nakkiran [2020] on a
2D toy problem.

Contribution: predicts when there are benefits for generalization by taking large step
sizes (close to 2/L). Notable example : kernel ridge regression for classification.
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Losses in Machine Learning

1 Usual settings: minimize empirical loss

F (θ) =
1

n

n∑
i=1

ℓtrain(θ(xi), yi) + Ω(θ) (Optimization)

Rationale: F is a proxy for the real downstream task = minimize the generalization
error R:

R(θ) = Ex,y [ℓtest(θ(x), y)] (Statistics)

=⇒ what if there are big discrepancies between F and R?

2 Modelization: two quadratic functions1 in H:

F (θ) =
1

2
∥θ − θ⋆∥2T + cst, and R(θ) =

1

2
∥θ − ν⋆∥2U , (1)

1Agnostic to supervised learning
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Quadratic functions? Example with Ridge Regression

x1, . . . , xn: data points in Rd; y1, . . . , yn prediction variables; X ∈ Rn×d: data matrix.
Ridge regression estimator:

∀θ ∈ Rd, F (θ) =
1

n

n∑
i=1

1

2
(θ⊤xi − yi)

2 +
λ

2
∥θ∥2

=
1

2
∥θ − θ⋆∥2T + cst, with T =

1

n
(X⊤X + λId).

Ok, but what about the statistical risk?

Model: yi = x⊤i ν
⋆ + ϵi with ν

⋆ ∈ Rd

Population loss: P(θ) = E 1/2
(
θ⊤x− y

)2
Excess risk: R(θ) = P(θ)− infν P(ν) satisfies

R(θ) =
1

2
∥θ − ν⋆∥2U , with U = E

[
xx⊤

]
, ν⋆ regression function.
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Mismatch between U and T for classification with kernel ridge regression

Case of interest: Binary classification on a low-noise dataset [Pillaud-Vivien et al., 2018]:

Classes are well separated by a non-zero margin.

the conditional probability E[y|x] is regular enough.
ν⋆ (minimizer of the binary classification error B(θ)) is in the RKHS H with norm ∥.∥.

Then, B(θ)−B(ν⋆) decreases exponentially in ∥θ − ν⋆∥2.

The dramatic consequence

Thus: big discrepencies between train loss F we optimize and Hilbert norm R which is a
good proxy for the classification error!

F (θ) =
1

2
∥θ − θ⋆∥2T R(θ) =

1

2
∥θ − ν⋆∥2

Julien Mairal From graph kernels to graph transformers 45/50



Mismatch between U and T for classification with kernel ridge regression

Case of interest: Binary classification on a low-noise dataset [Pillaud-Vivien et al., 2018]:

Classes are well separated by a non-zero margin.

the conditional probability E[y|x] is regular enough.
ν⋆ (minimizer of the binary classification error B(θ)) is in the RKHS H with norm ∥.∥.

Then, B(θ)−B(ν⋆) decreases exponentially in ∥θ − ν⋆∥2.

The dramatic consequence

Thus: big discrepencies between train loss F we optimize and Hilbert norm R which is a
good proxy for the classification error!

F (θ) =
1

2
∥θ − θ⋆∥2T R(θ) =

1

2
∥θ − ν⋆∥2

Julien Mairal From graph kernels to graph transformers 45/50



Mismatch between U and T for classification with kernel ridge regression

e2

e1

θ⋆

ν⋆

θ0
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Main result

Main result, informal.

Under assumptions on (1) the operators T and U, (2) the learning rate, (3) the initialization
and (4) the target training loss α. Perform GD, with either small LR ηs or big LR ηb, and
stop as soon as F (θt) ≤ α. Then

R(θb)−R(ν⋆) ≤ 34
κU
κT

(R(θs)−R(ν⋆)).

It reads: “Doing big step size gives you better statistical error as soon as the empirical
risk is badly conditioned.”

The worse the conditioning, the bigger the improvement.

Assumptions (1,3) are loose, assumption (4) is more restrictive.

There is a tiny range for ηb in Assumption (2):

0 < ηs <
2

σ1 + σn
< ηb <

2

σ1
.
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Experiments (Classification on CKN-MNIST with the Gaussian kernel – target accuracy α fixed)
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Experiments (Classification on CKN-MNIST with the Gaussian kernel – target accuracy α fixed)
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Conclusion

A simple model which illustrates a well known phenomenon in deep learning and provide
a clear intuition;

Highlights the role of the condition number of the training loss: the more ill
conditioned, the bigger the improvement with big step sizes;

We do not advocate for using big learning rates in term of generalization/time
complexity.

Natural extensions: different loss functions, local extensions to non-convex loss
landscapes, optimization algorithms which amplifies this phenomenon.
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transformers. arXiv preprint arXiv:2302.04181, 2023.

Preetum Nakkiran. Learning rate annealing can provably help generalization, even for convex
problems. arXiv preprint arXiv:2005.07360, 2020.

Loucas Pillaud-Vivien, Alessandro Rudi, and Francis Bach. Statistical optimality of stochastic
gradient descent on hard learning problems through multiple passes. Advances in Neural
Information Processing Systems, 31, 2018.
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