
Towards Deep Kernel Machines

Julien Mairal

Inria, Grenoble

Prague, April, 2017

Julien Mairal Towards deep kernel machines 1/51



Part I: Scientific Context
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A quick zoom on multilayer neural networks

The goal is to learn a prediction function f : Rp → R given labeled
training data (xi , yi )i=1,...,n with xi in Rp, and yi in R:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi ))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f )︸ ︷︷ ︸
regularization

.
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L(yi , f (xi ))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f )︸ ︷︷ ︸
regularization

.

What is specific to multilayer neural networks?

The “neural network” space F is explicitly parametrized by:

f (x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Finding the optimal A1,A2, . . . ,Ak yields a non-convex
optimization problem in huge dimension.
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A quick zoom on convolutional neural networks

Figure: Picture from LeCun et al. [1998]

CNNs perform “simple” operations such as convolutions, pointwise
non-linearities and subsampling.

for most successful applications of CNNs, training is supervised.
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A quick zoom on convolutional neural networks

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model local stationarity of images at several scales.

What are the main open problems?

very little theoretical understanding;

they require large amounts of labeled data;

they require manual design and parameter tuning;

Nonetheless...

they are the focus of a huge academic and industrial effort;

there is efficient and well-documented open-source software.
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Context of kernel methods
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Idea: representation by pairwise comparisons

Define a “comparison function”: K : X × X 7→ R.
Represent a set of n data points S = {x1, . . . , xn} by the n × n
matrix:

Kij := K (xi , xj).

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002].
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Context of kernel methods

Theorem (Aronszajn, 1950)

K : X × X → R is a positive definite kernel if and only if there exists a
Hilbert space H and a mapping

ϕ : X → H,

such that, for any x, x in X ,

K (x, x′) = 〈ϕ(x), ϕ(x′)〉H.

Julien Mairal Towards deep kernel machines 8/51



Context of kernel methods

2R

x1

x2

x1

x2

2

The classical challenge of kernel methods

Find a kernel K such that

the data in the feature space H has nice properties, e.g., linear
separability, cluster structure.

K is fast to compute and mathematically valid (p.d.).
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Context of kernel methods (supervised learning)

The goal is to learn a prediction function f : X → R given labeled
training data (xi , yi )i=1,...,n with xi in X , and yi in R:

min
f ∈H

1

n

n∑
i=1

L(yi , f (xi ))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖f ‖2
H︸ ︷︷ ︸

regularization

.

What is specific here to kernel methods?

The “kernel method” space H is possibly infinite-dimensional.

Optimization over f is done implicitely by (often) minimizing a
convex function.

X does not need to be a vector space.
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Context of kernel methods

What are the main features of kernel methods?

decoupling of data representation and learning algorithm;

a huge number of unsupervised and supervised algorithms;

typically, convex optimization problems in a supervised context;

versatility: applies to vectors, sequences, graphs, sets,. . . ;

natural regularization function to control the learning capacity;

well studied theoretical framework.

But...

poor scalability in n, at least O(n2);

decoupling of data representation and learning may not be a good
thing, according to recent supervised deep learning success.
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Context of kernel methods

Challenges

Scaling-up kernel methods with approximate feature maps;

K (x, x′) ≈ 〈ψ(x), ψ(x′)〉.

[Williams and Seeger, 2001, Rahimi and Recht, 2007, Vedaldi and

Zisserman, 2012, Le et al., 2013]...

Design data-adaptive and task-adaptive kernels;

Build kernel hierarchies to capture compositional structures.

Introduce supervision in the kernel design.
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Challenges

Scaling-up kernel methods with approximate feature maps;

K (x, x′) ≈ 〈ψ(x), ψ(x′)〉.

[Williams and Seeger, 2001, Rahimi and Recht, 2007, Vedaldi and

Zisserman, 2012, Le et al., 2013]...

Design data-adaptive and task-adaptive kernels;

Build kernel hierarchies to capture compositional structures.

Introduce supervision in the kernel design.

We need deep kernel
machines!
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Some more motivation

Longer term objectives

build a kernel for images (abstract object), for which we can
precisely quantify the invariance, stability to perturbations,
recovery, and complexity properties.

build deep networks which can be easily regularized.

build deep networks for structured objects (graph, sequences)...

add more geometric interpretation to deep networks.

. . .

Julien Mairal Towards deep kernel machines 13/51



Part II: Basic Principles of Deep Kernel Machines
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Basic principles of deep kernel machines: composition

Composition of feature spaces

Consider a p.d. kernel K1 : X 2 → R and its RKHS H1 with mapping
ϕ1 : X → H1. Consider also a p.d. kernel K2 : H2

1 → R and its RKHS
H2 with mapping ϕ2 : H1 → H2. Then, K3 : X 2 → R below is also p.d.

K3(x, x′) = K2(ϕ1(x), ϕ1(x′)),

and its RKHS mapping is ϕ3 = ϕ2 ◦ ϕ1.

Examples

K3(x, x′) = e
− 1

2σ2 ‖ϕ1(x)−ϕ1(x′)‖2
H1 .

K3(x, x′) = 〈ϕ1(x), ϕ1(x′)〉2H1
= K1(x, x′)2.
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Basic principles of deep kernel machines: composition

Remarks on the composition of feature spaces

we can iterate the process many times.

the idea appears early in the literature of kernel methods [see
Schölkopf et al., 1998, for a multilayer variant of kernel PCA].

Is this idea sufficient to make kernel methods more powerful?

Probably not:

K2 is doomed to be a simple kernel (dot-product or RBF kernel).

it does not address any of previous challenges.

K3 and K1 operate on the same type of object; it is not clear
why desining K3 is easier than designing K1 directly.

Nonetheless, we will see later that this idea can be used to build a
hierarchies of kernels that operate on more and more complex objects.
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Basic principles of deep kernel machines: infinite NN

A large class of kernels on Rp may be defined as an expectation

K (x, y) = Ew[s(w>x)s(w>y)],

where s : R→ R is a nonlinear function. The encoding can be seen as a
one-layer neural network with infinite number of random weights.

Examples

random Fourier features

κ(x− y) = Ew∼q(w),b∼U [0,2π]

[√
2 cos(w>x + b)

√
2 cos(w>y + b)

]
Gaussian kernel

e−
1

2σ2 ‖x−y‖2
2 ∝ Ew

[
e

2
σ2 w>xe

2
σ2 w>y

]
with w ∼ N (0, (σ2/4)I).
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Basic principles of deep kernel machines: infinite NN

Example, arc-cosine kernels

K (x, y) ∝ Ew

[
max

(
w>x, 0

)α
max

(
w>y, 0

)α]
with w ∼ N (0, I),

for x, y on the hyper-sphere Sm−1. Interestingly, the non-linearity s are
typical ones from the neural network literature.

s(u) = max(0, u) (rectified linear units) leads to
K1(x, y) = sin(θ) + (π − θ) cos(θ) with θ = cos−1(x>y);

s(u) = max(0, u)2 (squared rectified linear units) leads to
K2(x, y) = 3 sin(θ) cos(θ) + (π − θ)(1 + 2 cos2(θ));

Remarks

infinite neural nets were discovered by Neal, 1994; then revisited
many times [Le Roux, 2007, Cho and Saul, 2009].

the concept does not lead to more powerful kernel methods...
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Basic principles of DKM: dot-product kernels

Another basic link between kernels and neural networks can be obtained
by considering dot-product kernels.

A classical old result

Let X = Sd−1 be the unit sphere of Rd . The kernel K : X 2 → R

K (x, y) = κ(〈x, y〉Rd )

is positive definite if and only if κ is smooth and its Taylor expansion
coefficients are non-negative.

Remark

the proposition holds if X is the unit sphere of some Hilbert space
and 〈x, y〉Rd is replaced by the corresponding inner-product.
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Basic principles of DKM: dot-product kernels

The Nyström method consists of replacing any point ϕ(x) in H, for x
in X by its orthogonal projection onto a finite-dimensional subspace

F = span(ϕ(z1), . . . , ϕ(zp)),

for some anchor points Z = [z1, . . . , zp] in Rd×p

Hilbert space H

F

ϕ(x)

ϕ(x′)

[Williams and Seeger, 2001, Smola and Schölkopf, 2000, Fine and Scheinberg, 2001].

[Williams and Seeger, 2002], [Smola and Schölkopf, 2000], [Fine and Scheinberg,

2001].
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Basic principles of DKM: dot-product kernels

The projection is equivalent to

ΠF [x] :=

p∑
j=1

β?j ϕ(zj) with β? ∈ arg min
β∈Rp

∥∥∥∥∥∥ϕ(x)−
p∑

j=1

βjϕ(zj)

∥∥∥∥∥∥
2

H

,

Then, it is possible to show that with K (x, y) = κ(〈x, y〉Rd ),

K (x, y) ≈ 〈ΠF [x],ΠF [y]〉H = 〈ψ(x), ψ(y)〉Rp ,

with
ψ(x) = κ(Z>Z)−1/2κ(Z>x),

where the function κ is applied pointwise to its arguments. The resulting
ψ can be interpreted as a neural network performing (i) linear operation,
(ii) pointwise non-linearity, (iii) linear operation.
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Part III: Convolutional Kernel Networks
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Convolutional kernel networks

The (happy?) marriage of kernel methods and CNNs

1 a multilayer convolutional kernel for images: A hierarchy of
kernels for local image neighborhoods (aka, receptive fields).

2 unsupervised scheme for large-scale learning: the kernel beeing
too computationally expensive, the Nyström approximation at each
layer yields a new type of unsupervised deep neural network.

3 end-to-end learning: learning subspaces in the RKHSs can be
achieved with a supervised loss function.

First proof of concept with unsupervised learning

J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel
Networks. NIPS 2014.

The model of this presentation

J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel
Networks. NIPS 2016.

This presentation follows the NIPS’16 paper.

Julien Mairal Towards deep kernel machines 23/51



Convolutional kernel networks

The (happy?) marriage of kernel methods and CNNs

1 a multilayer convolutional kernel for images: A hierarchy of
kernels for local image neighborhoods (aka, receptive fields).

2 unsupervised scheme for large-scale learning: the kernel beeing
too computationally expensive, the Nyström approximation at each
layer yields a new type of unsupervised deep neural network.

3 end-to-end learning: learning subspaces in the RKHSs can be
achieved with a supervised loss function.

First proof of concept with unsupervised learning

J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel
Networks. NIPS 2014.

The model of this presentation

J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel
Networks. NIPS 2016.

This presentation follows the NIPS’16 paper.Julien Mairal Towards deep kernel machines 23/51



Related work

proof of concept for combining kernels and deep learning [Cho and
Saul, 2009];

hierarchical kernel descriptors [Bo et al., 2011];

other multilayer models [Bouvrie et al., 2009, Montavon et al.,
2011, Anselmi et al., 2015];

deep Gaussian processes [Damianou and Lawrence, 2013].

multilayer PCA [Schölkopf et al., 1998].

old kernels for images [Scholkopf, 1997].

RBF networks [Broomhead and Lowe, 1988].
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The multilayer convolutional kernel

Definition: image feature maps

An image feature map is a function I : Ω→ H, where Ω is a 2D grid
representing “coordinates” in the image and H is a Hilbert space.

I0 : Ω0 → H0I0(ω0) ∈ H0

Pω1 ∈ P0 (patch)

Kernel trick

I0.5(ω1) = ϕ1(Pω1) ∈ H1
I0.5 : Ω0 → H1

I1 : Ω1 → H1

Linear pooling

I1(ω2) ∈ H1
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The multilayer convolutional kernel

Definition: image feature maps

An image feature map is a function I : Ω→ H, where Ω is a 2D grid
representing “coordinates” in the image and H is a Hilbert space.

Motivation and examples

Each point I (ω) carries information about an image neighborhood,
which is motivated by the local stationarity of natural images.

We will construct a sequence of maps I0, . . . , Ik . Going up in the
hierarchy yields larger receptive fields with more invariance.

I0 may simply be the input image, where H0 = R3 for RGB.

How do we go from I0 : Ω0 → H0 to I1 : Ω1 → H1?

First, define a p.d. kernel on patches of I0!
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The multilayer convolutional kernel

Going from I0 to I0.5: kernel trick

Patches of size e0 × e0 can be defined as elements of the Cartesian
product P0 := He0×e0

0 endowed with its natural inner-product.

Define a p.d. kernel on such patches: For all x, x′ in P0,

K1(x, x′) = ‖x‖P0‖x′‖P0κ1

( 〈x, x′〉P0

‖x‖P0‖x′‖P0

)
if x, x′ 6= 0 and 0 otherwise.

Note that for y, y′ normalized, we may choose

κ1

(
〈y, y′〉P0

)
= eα1(〈y,y′〉P0

−1) = e
−α1

2
‖y−y′‖2

P0 .

We call H1 the RKHS and define a mapping ϕ1 : P0 → H1.

Then, we may define the map I0.5 : Ω0 → H1 that carries the
representations in H1 of the patches from I0 at all locations in Ω0.
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The multilayer convolutional kernel

I0 : Ω0 → H0I0(ω0) ∈ H0

Pω1 ∈ P0 (patch)

Kernel trick

I0.5(ω1) = ϕ1(Pω1) ∈ H1
I0.5 : Ω0 → H1

I1 : Ω1 → H1

Linear pooling

I1(ω2) ∈ H1

How do we go from I0.5 : Ω0 → H1 to I1 : Ω1 → H1?

Linear pooling!
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The multilayer convolutional kernel

Going from I0.5 to I1: linear pooling

For all ω in Ω1:

I1(ω) =
∑
ω′∈Ω0

I0.5(ω′)e−β1‖ω′−ω‖2
2 .

The Gaussian weight can be interpreted as an anti-aliasing filter for
downsampling the map I0.5 to a different resolution.

Linear pooling is compatible with the kernel interpretation: linear
combinations of points in the RKHS are still points in the RKHS.

Finally,

We may now repeat the process and build I0, I1, . . . , Ik .

and obtain the multilayer convolutional kernel

K (Ik , I
′
k) =

∑
ω∈Ωk

〈Ik(ω), I ′k(ω)〉Hk
.
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The multilayer convolutional kernel

In summary

The multilayer convolutional kernel builds upon similar principles as
a convolutional neural net (multiscale, local stationarity).

Invariance to local translations is achieved through linear pooling
in the RKHS.

It remains a conceptual object due to its high complexity.

Learning and modelling are still decoupled.

Let us first address the second point (scalability).
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Unsupervised learning for convolutional kernel networks

Learn linear subspaces of finite-dimensions where we project the data

M0

x

x′

kernel trick

projection on F1

M0.5

ψ1(x)

ψ1(x
′)

M1

linear pooling
Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)

Figure: The convolutional kernel network model between layers 0 and 1.
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Unsupervised learning for convolutional kernel networks

Formally, this means using the Nyström approximation

We now manipulate finite-dimensional maps Mj : Ωj → Rpj .

Every linear subspace is parametrized by anchor points

Fj := Span
(
ϕ(zj ,1), . . . , ϕ(zj ,pj )

)
,

where the z1,j ’s are in Rpj−1e
2
j−1 for patches of size ej−1 × ej−1.

The encoding function at layer j is

ψj(x) := ‖x‖κj(Z>j Zj)
−1/2κ1

(
Z>j

x

‖x‖

)
if x 6= 0 and 0 otherwise,

where Zj = [zj ,1, . . . , zj ,pj ] and ‖.‖ is the Euclidean norm.

The interpretation is convolution with filters Zj , pointwise
non-linearity, 1× 1 convolution, contrast normalization.
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Unsupervised learning for convolutional kernel networks

The pooling operation keeps points in the linear subspace Fj , and
pooling M0.5 : Ω0 → Rp1 is equivalent to pooling I0.5 : Ω0 → H1.

M0

x

x′

kernel trick

projection on F1

M0.5

ψ1(x)

ψ1(x
′)

M1

linear pooling
Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)

Figure: The convolutional kernel network model between layers 0 and 1.
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Unsupervised learning for convolutional kernel networks

How do we learn the filters with no supervision?

we learn one layer at a time, starting from the bottom one.

we extract a large number—say 100 000 patches from layers j − 1
computed on an image database and normalize them;

perform a spherical K-means algorithm to learn the filters Zj ;

compute the projection matrix κj(Z>j Zj)
−1/2.

Remarks

with kernels, we map patches in infinite dimension; with the
projection, we manipulate finite-dimensional objects.

we obtain an unsupervised convolutional net with a geometric
interpretation, where we perform projections in the RKHSs.
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Unsupervised learning for convolutional kernel networks

Remark on input image pre-processing

Unsupervised CKNs are sensitive to pre-processing; we have tested

RAW RGB input;

local centering of every color channel;

local whitening of each color channel;

2D image gradients.

(a) RAW RGB (b) centering
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Remark on input image pre-processing

Unsupervised CKNs are sensitive to pre-processing; we have tested

RAW RGB input;

local centering of every color channel;

local whitening of each color channel;

2D image gradients.

(c) RAW RGB (d) whitening
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Unsupervised learning for convolutional kernel networks

Remark on pre-processing with image gradients and 1× 1 patches

Every pixel/patch can be represented as a two dimensional vector

x = ρ[cos(θ), sin(θ)],

where ρ = ‖x‖ is the gradient intensity and θ is the orientation.

A natural choice of filters Z would be

zj = [cos(θj), sin(θj)] with θj = 2jπ/p0.

Then, the vector ψ(x) = ‖x‖κ1(Z>Z)−1/2κ1

(
Z> x
‖x‖

)
, can be

interpreted as a “soft-binning” of the gradient orientation.

After pooling, the representation of this first layer is very close
to SIFT/HOG descriptors [see Bo et al., 2011].
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Convolutional kernel networks with supervised learning

How do we learn the filters with supervision?

Given a kernel K and RKHS H, the ERM objective is

min
f ∈H

1

n

n∑
i=1

L(yi , f (xi ))︸ ︷︷ ︸
empirical risk, data fit

+
λ

2
‖f ‖2
H︸ ︷︷ ︸

regularization

.

here, we use the parametrized kernel

KZ(I0, I
′
0) =

∑
ω∈Ωk

〈Mk(ω),M ′k(ω)〉 = 〈Mk ,M
′
k〉F,

and we obtain the simple formulation

min
W∈Rpk×|Ωk |

1

n

n∑
i=1

L(yi , 〈W,M i
k〉F) +

λ

2
‖W‖2

F. (1)
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Convolutional kernel networks with supervised learning

How do we learn the filters with supervision?

we jointly optimize w.r.t. Z (set of filters) and W.

we alternate between the optimization of Z and of W;

for W, the problem is strongly-convex and can be tackled with
recent algorithms that are much faster than SGD;

for Z, we derive backpropagation rules and use classical tricks for
learning CNNs (SGD+momentum);

The only tricky part is to differentiate κj(Z>j Zj)
−1/2 w.r.t Zj , which is a

non-standard operation in classical CNNs.

Julien Mairal Towards deep kernel machines 38/51



Convolutional kernel networks

In summary

a multilayer kernel for images, which builds upon similar principles
as a convolutional neural net (multiscale, local stationarity).

A new type of convolutional neural network with a geometric
interpretation: orthogonal projections in RKHS.

Learning may be unsupervised: align subspaces with data.

Learning may be supervised: subspace learning in RKHSs.
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Part IV: Applications
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Image classification

Experiments were conducted on classical “deep learning” datasets, on
CPUs with no model averaging and no data augmentation.

Dataset ] classes im. size ntrain ntest

CIFAR-10 10 32× 32 50 000 10 000

SVHN 10 32× 32 604 388 26 032

Figure: Figure from the NIPS’16 paper. Error rates in percents.

Remarks on CIFAR-10

10% is the standard “good” result for single model with no data
augmentation.

the best unsupervised architecture has two layers, is wide
(1024-16384 filters), and achieves 14.2%;

Julien Mairal Towards deep kernel machines 41/51



Image super-resolution

The task is to predict a high-resolution y image from low-resolution
one x. This may be formulated as a multivariate regression problem.

(a) Low-resolution y (b) High-resolution x
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Image super-resolution

The task is to predict a high-resolution y image from low-resolution
one x. This may be formulated as a multivariate regression problem.

(c) Low-resolution y (d) Bicubic interpolation
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Image super-resolution

Fact. Dataset Bicubic SC CNN CSCN SCKN

x2
Set5 33.66 35.78 36.66 36.93 37.07
Set14 30.23 31.80 32.45 32.56 32.76
Kodim 30.84 32.19 32.80 32.94 33.21

x3
Set5 30.39 31.90 32.75 33.10 33.08
Set14 27.54 28.67 29.29 29.41 29.50
Kodim 28.43 29.21 29.64 29.76 29.88

Table: Reconstruction accuracy for super-resolution in PSNR (the higher, the
better). All CNN approaches are without data augmentation at test time.

Remarks

CNN is a “vanilla CNN” [Dong et al., 2016];

Very recent work does better with very deep CNNs and residual
learning [Kim et al., 2016];

CSCN combines ideas from sparse coding and CNNs;

[Zeyde et al., 2010, Dong et al., 2016, Wang et al., 2015, Kim et al., 2016].
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Image super-resolution

Bicubic Sparse coding CNN SCKN (Ours)

Figure: Results for x3 upscaling.

Julien Mairal Towards deep kernel machines 44/51



Image super-resolution

Figure: Bicubic
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Image super-resolution

Figure: SCKN
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Image super-resolution

Bicubic Sparse coding CNN SCKN (Ours)

Figure: Results for x3 upscaling.
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Image super-resolution

Figure: Bicubic
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Image super-resolution

Figure: SCKN
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Image super-resolution

Bicubic Sparse coding CNN SCKN (Ours)

Figure: Results for x3 upscaling.
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Image super-resolution

Figure: Bicubic
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Image super-resolution

Figure: SCKN
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Image super-resolution

Bicubic CNN SCKN (Ours)

Figure: Results for x3 upscaling.
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Image super-resolution

Figure: Bicubic

Julien Mairal Towards deep kernel machines 51/51



Image super-resolution

Figure: SCKN
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