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A simple optimization principle

f (θ)g(θ)
b κ

Objective: min
θ∈Θ

f (θ)

Principle called Majorization-Minimization [Lange et al., 2000];

quite popular in statistics and signal processing.
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In this work

f (θ)g(θ)
b κ

scalable Majorization-Minimization algorithms;

for convex or non-convex and smooth or non-smooth problems;

References

J. Mairal. Optimization with First-Order Surrogate Functions. ICML’13;

J. Mairal. Stochastic Majorization-Minimization Algorithms for
Large-Scale Optimization. NIPS’13.
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Setting: First-Order Surrogate Functions

h(θ)
f (θ)g(θ)

b κ

g(θ′) ≥ f (θ′) for all θ′ in argminθ∈Θ g(θ);

the approximation error h
△

= g − f is differentiable, and ∇h is
L-Lipschitz. Moreover, h(κ) = 0 and ∇h(κ) = 0.
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The Basic MM Algorithm

Algorithm 1 Basic Majorization-Minimization Scheme

1: Input: θ0 ∈ Θ (initial estimate); N (number of iterations).
2: for n = 1, . . . ,N do

3: Compute a surrogate gn of f near θn−1;
4: Minimize gn and update the solution:

θn ∈ argmin
θ∈Θ

gn(θ).

5: end for

6: Output: θN (final estimate);

Julien Mairal Incremental and Stochastic MM Algorithms 5/28



Examples of First-Order Surrogate Functions

Lipschitz Gradient Surrogates:
f is L-smooth (differentiable + L-Lipschitz gradient).

g : θ 7→ f (κ) +∇f (κ)⊤(θ − κ) + L

2
‖θ − κ‖22.

Minimizing g yields a gradient descent step θ ← κ− 1
L
∇f (κ).
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Examples of First-Order Surrogate Functions

Lipschitz Gradient Surrogates:
f is L-smooth (differentiable + L-Lipschitz gradient).

g : θ 7→ f (κ) +∇f (κ)⊤(θ − κ) + L

2
‖θ − κ‖22.

Minimizing g yields a gradient descent step θ ← κ− 1
L
∇f (κ).

Proximal Gradient Surrogates:
f = f1 + f2 with f1 smooth.

g : θ 7→ f1(κ) +∇f1(κ)⊤(θ − κ) +
L

2
‖θ − κ‖22 + f2(θ).

Minimizing g amounts to one step of the forward-backward, ISTA,
or proximal gradient descent algorithm.
[Beck and Teboulle, 2009, Combettes and Pesquet, 2010, Wright et al.,

2008, Nesterov, 2007].
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Examples of First-Order Surrogate Functions

Linearizing Concave Functions and DC-Programming:
f = f1 + f2 with f2 smooth and concave.

g : θ 7→ f1(θ) + f2(κ) +∇f2(κ)⊤(θ − κ).

When f1 is convex, the algorithm is called DC-programming.
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Examples of First-Order Surrogate Functions

Linearizing Concave Functions and DC-Programming:
f = f1 + f2 with f2 smooth and concave.

g : θ 7→ f1(θ) + f2(κ) +∇f2(κ)⊤(θ − κ).

When f1 is convex, the algorithm is called DC-programming.

Quadratic Surrogates:
f is twice differentiable, and H is a uniform upper bound of ∇2f :

g : θ 7→ f (κ) +∇f (κ)⊤(θ − κ) + 1

2
(θ − κ)⊤H(θ − κ).

Actually a big deal in statistics and machine learning [Böhning and

Lindsay, 1988, Khan et al., 2010, Jebara and Choromanska, 2012].
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Examples of First-Order Surrogate Functions

More Exotic Surrogates:
Consider a smooth approximation of the trace (nuclear) norm

fµ : θ 7→ Tr
(

(θ⊤θ + µI)1/2
)

=

p
∑

i=1

√

λi (θ⊤θ) + µ,

f ′ : H 7→ Tr
(

H1/2
)

is concave on the set of p.d. matrices and

∇f ′(H) = (1/2)H−1/2.

gµ : θ 7→ fµ(κ) +
1

2
Tr
(

(κ⊤κ+ µI)−1/2(θ⊤θ − κ⊤κ)
)

,

which yields the algorithm of Mohan and Fazel [2012].
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Examples of First-Order Surrogate Functions

Variational Surrogates: f (θ1)
△

= minθ2∈Θ2 f̃ (θ1, θ2),
where f̃ is “smooth” w.r.t θ1 and strongly convex w.r.t θ2:

g : θ1 7→ f̃ (θ1, κ
⋆
2) with κ⋆2

△

= argmin
θ2∈Θ2

f̃ (κ1, θ2).

Saddle-Point Surrogates: f (θ1)
△

= maxθ2∈Θ2 f̃ (θ1, θ2),
where f̃ is “smooth” w.r.t θ1 and strongly concave w.r.t θ2:

g : θ1 7→ f̃ (θ1, κ
⋆
2) +

L′′

2
‖θ1 − κ1‖22.

Jensen Surrogates: f (θ)
△

= f̃ (x⊤θ),
where f̃ is L-smooth. Choose a weight vector w in R

p
+ such that

‖w‖1 = 1 and wi 6= 0 whenever xi 6=0.

g : θ 7→
p
∑

i=1

wi f

(

xi

wi

(θi − κi ) + x⊤κ

)

,
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Theoretical Guarantees

for non-convex problems: f (θn) monotically decreases and

lim inf
n→+∞

inf
θ∈Θ

∇f (θn, θ − θn)
‖θ − θn‖2

≥ 0,

which is an asymptotic stationary point condition.

for convex ones: f (θn)− f ⋆ = O(1/n).

for µ-strongly convex ones: the convergence rate is linear
O((1− µ/L)n).

the convergence rates and the proof techniques are the same as for
proximal gradient methods [Nesterov, 2007, Beck and Teboulle, 2009].
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New Majorization-Minimization Algorithms

Given f : Rp → R and Θ ⊆ R
p, our goal is to solve

min
θ∈Θ

f (θ).

We introduce algorithms for non-convex and convex optimization:

a block coordinate scheme for separable surrogates;

an incremental algorithm dubbed MISO for separable functions f ;

a stochastic algorithm for minimizing expectations;

Also several variants for convex optimization:

an accelerated one (Nesterov’s like);

a “Frank-Wolfe” majorization-minimization algorithm.
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Incremental Optimization: MISO

Suppose that f splits into many components:

f (θ) =
1

T

T
∑

t=1

f t(θ).

Recipe

Incrementally update an approximate surrogate 1
T

∑T
t=1 g

t ;

add some heuristics for practical implementations.

Related (Inspiring) Work for Convex Problems

related to SAG [Schmidt et al., 2013] and SDCA [Shalev-Schwartz
and Zhang, 2012], but offers different update rules.
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Incremental Optimization: MISO

Algorithm 2 Incremental Scheme MISO

1: Input: θ0 ∈ Θ; N (number of iterations).
2: Choose surrogates g t

0 of f t near θ0 for all t;
3: for n = 1, . . . ,N do

4: Randomly pick up one index t̂n and choose a surrogate g t̂n
n of f t̂n

near θn−1. Set g
t
n

△

= g t
n−1 for t 6= t̂n;

5: Update the solution:

θn ∈ argmin
θ∈Θ

1

T

T
∑

t=1

g t
n(θ)

.
6: end for

7: Output: θN (final estimate);
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Incremental Optimization: MISO

Update Rule for Proximal Gradient Surrogates

We want to minimize 1
T

∑T
t=1 f

t
1 (θ) + f2(θ).

θn = argmin
θ∈Θ

1

T

T
∑

t=1

f1(κ
t) +∇f1(κt)⊤(θ − κt) +

L

2
‖θ − κt‖22 + f2(θ)

= argmin
θ∈Θ

1

2

∥

∥

∥

∥

∥

θ −
(

1

T

T
∑

t=1

κt − 1

LT

T
∑

t=1

∇f t1 (κt)
)
∥

∥

∥

∥

∥

2

2

+
1

L
f2(θ).

Then, randomly draw one index tn, and update κtn ← θn.

Remark

remove f2, replace
1
T

∑T

t=1 κ
t by θn−1 yields SAG [Schmidt et al., 2013];

replace L by µ is “close” to SDCA [Shalev-Schwartz and Zhang, 2012];
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Incremental Optimization: MISO

Theoretical Guarantees

for non-convex problems, the guarantees are the same as the
generic MM algorithm with probability one.

for convex problems and proximal gradient surrogates, the expected
convergence rate becomes O(T/n).

for µ-strongly convex problems and proximal gradient surrogates,
the expected convergence rate is linear O((1− µ/(TL))n).
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Incremental Optimization: MISO

Theoretical Guarantees

for non-convex problems, the guarantees are the same as the
generic MM algorithm with probability one.

for convex problems and proximal gradient surrogates, the expected
convergence rate becomes O(T/n).

for µ-strongly convex problems and proximal gradient surrogates,
the expected convergence rate is linear O((1− µ/(TL))n).

Remarks

for µ-strongly convex problems, the rates of SDCA and SAG are
better: µ/(LT ) is replaced by O(min(µ/L, 1/T ));

MISO with minorizing surrogates is close to SDCA with “similar”
convergence rates (details to be written yet).
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Stochastic Majorization Minimization: SMM

Suppose that f is an expectation:

f (θ) = Ex[l(θ, x)].

Recipe

Draw a function fn : θ 7→ l(θ, xn) at iteration n;

Iteratively update an approximate surrogate
ḡn = (1−wn)ḡn−1 + wngn;

Possibly use an averaging scheme of the iterates.

Related Work

online-EM [Neal and Hinton, 1998, Cappé and Moulines, 2009];

online dictionary learning [Mairal et al., 2010a].
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Stochastic Majorization Minimization: SMM

Algorithm 3 Stochastic Majorization-Minimization Scheme

1: Input: θ0 ∈ Θ (initial estimate); N (number of iterations); (wn)n≥1,
weights in (0, 1];

2: initialize the approximate surrogate: ḡ0 : θ 7→ ρ
2‖θ − θ0‖22;

3: for n = 1, . . . ,N do

4: draw a training point xn;
5: choose a surrogate function gn of fn : θ 7→ ℓ(xn, θ) near θn−1;
6: update the approximate surrogate: ḡn = (1− wn)ḡn−1 + wngn;
7: update the current estimate:

θn ∈ argmin
θ∈Θ

ḡn(θ);

8: end for

9: Output: θN (current estimate);
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Stochastic Majorization Minimization: SMM

Update Rule for Proximal Gradient Surrogate

θn ← argmin
θ∈Θ

n
∑

i=1

w i
n

[

∇fi (θi−1)
⊤θ + L

2‖θ − θi−1‖22 + ψ(θ)
]

. (SMM)

Other schemes in the literature [Duchi and Singer, 2009]:

θn ← argmin
θ∈Θ

∇fn(θn−1)
⊤θ + 1

2ηn
‖θ − θn−1‖22 + ψ(θ), (FOBOS)

or regularized dual averaging (RDA) of Xiao [2010]:

θn ← argmin
θ∈Θ

1

n

n
∑

i=1

∇fi (θi−1)
⊤θ + 1

2ηn
‖θ‖22 + ψ(θ). (RDA)
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Stochastic Majorization Minimization: SMM

Theoretical Guarantees - Non-Convex Problems

under a set of reasonable assumptions,

f (θn) almost surely converges;

the function ḡn asymptotically behaves as a first-order surrogates;

we almost surely have asymptotic stationary point conditions.

Theoretical Guarantees - Convex Problems

for proximal gradient surrogates, we obtain similar expected rates as SGD
with averaging [see Nemirovski et al., 2009, Polyak and Juditsky, 1992]:
O(1/n) for strongly convex problems, and O(1/

√
n) for convex ones.
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Experimental Conclusions for ℓ2-logistic Regression

Datasets

name m p storage size (GB)

alpha 250 000 500 dense 1

rcv1 781 265 47 152 sparse 0.95

covtype 581 012 54 dense 0.11

ocr 2 500 000 1 155 dense 23.1

for ℓ2-logistic Regression

Incremental and stochastic schemes were significantly faster than
batch ones;

MISO with heuristics was competitive with the state of the art
(SAG, SGD, Liblinear);

after one pass over the data, SMM quickly achieves a
low-precision solution. For higher precision, MISO is prefered.

problems tested were large but relatively well conditioned.
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Stochastic DC programming

Consider a binary classification problem with enormous training data
(yn, xn), with yn in {−1,+1} and xn in R

p. Assume that there exists a
sparse linear model y ≈ sign(θ⊤xi ), learned by minimizing

min
θ∈Rp

E(y ,x)[log(1 + e−yθ⊤x)] + λψ(θ).

Traditional choices for ψ: ψ(θ) = ‖θ‖22 or ‖θ‖1.
Non-convex sparsity inducing penalty:

ψ(θ) =
∑p

j=1 log(|θ[j ]|+ ε).

θ

ψ(θ)
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Stochastic DC programming

upper-bound fn : θ 7→ log(1 + e−ynθ⊤xn) by

θ 7→ fn(θn−1) +∇fn(θn−1)
⊤(θ − θn−1) +

L

2
‖θ − θn−1‖22;

upper-bound λ
∑p

j=1 log(|θ[j ]|+ ε) by

θ 7→ λ

p
∑

j=1

|θ[j ]|
|θn−1[j ]|+ ε

.

this is a stochastic reweighted-ℓ1 algorithm [Candès et al., 2008].
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Stochastic DC programming

upper-bound fn : θ 7→ log(1 + e−ynθ⊤xn) by

θ 7→ fn(θn−1) +∇fn(θn−1)
⊤(θ − θn−1) +

L

2
‖θ − θn−1‖22;

upper-bound λ
∑p

j=1 log(|θ[j ]|+ ε) by

θ 7→ λ

p
∑

j=1

|θ[j ]|
|θn−1[j ]|+ ε

.

this is a stochastic reweighted-ℓ1 algorithm [Candès et al., 2008].

Datasets

name Ntr (train) Nte (test) p density (%)

rcv1 781 265 23 149 47 152 0.161

webspam 250 000 100 000 16 091 143 0.023
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Stochastic DC programming
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Online Structured Matrix Factorization

Consider some signals x in R
m. We want to find a dictionary D

in R
m×K . The quality of D is measured through the loss

ℓ(x,D)
△

= min
α∈RK

1

2
‖x−Dα‖22 + λ1‖α‖1 +

λ2
2
‖α‖22.

Then, learning the dictionary amounts to solving

min
D∈C

Ex [ℓ(x,D)] + ϕ(D),

and we can use the proximal gradient surrogate.

Why is it a matrix factorization problem?

min
D∈C,A∈RK×n

1

2n
‖X−DA‖2F +

n
∑

i=1

λ1‖αi‖1 +
λ2
2
‖αi‖22 + ϕ(D).
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Online Structured Matrix Factorization

when C = {D ∈ R
m×K s.t. ‖dj‖2 ≤ 1} and ϕ = 0, the problem is

called sparse coding or dictionary learning [Olshausen and Field,
1997, Elad and Aharon, 2006]. We can use the upper-bound

ℓ(xn,D) ≤ 1

2
‖xn −Dαn‖22 + λ1‖αn‖1 +

λ2
2
‖αn‖22,

where

αn
△

= argmin
α∈Rp

1

2
‖xn −Dn−1α‖22 + λ1‖α‖1 +

λ2
2
‖α‖22,

and we obtain the online dictionary learning of Mairal et al. [2010a].

non-negativity constraints can be easily added. It yields an online
nonnegative matrix factorization algorithm.

ϕ can be a function encouraging a particular structure
in D [Jenatton et al., 2009].
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

0s on an old laptop 1.2GHz dual-core CPU. (initialization)
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

1.15s on an old laptop 1.2GHz dual-core CPU (0.1 pass)
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

5.97s on an old laptop 1.2GHz dual-core CPU (0.5 pass)
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

12.44s on an old laptop 1.2GHz dual-core CPU (1 pass)
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

23.22s on an old laptop 1.2GHz dual-core CPU (2 passes)
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

60.60s on an old laptop 1.2GHz dual-core CPU (5 passes)
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Online Structured Matrix Factorization

With a structured regularization function ϕ [Jenatton et al., 2009]

ϕ(D)
△

= γ1
∑K

j=1

∑

g∈G maxk∈g |dj [k]|+ γ2‖D‖2F.
The proximal operator of ϕ can be computed by using network flow
optimization [Mairal et al., 2010b].

Figure: Left: subset of a larger dictionary obtained with ℓ1; Right: subset
obtained with ϕ after initialization with the dictionary on the left.

About 20 minutes per pass on the data on the 1.2GHz laptop CPU.
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Conclusion

What we have done

we have given a unified view of a large number of algorithms;

... and introduced new ones for large-scale optimization.

A take-home message

our algorithms are likely to be useful for large-scale non-convex

and possibly non-smooth problems.

Source Code

code will be included in the toolbox SPAMS (C++ interfaced with
Matlab, Python, R). http://spams-devel.gforge.inria.fr/;

the online dictionary learning algorithm is already in SPAMS.
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D. Böhning and B. G. Lindsay. Monotonicity of quadratic-approximation
algorithms. Annals of the Institute of Statistical Mathematics, 40(4):
641–663, 1988.

E. J. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted
l1 minimization. Journal of Fourier Analysis and Applications, 14:
877–905, 2008.
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Performance of MISO for logistic-ℓ2 regression
With preliminary version of SAG
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Online Dictionary Learning
Experimental results, batch vs online

m = 8× 8, k = 256
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Online Dictionary Learning
Experimental results, batch vs online

m = 12× 12× 3, k = 512
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Online Dictionary Learning
Experimental results, batch vs online

m = 16× 16, k = 1024
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