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ABSTRACT

This paper introduces a new framework for learning multiscale spa-

rse representations of natural images with overcomplete dictionar-

ies. Our work extends the K-SVD algorithm [1], which learns spa-

rse single-scale dictionaries for natural images. Recent work has

shown that the K-SVD can lead to state-of-the-art image restoration

results [2, 3]. We show that these are further improved with a multi-

scale approach, based on a Quadtree decomposition. Our framework

provides an alternative to multiscale pre-defined dictionaries such as

wavelets, curvelets, and contourlets, with dictionaries optimized for

the data and application instead of pre-modelled ones.

Index Terms— Image Restoration, Denoising, Multiscale, Sparsity

1. INTRODUCTION

Consider a signal x ∈ R
n. We say that it admits a sparse approxima-

tion over a dictionaryD ∈ R
n×k, composed of k elements referred

to as atoms, if one can find a linear combination of a “few” atoms

from D that is “close” to the signal x. The so-called Sparseland

model suggests that such dictionaries exist for various classes of sig-

nals, and that the sparsity of a signal decomposition is a powerful

model in many image processing applications [1, 2, 3].

Another important assumption, commonly and successfully

used in image processing, is the existence of multiscale features

in images. Trying to design the best multiscale dictionary which

fulfils a sparsity criterion has been a major challenge. Such at-

tempts include the wavelets, curvelets, contourlets, wedgelets, ban-

dlets, and steerable wavelets (see for example [4] and references

therein). These methods lead to many effective algorithms in im-

age processing, e.g., image denoising [5].

In [1] the K-SVD is proposed for learning a single-scale dic-

tionary for sparse representation of image patches. By means of a

sparsity prior on all fixed-sized overlapping patches in the image,

the K-SVD is used for removing white Gaussian noise, leading to

a highly efficient algorithm [2]. This has been recently extended to

color images, with state-of-the-art results in denoising, inpainting,

and demosaicing applications [3]. In this paper, we extend the ba-

sic K-SVD work, providing a framework for learning multiscale and

sparse representation of images. In addition to the presentation of

the new framework, we apply it to denoising, obtaining results that

outperform reference works such as [2, 5, 6] and competes favorably

with the most recent and state-of-the-art in this field [7].

The task of learning a multiscale dictionary has been addressed

in [8] in the general context of sparsifying image content. Our ap-

proach differs from this work in many ways, including: (i) their

training algorithm employs a simple steepest descent while ours uses

more effective iterations, thus leading to faster convergence; (ii) the
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structure of the multiscale process; and (iii) the way the found dic-

tionaries are deployed for denoising is entirely different, as we base

our algorithm on the energy minimization method introduced in [2].

This explains the superior performance we obtain.

2. THE SINGLE-SCALE K-SVD DENOISING ALGORITHM

In this section, we briefly review the main ideas of the K-SVD frame-

work for sparse image representation and denoising. The reader is

referred to [1, 2, 3] for more details.

Let x0 be a clean image and y = x0 + w its noisy version

with w being an additive zero-mean white Gaussian noise with a

known standard deviation σ. The algorithm aims at finding a sparse
approximation of every

√
n×√

n overlapping patch of y, where n is
fixed a-priori. This representation is done over an adapted dictionary

D, learned for this set of patches. These approximations of patches

are averaged to obtain the reconstruct image. This algorithm (shown

in Figure 1) can be described as the minimization of an energy:

˘

α̂ij , D̂, x̂
¯

= arg min
D,αij ,x

λ||x − y||22 (1)

+
X

i,j

µij ||αij ||0 +
X

ij

||Dαij − Rijx||22 .

In this equation, x̂ is the estimator of x0, and the dictionary D̂ ∈
R

n×k is an estimator of the optimal dictionary which leads to the

sparsest representation of the patches in the recovered image. The

indices [i, j] mark the location of the patch in the image (represent-
ing it’s top-left corner). The vectors α̂ij ∈ R

k are the sparse rep-

resentations for the [i, j]-th patch in x̂ using the dictionary D̂. The

notation ||.||0 is the ℓ0 quasi-norm, a sparsity measure, which counts
the number of non-zero elements in a vector. The operator Rij is

a binary matrix which extracts the square
√

n × √
n patch of coor-

dinates [i, j] from the image written as a column vector. The main
steps of the algorithm are (refer to Figure 1):

Sparse Coding Step: This is performed with an Orthogonal Match-

ing Pursuit (OMP) [9], which proves to be very efficient for diverse

approximation problems [10]. The approximation stops when the

residual reaches a sphere of radius
√

nCσ representing the proba-
bility distribution of the noise. More on this is found in [3].

Dictionary Update: This is a sequence of one-rank approximation

problems that update both the dictionary atom and the sparse repre-

sentations that use it.

Reconstruction: The last step is a simple averaging between the

patches approximations and the noisy image. The denoised image

is x̂. Equation (4) emerges directly from the energy minimization in

Equation (2).

Since it is well accepted that image information spreads across

multiple scales, designing a K-SVD type of algorithm that is able to

adapt and capture information at multiple scales is the goal of this

paper.



Parameters: λ (Lagrange multiplier); C (noise gain); J (number
of iterations); k (number of atoms); n (size of the patches).
Initialization: Set x̂ = y; Initialize D̂ = (d̂l ∈ R

n×1)l∈1...k

(e.g., redundant DCT).

Loop: Repeat J times

• Sparse Coding: Fix D̂ and use OMP to compute coeffi-

cients α̂ij ∈ R
1×k for each patch by solving:

∀ij α̂ij = arg min
α

||α||0 subject to (2)

||Rij x̂ − D̂α||22 ≤ n(Cσ)2.

• Dictionary Update: Fix all α̂ij , and for each atom

l ∈ 1, 2, . . . , k in D̂,

– Select the set of patches which use this atom,

ωl = {[i, j]|α̂ij(l) 6= 0}.
– For each patch [i, j] ∈ ωl, compute its residual,

el
ij = Rij x̂ − D̂α̂ij + d̂lα̂ij(l).

– Set El as the matrix whose columns are the e
l
ij , and

α̂l the row vector whose elements are the α̂ij(l).

– Update d̂l and the α̂ij(l) by minimizing:

(d̂l, α̂
l) = arg min

α,||d||2=1

||El − dα||2F . (3)

This one-rank approximation is performed by a trun-

cated SVD of El.

Reconstruction: Perform a weighted average:

x̂ =
“

λI +
X

ij

R
T
ijRij

”−1“

λy +
X

ij

R
T
ijD̂α̂ij

”

. (4)

Fig. 1. The single-scale K-SVD-based image denoising algorithm.

Fig. 2. Quadtree model chosen for the multiscale.

3. THE MULTISCALE SPARSE REPRESENTATION

One simple and naive strategy to introduce multiscale analysis con-

sists of using big patches with a high redundancy factor ( k
n
), and

hope for the appearance of intrinsic multiple scales among the

learned dictionary’s atoms. However, we have observed no sig-

nificant differences between the results with the parameters {n =
8 × 8, k = 256} compared to {n = 16 × 16, k = 1024}. A num-
ber of reasons might explain the “failure” of this direct approach.

First, it might be that for low dimensions (small n) there is no need
for multiscale structure for representation and denoising, becoming

more crucial as the dimension grows. In that respect, 16×16 blocks
might not be enough for the original K-SVD algorithm to show the

multiscale structure. Another explanation is that it may be that the

K-SVD is trapped in a local minima. By explicitly imposing such

multiscale structure, we may help in this regard. This leads us nat-

urally to the proposed framework. We note that learning multiscale

dictionaries is important per se, also for applications beyond image

denoising.

3.1. The basic model

In this paper we focus on the use of different sizes of atoms si-

multaneously.1 Considering the design of a patch-based representa-

tion/denoising framework, we put forward a simple Quadtree model

on large patches, Figure 2. This is a classical data structure, also

used in wedgelets for example [11]. A fixed number of scales, N ,
is chosen that corresponds to N different sizes of atoms. A big

patch of size n pixels is divided along the tree to sub-patches of
sizes ns = n

4s , where s is the depth in the tree. Then, one different
dictionaryDs composed of ks atoms of size ns is built at each scale.

The original K-SVD exploits the overlapping/shift-invariant sparsity

of the patches’ representation, which has been found to be promi-

nent for denoising [2, 3, 12]. One asset of our multiscale model is

that it does not allow for all possible shifts for the sub-patches inside

one large patch, preventing them from constantly adapting their po-

sition to the noisy patch. Therefore, this structure permits to force

and exploit the overlapping/shift-invariance sparsity at each scale.

The overall idea of the multiscale algorithm we propose stays as

close as possible to the original K-SVD algorithm, Figure 1, with an

attempt to exploit the several existing scales. The following are the

key modifications to the basic algorithm:

Sparse Coding: This remains unchanged if we introduce some new

notations. In Equation (3) assume that Rij remains the matrix that

extracts the patch of size n0 = nwith coordinates ij. The dictionary
D̂ is a joint one, composed of all the atoms of all the dictionaries

D̂s = (d̂sl ∈ R
n×1)l∈1...ks located at every possible position in

the Quadtree. For the scale s, there exists 4s such positions, we

denote their index as p. This makes a total of
PN−1

s=0
4sks atoms

in D̂. The OMP is implemented efficiently using a Modified Gram-

Schmidt algorithm [13]. For each patch, this step can be achieved in

O((
PN−1

i=0
ks)n||α̂||0) operations.

Dictionary Update: This step is slightly changed, as we update each

atom d̂sl (1 ≤ l ≤ ks) in each scale (from s = N − 1 downwards),
by:

• Select the set of sub-patches from the scale s that use the l-th
atom, ωsl = {[i, j, s, p]|α̂ij(s, l, p) 6= 0}, where [i, j, s, p]
denotes the sub-patch at the scale s and position p from the
patch ij, and α̂ij(s, l, p) is the coefficient corresponding to

the atom d̂sl.

• For each sub-patch [i, j, s, p] ∈ ωsl, compute

el
ijsp = Tsp(Rij x̂ − D̂α̂ij) + d̂slα̂ij(s, l, p),

where Tsp ∈ {0, 1}ns×n0 is a binary matrix which extracts

the sub-patch [i, j, s, p] from a patch [i, j].

• Set Esl as the matrix whose columns are the el
ijsp, and α̂sl

the row vector whose elements are the α̂ij(s, l, p).

• Update d̂sl and the α̂ij(s, l, p) using a SVD as before:

(d̂sl, α̂
sl) = arg min

α,||d||2=1

||Esl − dα||2F .

1In a separate work we also consider using a multiscale pyramid and
learning dictionaries at all the pyramid scales (see also [8]). Results along
this direction will be reported elsewhere.



Reconstruction: Remains the same as in Equation (4), while using

the new notation just introduced. Note that each patch is recon-

structed from multiple-scales, and since a pixel belongs to multiple

(overlapping) patches, it is reconstructed with multiple scales and at

multiple positions.

The computational time of the Sparse Coding is paramount com-

pared to the Dictionary Update and the Reconstruction stages. The

total complexity is therefore O((
PN−1

i=0
ks)nLJM) where L is the

average sparsity factor (number of coefficients obtained in the de-

composition), andM is the number of patches processed.

3.2. Additional Algorithmic Improvements

Compared to the original K-SVD algorithm [2], we introduce some

additional refinements, which further improve the result without in-

creasing the computational cost.

First, we find it useful to force the presence of a constant (DC)

atom in each dictionary, and to give it a preference by multiplying

this atom by a constant (2.5 in our examples) during the selection
procedure of the OMP (refer to [9]). This makes sense since a con-

stant atom does not introduce any noise in a reconstruction.

Secondly, as discussed in [3], the stopping criterion during the

OMP is based on the norm of an n-dimensional Gaussian vector
which is distributed by the generalized Rayleigh law. This means

that one has to stop the approximation when the residual reaches a

fuzzy sphere. But according to this law, the bigger n is, the thinner
the sphere is, and the more accurate the stopping criterion
p

(n)C(n)σ becomes (C is a parameter that depends on n). Thus
one asset of increasing n through our multiscale scheme is to pro-
vide an improved stopping criterion. It is actually not necessary to

perform a complete multiscale algorithm to take advantage of this

property. During the Sparse Coding stage, instead of processing

each patch separately, one can choose to process some adjacent sets

of non-overlapping patches simultaneously and consider them as a

larger patch (and therefore associated with a better stopping crite-

rion). In practice, we choose m adjacent patches of size n, and we
first process them independently using their own stopping criterion
p

(n)C(n)σ. Then, as long as the cumulative error of them patches

is larger than the (better) stopping criterion
p

(nm)C(nm)σ, we re-
fine the approximation by progressively adding terms, one at a time,

to the sparse expansion of the worse of them patches. Then we con-
sider a new set ofm patches and continue the sparse approximation.
This does not increase the complexity of the algorithm and provides

noticeable improvements.

4. EXPERIMENTAL RESULTS

We now present denoising results obtained within the proposed mul-

tiscale sparsity framework. On Table 1, our results for N = 1
(single-scale) and N = 2 scales are compared to those presented
in [2, 5, 6, 7]. The best results are shared between our algorithm and

[7], where [7] performs better only for very high noise (beyond the

normal expected one) and on the images “barbara” and “lena.” For

N = 1, n = 8 × 8. For N = 2, n is 10 × 10 for σ = 5, 12 × 12
for σ = 10, 16 × 16 for 15 ≤ σ ≤ 25, and 20 × 20 for σ ≥ 50.
The results from our experiments and [2, 7] reported in Table 1 are

averaged over 5 experiments for each image and each level of noise.
During our experiments, the number of iterations J was fixed to 20,
the number of atoms ks for each scale was set to 256 and the pa-
rameter λ to 0.45n2/σ. The parameter m, representing the num-
ber of patches simultaneously processed, and C, are reported within
the table. The initial dictionaries used during these experiments are

the results of off-line training on a large generic database of images

[2, 3]. The so-called sparsity factor L for these off-line training was
set to L = 6 for N = 1, L = 20 for N = 2, and L = 30 for
N = 3. Some visual results for N = 2 are presented in Figure 3,
while further improvements provided by the use ofN = 3 scales and
n = 20×20 (PSNR = 36.93) compared toN = 2 and n = 12×12
(PSNR = 36.57) are shown on Figure 4. One example of a multiscale
learned dictionary is presented in Figure 5.

(a) Noisy, σ = 20 (b) Denoised (c) Original

(d) Noisy, σ = 25 (e) Denoised (f) Original

Fig. 3. Denoising results for N = 2.

(a) Noisy, σ = 10 (b) N = 3 (c) Zoom on (b)

(d) Original (e) N = 2 (f) Zoom on (e)

Fig. 4. Denoising results with N = 3 and N = 2.

Our implementation was coded in C++ using the Intel Math Ker-

nel Library. For N = 1, during one experiment on the 256 × 256
image “house”, for σ = 25, one Sparse Coding step takes approx-
imately 3s on an Opteron 2.4GHz. With the same image and same
level of noise, with N = 2, this time becomes 60s. In both cases,
the Dictionary Update takes less than 0.5s. Thus our algorithm is
slower than [7], and improving on this is part of ongoing efforts in

our group. To achieve this goal one could define a criterion to deac-

tivate some scales during the OMP. Code profiling shows that more



σ C m house peppers lena barbara boat

5
1.128 1 38.65 37.62 39.56 37.31 37.34 37.83 38.49 37.91 38.62 37.79 37.12 38.16 36.97 36.14 37.19

1.069 3 39.37 39.62 39.84 37.78 37.94 38.14 38.60 38.60 38.70 38.08 37.59 38.11 37.22 37.13 37.26

10
1.128 1 35.35 35.26 36.37 33.77 34.07 34.38 35.61 35.18 35.81 34.03 33.79 34.86 33.58 33.09 33.76

1.042 3 35.98 36.24 36.54 34.28 34.49 34.60 35.47 35.63 35.75 34.42 34.35 34.57 33.64 33.81 33.87

15
1.041 4 33.64 34.08 34.75 31.74 32.13 32.35 33.90 33.70 34.20 31.86 31.80 33.05 31.70 31.44 31.92

1.026 4 34.32 34.59 34.87 32.22 32.41 32.41 33.70 33.90 34.08 32.37 32.47 32.58 31.73 31.99 32.02

20
1.023 4 32.39 32.90 33.54 30.31 30.59 30.84 32.66 32.64 33.02 30.32 30.37 31.71 30.38 30.12 30.61

1.026 4 33.20 33.45 33.67 30.82 31.10 31.11 32.38 32.69 32.86 30.83 31.11 31.24 30.36 30.69 30.77

25
1.023 4 31.40 32.44 32.66 29.21 29.95 29.82 31.69 31.66 32.06 29.13 29.96 30.68 29.37 29.66 29.64

1.020 4 32.15 32.44 32.75 29.73 29.95 30.05 31.32 31.66 31.89 29.60 29.95 30.17 29.28 29.66 29.79

50
1.018 4 28.26 28.67 29.68 25.90 25.29 26.45 28.61 28.38 29.10 25.48 24.09 27.50 26.38 25.93 26.63

1.010 5 27.95 28.25 29.43 26.13 26.40 26.62 27.79 28.11 28.75 25.47 26.04 26.80 25.95 26.34 26.74

100
1.018 4 25.11 23.08 25.96 22.66 20.51 23.06 25.64 23.32 25.91 22.61 20.64 24.11 23.75 21.78 23.88

1.008 5 23.71 23.69 24.73 21.75 22.05 22.57 24.46 24.48 25.13 21.89 22.04 22.88 22.81 22.95 23.65

Table 1. PSNR results of our denoising algorithm. Each case (image and noise level) is divided into six parts: The top row for each part

presents the results from, respectively, [5, 6, 7] (from left to right). The bottom row presents successively the original K-SVD [2], our results

for N = 1 (single-scale), and then N = 2 scales. Each time the best results is in bold. The values of the parameters C andm are reported
in the second and third columns: Inside these ones, the top part of each cell is devoted to N = 1 and the low part to N = 2.

(a) Scale s = 0 (b) Scale s = 1

Fig. 5. One learned multiscale dictionary.

than 85% of the computational time is usually devoted to matrix-
vector multiplication due to the computation of scalar products in

the OMP. This can be significantly improved using standard nearest-

neighborhood approximation algorithms, which often provide two or

more orders of magnitude improvement. In addition, NVIDIA is at

the moment developing a parallel linear algebra library which takes

advantage of graphic cards and could potentially provide a speedup

magnitude of more than 20 for these multiplications. We plan to
provide a parallel version of the algorithm which will be able to take

advantage of the new multi-core processors. To conclude, we do not

anticipate the computational cost of the algorithm to be a bottleneck

in the near future.

5. CONCLUSION AND FUTURE DIRECTIONS

In this paper we presented a K-SVD based algorithm that is able

to learn multiscale sparse image representations. Using a shift-inva-

riant sparsity prior on natural images, the proposed framework

achieves state-of-the-art denoising results. Our current efforts are

devoted in part to the speed-up of the algorithm following the ap-

proaches mentioned above, and to the extension to multiscale sparse

representation of color images, see [3] for the single-scale case. An-

other direction we are pursuing is to combine the K-SVD with image

pyramids. Results in these directions will be reported soon.
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