Incremental and Stochastic Majorization-Minimization Algorithms for Large-Scale Optimization

Julien Mairal

INRIA LEAR, Grenoble

Gargantua workshop, LJK, November 2013

A simple optimization principle

Objective: $\min_{\theta \in \Theta} f(\theta)$

Principle called Majorization-Minimization [Lange et al., 2000];
quite popular in statistics and signal processing.

In this work

- scalable Majorization-Minimization algorithms;
- for convex or non-convex and smooth or non-smooth problems;

References

- J. Mairal. Optimization with First-Order Surrogate Functions. ICML'13;
- J. Mairal. Stochastic Majorization-Minimization Algorithms for Large-Scale Optimization. NIPS'13.

Setting: First-Order Surrogate Functions

- $g(\theta') \ge f(\theta')$ for all θ' in $\arg\min_{\theta \in \Theta} g(\theta)$;
- the approximation error $h \stackrel{\triangle}{=} g f$ is differentiable, and ∇h is *L*-Lipschitz. Moreover, $h(\kappa) = 0$ and $\nabla h(\kappa) = 0$.

The Basic MM Algorithm

Algorithm 1 Basic Majorization-Minimization Scheme

- 1: **Input:** $\theta_0 \in \Theta$ (initial estimate); *N* (number of iterations).
- 2: for n = 1, ..., N do
- 3: Compute a surrogate g_n of f near θ_{n-1} ;
- 4: Minimize g_n and update the solution:

$$\theta_n \in \underset{\theta \in \Theta}{\operatorname{arg\,min}} g_n(\theta).$$

- 5: end for
- 6: **Output:** θ_N (final estimate);

• Lipschitz Gradient Surrogates:

f is L-smooth (differentiable + L-Lipschitz gradient).

$$g: heta \mapsto f(\kappa) +
abla f(\kappa)^{ op} (heta - \kappa) + rac{L}{2} \| heta - \kappa\|_2^2.$$

Minimizing g yields a gradient descent step $\theta \leftarrow \kappa - \frac{1}{L} \nabla f(\kappa)$.

• Lipschitz Gradient Surrogates:

f is L-smooth (differentiable + L-Lipschitz gradient).

$$\mathsf{g}: heta \mapsto f(\kappa) +
abla f(\kappa)^{ op} (heta - \kappa) + rac{L}{2} \| heta - \kappa\|_2^2.$$

Minimizing g yields a gradient descent step $\theta \leftarrow \kappa - \frac{1}{L} \nabla f(\kappa)$.

Proximal Gradient Surrogates:

 $f = f_1 + f_2$ with f_1 smooth.

$$g: \theta \mapsto f_1(\kappa) + \nabla f_1(\kappa)^{\top}(\theta - \kappa) + \frac{L}{2} \|\theta - \kappa\|_2^2 + f_2(\theta).$$

Minimizing g amounts to one step of the forward-backward, ISTA, or proximal gradient descent algorithm.

[Beck and Teboulle, 2009, Combettes and Pesquet, 2010, Wright et al., 2008, Nesterov, 2007].

• Linearizing Concave Functions and DC-Programming: $f = f_1 + f_2$ with f_2 smooth and concave.

$$g: \theta \mapsto f_1(\theta) + f_2(\kappa) + \nabla f_2(\kappa)^{\top}(\theta - \kappa).$$

When f_1 is convex, the algorithm is called DC-programming.

• Linearizing Concave Functions and DC-Programming: $f = f_1 + f_2$ with f_2 smooth and concave.

$$g: \theta \mapsto f_1(\theta) + f_2(\kappa) + \nabla f_2(\kappa)^{\top}(\theta - \kappa).$$

When f_1 is convex, the algorithm is called DC-programming.

• Quadratic Surrogates:

f is twice differentiable, and **H** is a uniform upper bound of $\nabla^2 f$:

$$g: heta \mapsto f(\kappa) +
abla f(\kappa)^{ op} (heta - \kappa) + rac{1}{2} (heta - \kappa)^{ op} \mathbf{H} (heta - \kappa).$$

Actually a big deal in statistics and machine learning [Böhning and Lindsay, 1988, Khan et al., 2010, Jebara and Choromanska, 2012].

• More Exotic Surrogates:

Consider a smooth approximation of the trace (nuclear) norm

$$f_{\mu}: \theta \mapsto \operatorname{Tr}\left((\theta^{\top}\theta + \mu \mathbf{I})^{1/2}\right) = \sum_{i=1}^{p} \sqrt{\lambda_{i}(\theta^{\top}\theta) + \mu},$$

 $f': \mathbf{H} \mapsto \operatorname{Tr} (\mathbf{H}^{1/2})$ is concave on the set of p.d. matrices and $\nabla f'(\mathbf{H}) = (1/2)\mathbf{H}^{-1/2}.$

$$g_{\mu}: \theta \mapsto f_{\mu}(\kappa) + \frac{1}{2} \operatorname{Tr}\left((\kappa^{\top}\kappa + \mu \mathbf{I})^{-1/2}(\theta^{\top}\theta - \kappa^{\top}\kappa)\right),$$

which yields the algorithm of Mohan and Fazel [2012].

• Variational Surrogates: $f(\theta_1) \stackrel{\triangle}{=} \min_{\theta_2 \in \Theta_2} \tilde{f}(\theta_1, \theta_2)$, where \tilde{f} is "smooth" w.r.t θ_1 and strongly convex w.r.t θ_2 :

$$g: heta_1 \mapsto \tilde{f}(heta_1, \kappa_2^{\star}) ext{ with } \kappa_2^{\star} \stackrel{ riangle}{=} rgmin_{ heta_2 \in \Theta_2} \tilde{f}(\kappa_1, heta_2).$$

• Saddle-Point Surrogates: $f(\theta_1) \stackrel{\triangle}{=} \max_{\theta_2 \in \Theta_2} \tilde{f}(\theta_1, \theta_2)$, where \tilde{f} is "smooth" w.r.t θ_1 and strongly concave w.r.t θ_2 :

$$g: heta_1 \mapsto \tilde{f}(heta_1, \kappa_2^{\star}) + rac{L''}{2} \| heta_1 - \kappa_1\|_2^2.$$

• Jensen Surrogates: $f(\theta) \stackrel{\Delta}{=} \tilde{f}(\mathbf{x}^{\top}\theta)$, where \tilde{f} is *L*-smooth. Choose a weight vector \mathbf{w} in \mathbb{R}^{p}_{+} such that $\|\mathbf{w}\|_{1} = 1$ and $\mathbf{w}_{i} \neq 0$ whenever $\mathbf{x}_{i} \neq 0$.

$$g: \theta \mapsto \sum_{i=1}^{p} \mathbf{w}_{i} f\left(\frac{\mathbf{x}_{i}}{\mathbf{w}_{i}}(\theta_{i}-\kappa_{i})+\mathbf{x}^{\top}\kappa\right),$$

Theoretical Guarantees

• for **non-convex** problems: $f(\theta_n)$ monotically decreases and

$$\liminf_{n \to +\infty} \inf_{\theta \in \Theta} \frac{\nabla f(\theta_n, \theta - \theta_n)}{\|\theta - \theta_n\|_2} \ge 0,$$

which is an asymptotic stationary point condition.

- for convex ones: $f(\theta_n) f^* = O(1/n)$.
- for μ -strongly convex ones: the convergence rate is linear $O((1 \mu/L)^n)$.

the convergence rates and the proof techniques are the same as for proximal gradient methods [Nesterov, 2007, Beck and Teboulle, 2009].

New Majorization-Minimization Algorithms

Given $f : \mathbb{R}^p \to \mathbb{R}$ and $\Theta \subseteq \mathbb{R}^p$, our goal is to solve

 $\min_{\theta\in\Theta}f(\theta).$

We introduce algorithms for **non-convex and convex** optimization:

- a block coordinate scheme for separable surrogates;
- an incremental algorithm dubbed MISO for separable functions f;
- a stochastic algorithm for minimizing expectations;

Also several variants for convex optimization:

- an accelerated one (Nesterov's like);
- a "Frank-Wolfe" majorization-minimization algorithm.

11/28

Suppose that f splits into many components:

$$f(heta) = rac{1}{T}\sum_{t=1}^T f^t(heta).$$

Recipe

- Incrementally update an approximate surrogate $\frac{1}{T} \sum_{t=1}^{T} g^{t}$;
- add some heuristics for practical implementations.

Related (Inspiring) Work for Convex Problems

• related to SAG [Schmidt et al., 2013] and SDCA [Shalev-Schwartz and Zhang, 2012], but offers different update rules.

Algorithm 2 Incremental Scheme MISO

- 1: **Input:** $\theta_0 \in \Theta$; *N* (number of iterations).
- 2: Choose surrogates g_0^t of f^t near θ_0 for all t;
- 3: for n = 1, ..., N do
- 4: Randomly pick up one index \hat{t}_n and choose a surrogate $g_n^{\hat{t}_n}$ of $f^{\hat{t}_n}$ near θ_{n-1} . Set $g_n^t \stackrel{\triangle}{=} g_{n-1}^t$ for $t \neq \hat{t}_n$;
- 5: Update the solution:

$$heta_{n} \in \operatorname*{arg\,min}_{ heta \in \Theta} rac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} g_{n}^{t}(heta)$$

- 6: end for
- 7: **Output:** θ_N (final estimate);

Update Rule for Proximal Gradient Surrogates

We want to minimize $\frac{1}{T} \sum_{t=1}^{T} f_1^t(\theta) + f_2(\theta)$.

$$\begin{aligned} \theta_n &= \operatorname*{arg\,min}_{\theta \in \Theta} \frac{1}{T} \sum_{t=1}^T f_1(\kappa^t) + \nabla f_1(\kappa^t)^\top (\theta - \kappa^t) + \frac{L}{2} \|\theta - \kappa^t\|_2^2 + f_2(\theta) \\ &= \operatorname*{arg\,min}_{\theta \in \Theta} \frac{1}{2} \left\| \theta - \left(\frac{1}{T} \sum_{t=1}^T \kappa^t - \frac{1}{LT} \sum_{t=1}^T \nabla f_1^t(\kappa^t) \right) \right\|_2^2 + \frac{1}{L} f_2(\theta). \end{aligned}$$

Then, randomly draw one index t_n , and update $\kappa^{t_n} \leftarrow \theta_n$.

Remark

- remove f_2 , replace $\frac{1}{T} \sum_{t=1}^{T} \kappa^t$ by θ_{n-1} yields SAG [Schmidt et al., 2013];
- replace *L* by *μ* is "close" to SDCA [Shalev-Schwartz and Zhang, 2012];

Theoretical Guarantees

- for **non-convex** problems, the guarantees are the same as the generic MM algorithm with probability one.
- for convex problems and proximal gradient surrogates, the expected convergence rate becomes O(T/n).
- for μ -strongly convex problems and proximal gradient surrogates, the expected convergence rate is linear $O((1 \mu/(TL))^n)$.

Theoretical Guarantees

- for **non-convex** problems, the guarantees are the same as the generic MM algorithm with probability one.
- for convex problems and proximal gradient surrogates, the expected convergence rate becomes O(T/n).
- for μ -strongly convex problems and proximal gradient surrogates, the expected convergence rate is linear $O((1 \mu/(TL))^n)$.

Remarks

- for μ -strongly convex problems, the rates of SDCA and SAG are better: $\mu/(LT)$ is replaced by $O(\min(\mu/L, 1/T))$;
- MISO with minorizing surrogates is close to SDCA with "similar" convergence rates (details to be written yet).

Suppose that f is an expectation:

$$f(\theta) = \mathbb{E}_{\mathbf{x}}[I(\theta, \mathbf{x})].$$

Recipe

- Draw a function $f_n : \theta \mapsto I(\theta, \mathbf{x}_n)$ at iteration n;
- Iteratively update an approximate surrogate $\bar{g}_n = (1 w_n)\bar{g}_{n-1} + w_n g_n;$
- Possibly use an averaging scheme of the iterates.

Related Work

- online-EM [Neal and Hinton, 1998, Cappé and Moulines, 2009];
- online dictionary learning [Mairal et al., 2010a].

Algorithm 3 Stochastic Majorization-Minimization Scheme

- 1: Input: $\theta_0 \in \Theta$ (initial estimate); N (number of iterations); $(w_n)_{n \ge 1}$, weights in (0, 1];
- 2: initialize the approximate surrogate: $\bar{g}_0: \theta \mapsto \frac{\rho}{2} \|\theta \theta_0\|_2^2$;
- 3: for n = 1, ..., N do
- 4: draw a training point \mathbf{x}_n ;
- 5: choose a surrogate function g_n of $f_n : \theta \mapsto \ell(\mathbf{x}_n, \theta)$ near θ_{n-1} ;
- 6: update the approximate surrogate: $\bar{g}_n = (1 w_n)\bar{g}_{n-1} + w_ng_n$;
- 7: update the current estimate:

$$\theta_n \in \operatorname*{arg\,min}_{\theta \in \Theta} ar{g}_n(heta);$$

- 8: end for
- 9: **Output:** θ_N (current estimate);

Update Rule for Proximal Gradient Surrogate

$$\theta_{n} \leftarrow \operatorname*{arg\,min}_{\theta \in \Theta} \sum_{i=1}^{''} w_{n}^{i} \left[\nabla f_{i}(\theta_{i-1})^{\top} \theta + \frac{L}{2} \| \theta - \theta_{i-1} \|_{2}^{2} + \psi(\theta) \right]. \quad (\mathsf{SMM})$$

Other schemes in the literature [Duchi and Singer, 2009]:

$$\theta_{n} \leftarrow \arg\min_{\theta \in \Theta} \nabla f_{n}(\theta_{n-1})^{\top} \theta + \frac{1}{2\eta_{n}} \|\theta - \theta_{n-1}\|_{2}^{2} + \psi(\theta), \qquad (\mathsf{FOBOS})$$

or regularized dual averaging (RDA) of Xiao [2010]:

$$\theta_n \leftarrow \operatorname*{arg\,min}_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n \nabla f_i(\theta_{i-1})^\top \theta + \frac{1}{2\eta_n} \|\theta\|_2^2 + \psi(\theta).$$
 (RDA)

Theoretical Guarantees - Non-Convex Problems

under a set of reasonable assumptions,

- $f(\theta_n)$ almost surely converges;
- the function \bar{g}_n asymptotically behaves as a first-order surrogates;
- we almost surely have asymptotic stationary point conditions.

Theoretical Guarantees - Convex Problems

for proximal gradient surrogates, we obtain similar expected rates as SGD with averaging [see Nemirovski et al., 2009, Polyak and Juditsky, 1992]: O(1/n) for strongly convex problems, and $O(1/\sqrt{n})$ for convex ones.

Experimental Conclusions for ℓ_2 -logistic Regression

Datasets

name	т	р	storage	size (GB)
alpha	250 000	500	dense	1
rcv1	781 265	47 152	sparse	0.95
covtype	581012	54	dense	0.11
ocr	2 500 000	1 1 55	dense	23.1

for $\ell_2\text{-}\text{logistic}$ Regression

- Incremental and stochastic schemes were significantly faster than batch ones;
- MISO with heuristics was competitive with the state of the art (SAG, SGD, Liblinear);
- after one pass over the data, SMM quickly achieves a low-precision solution. For higher precision, MISO is prefered.
- problems tested were large but relatively well conditioned.

Consider a binary classification problem with enormous training data (y_n, \mathbf{x}_n) , with y_n in $\{-1, +1\}$ and \mathbf{x}_n in \mathbb{R}^p . Assume that there exists a sparse linear model $y \approx \text{sign}(\theta^\top \mathbf{x}_i)$, learned by minimizing

$$\min_{\theta \in \mathbb{R}^p} \mathbb{E}_{(y,\mathbf{x})}[\log(1 + e^{-y\theta^{\top}\mathbf{x}})] + \lambda \psi(\theta).$$

Traditional choices for ψ : $\psi(\theta) = \|\theta\|_2^2$ or $\|\theta\|_1$. Non-convex sparsity inducing penalty:

•
$$\psi(\theta) = \sum_{j=1}^{p} \log(|\theta[j]| + \varepsilon).$$

• upper-bound $f_n: \theta \mapsto \log(1 + e^{-y_n \theta^\top \mathbf{x}_n})$ by

$$\theta \mapsto f_n(\theta_{n-1}) + \nabla f_n(\theta_{n-1})^\top (\theta - \theta_{n-1}) + \frac{L}{2} \|\theta - \theta_{n-1}\|_2^2;$$

• upper-bound $\lambda \sum_{j=1}^{p} \log(|\theta[j]| + \varepsilon)$ by

$$\theta \mapsto \lambda \sum_{j=1}^{p} \frac{|\theta[j]|}{|\theta_{n-1}[j]| + \varepsilon}$$

this is a stochastic reweighted- ℓ_1 algorithm [Candès et al., 2008].

• upper-bound $f_n: \theta \mapsto \log(1 + e^{-y_n \theta^\top \mathbf{x}_n})$ by

$$\theta \mapsto f_n(\theta_{n-1}) + \nabla f_n(\theta_{n-1})^\top (\theta - \theta_{n-1}) + \frac{L}{2} \|\theta - \theta_{n-1}\|_2^2;$$

• upper-bound $\lambda \sum_{j=1}^{p} \log(|\theta[j]| + \varepsilon)$ by

$$\theta \mapsto \lambda \sum_{j=1}^{p} \frac{|\theta[j]|}{|\theta_{n-1}[j]| + \varepsilon}$$

this is a stochastic reweighted- ℓ_1 algorithm [Candès et al., 2008].

Datasets

name	N _{tr} (train)	$N_{\rm te}$ (test)	р	density (%)
rcv1	781 265	23 149	47 152	0.161
webspam	250 000	100 000	16 091 143	0.023

A ►

Consider some signals \mathbf{x} in \mathbb{R}^m . We want to find a dictionary \mathbf{D} in $\mathbb{R}^{m \times K}$. The quality of \mathbf{D} is measured through the loss

$$\ell(\mathbf{x},\mathbf{D}) \stackrel{\scriptscriptstyle riangle}{=} \min_{\boldsymbol{lpha} \in \mathbb{R}^K} rac{1}{2} \|\mathbf{x} - \mathbf{D} \boldsymbol{lpha}\|_2^2 + \lambda_1 \|\boldsymbol{lpha}\|_1 + rac{\lambda_2}{2} \|\boldsymbol{lpha}\|_2^2.$$

Then, learning the dictionary amounts to solving

$$\min_{\mathbf{D}\in\mathcal{C}} \mathbb{E}_{\mathbf{x}} \left[\ell(\mathbf{x}, \mathbf{D}) \right] + \varphi(\mathbf{D}),$$

and we can use the proximal gradient surrogate.

Why is it a matrix factorization problem?

$$\min_{\mathbf{D}\in\mathcal{C},\mathbf{A}\in\mathbb{R}^{K\times n}}\frac{1}{2n}\|\mathbf{X}-\mathbf{D}\mathbf{A}\|_{\mathsf{F}}^{2}+\sum_{i=1}^{n}\lambda_{1}\|\boldsymbol{\alpha}_{i}\|_{1}+\frac{\lambda_{2}}{2}\|\boldsymbol{\alpha}_{i}\|_{2}^{2}+\varphi(\mathbf{D}).$$

when C = {D ∈ ℝ^{m×K} s.t. ||d_j||₂ ≤ 1} and φ = 0, the problem is called sparse coding or dictionary learning [Olshausen and Field, 1997, Elad and Aharon, 2006]. We can use the upper-bound

$$\ell(\mathbf{x}_n, \mathbf{D}) \leq \frac{1}{2} \|\mathbf{x}_n - \mathbf{D}\boldsymbol{\alpha}_n\|_2^2 + \lambda_1 \|\boldsymbol{\alpha}_n\|_1 + \frac{\lambda_2}{2} \|\boldsymbol{\alpha}_n\|_2^2,$$

where

$$\boldsymbol{\alpha}_n \stackrel{\scriptscriptstyle \Delta}{=} \argmin_{\boldsymbol{\alpha} \in \mathbb{R}^p} \frac{1}{2} \| \mathbf{x}_n - \mathbf{D}_{n-1} \boldsymbol{\alpha} \|_2^2 + \lambda_1 \| \boldsymbol{\alpha} \|_1 + \frac{\lambda_2}{2} \| \boldsymbol{\alpha} \|_2^2,$$

and we obtain the online dictionary learning of Mairal et al. [2010a].

- non-negativity constraints can be easily added. It yields an online nonnegative matrix factorization algorithm.
- φ can be a function encouraging a particular structure in D [Jenatton et al., 2009].

Dictionary Learning on Natural Image Patches

Consider $n = 250\,000$ whitened natural image patches of size $m = 12 \times 12$. We learn a dictionary with K = 256 elements.

Os on an old laptop 1.2GHz dual-core CPU. (initialization)

Dictionary Learning on Natural Image Patches

Consider $n = 250\,000$ whitened natural image patches of size $m = 12 \times 12$. We learn a dictionary with K = 256 elements.

1.15s on an old laptop 1.2GHz dual-core CPU (0.1 pass)

Dictionary Learning on Natural Image Patches

Consider $n = 250\,000$ whitened natural image patches of size $m = 12 \times 12$. We learn a dictionary with K = 256 elements.

5.97s on an old laptop 1.2GHz dual-core CPU (0.5 pass)

Dictionary Learning on Natural Image Patches

Consider $n = 250\,000$ whitened natural image patches of size $m = 12 \times 12$. We learn a dictionary with K = 256 elements.

12.44s on an old laptop 1.2GHz dual-core CPU (1 pass)

Dictionary Learning on Natural Image Patches

Consider $n = 250\,000$ whitened natural image patches of size $m = 12 \times 12$. We learn a dictionary with K = 256 elements.

23.22s on an old laptop 1.2GHz dual-core CPU (2 passes)

Dictionary Learning on Natural Image Patches

Consider $n = 250\,000$ whitened natural image patches of size $m = 12 \times 12$. We learn a dictionary with K = 256 elements.

60.60s on an old laptop 1.2GHz dual-core CPU (5 passes)

With a structured regularization function φ [Jenatton et al., 2009]

 $\varphi(\mathbf{D}) \stackrel{\vartriangle}{=} \gamma_1 \sum_{j=1}^{K} \sum_{g \in \mathcal{G}} \max_{k \in g} |\mathbf{d}_j[k]| + \gamma_2 ||\mathbf{D}||_{\mathsf{F}}^2$. The proximal operator of φ can be computed by using network flow optimization [Mairal et al., 2010b].

Figure: Left: subset of a larger dictionary obtained with ℓ_1 ; Right: subset obtained with φ after initialization with the dictionary on the left.

About 20 minutes per pass on the data on the 1.2GHz laptop CPU.

Conclusion

What we have done

- we have given a unified view of a large number of algorithms;
- ... and introduced new ones for large-scale optimization.

A take-home message

• our algorithms are likely to be useful for large-scale **non-convex** and possibly **non-smooth** problems.

Source Code

- code will be included in the toolbox SPAMS (C++ interfaced with Matlab, Python, R). http://spams-devel.gforge.inria.fr/;
- the online dictionary learning algorithm is already in SPAMS.

References I

- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.
- D. Böhning and B. G. Lindsay. Monotonicity of quadratic-approximation algorithms. *Annals of the Institute of Statistical Mathematics*, 40(4): 641–663, 1988.
- E. J. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted 11 minimization. *Journal of Fourier Analysis and Applications*, 14: 877–905, 2008.
- O. Cappé and E. Moulines. On-line expectation-maximization algorithm for latent data models. 71(3):593-613, 2009.
- P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In *Fixed-Point Algorithms for Inverse Problems in Science and Engineering*. Springer, 2010.

References II

- J. Duchi and Y. Singer. Efficient online and batch learning using forward backward splitting. *Journal of Machine Learning Research*, 10: 2899–2934, 2009.
- M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. *IEEE Transactions on Image Processing*, 54(12):3736–3745, December 2006.
- T. Jebara and A. Choromanska. Majorization for CRFs and latent likelihoods. In *Advances in Neural Information Processing Systems*, 2012.
- R. Jenatton, J-Y. Audibert, and F. Bach. Structured variable selection with sparsity-inducing norms. Technical report, 2009. preprint arXiv:0904.3523v1.
- Emtiyaz Khan, Ben Marlin, Guillaume Bouchard, and Kevin Murphy. Variational bounds for mixed-data factor analysis. In *Advances in Neural Information Processing Systems*, 2010.

References III

- K. Lange, D.R. Hunter, and I. Yang. Optimization transfer using surrogate objective functions. 9(1):1–20, 2000.
- J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. *Journal of Machine Learning Research*, 2010a.
- J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity. In *Advances in Neural Information Processing Systems*, 2010b.
- K. Mohan and M. Fazel. Iterative reweighted algorithms for matrix rank minimization. *Journal of Machine Learning Research*, (13):3441–3473, 2012.
- R.M. Neal and G.E. Hinton. A view of the EM algorithm that justifies incremental, sparse, and other variants. *Learning in graphical models*, 89, 1998.

References IV

- A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. 19(4): 1574–1609, 2009.
- Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, CORE, 2007.
- B. A. Olshausen and D. J. Field. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37: 3311–3325, 1997.
- Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. *SIAM Journal on Control and Optimization*, 30(4):838–855, 1992.
- Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average gradient. *arXiv:1309.2388*, 2013.
- S. Shalev-Schwartz and T. Zhang. Proximal stochastic dual coordinate ascent. *preprint arXiv 1211.2717v1*, 2012.

References V

- S. Wright, R. Nowak, and M. Figueiredo. Sparse reconstruction by separable approximation. *IEEE Transactions on Signal Processing*, 2008.
- L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. *Journal of Machine Learning Research*, 11: 2543–2596, 2010.

Performance of MISO for logistic- ℓ_2 regression

With preliminary version of SAG

Julien Mairal

Online Dictionary Learning

Experimental results batch vs online

35/28

Online Dictionary Learning

Experimental results batch vs online

Online Dictionary Learning

Experimental results batch vs online

