Nonparametric testing by convex optimization

Anatoli Juditsky*
joint research with Alexander Goldenshluger ${ }^{\ddagger}$ and Arkadi Nemirovski ${ }^{\dagger}$
*University J. Fourier, \ddagger University of Haifa, ${ }^{\dagger}$ ISyE, Georgia Tech, Atlanta

Gargantua, November 26, 2013

Motivation: event detection in sensor networks

[Tartakovsky, Veeravalli, 2004, 2008]

Array of 20 sensors on the uniform grid along the left and bottom edges of $[0,1]^{2}$. " + " represent the points of the uniform 20×20-grid Γ,
" \bullet " are sensor positions, interposed with contour plot of the response of the 6th sensor

Suppose that m sensors are deployed on the domain $G \subseteq \mathbb{R}^{d}$. Given a grid $\Gamma=\left(\gamma_{i}\right)_{i=1, \ldots, n} \subset G$.

An event at a node $\gamma_{i} \in \Gamma$ produces the signal $s=r e[i]: \Gamma \rightarrow \mathbb{R}^{n}$ of known signature $e[i]$ with unknown real factor r.

The signal is contaminated by a nuisance (a background signal) $v \in \mathcal{V}$, where \mathcal{V} is a known convex and compact set in \mathbb{R}^{n}.

Observation $\omega=\left[\omega_{1} ; \ldots ; \omega_{m}\right]$ of the array of m sensors is a linear transformation of the signal, contaminated with random noise:

$$
\omega \sim P_{\mu}
$$

- a random vector in \mathbb{R}^{m} with the distribution parameterized by $\mu \in \mathbb{R}^{m}$, where

$$
\mu=A(s+v)
$$

and $A \in \mathbb{R}^{m \times n}$ is a known matrix of sensor responses.

Objective: testing the (null) hypothesis H_{0} that no event happened against the alternative H_{1} that exactly one event took place.
We require that

- $A e[i] \neq 0$ for all i
- under H_{1}, when an event occurs at a node $\gamma_{i} \in \Gamma$, we have $s=r e[i]$ with $|r| \geq \rho_{i}$ with some given $\rho_{i}>0$.

Problem $\left(\mathcal{D}_{\rho}\right)$: Given $\rho=\left[\rho_{1} ; \ldots ; \rho_{n}\right]>0$, decide between

- hypothesis $H_{0}: s=0$ against
- alternative $H_{1}(\rho): s=r e[i]$ for some $i \in\{1, \ldots, n\}$ and r with $|r| \geq \rho_{i}$.

The risk of the test is the maximal probability to reject H_{0} when the hypothesis is true or to accept H_{0} when $H_{1}(\rho)$ is true.

Our goal is, given an $\epsilon \in(0,1)$, construct a test with risk $\leq \epsilon$ for as wide as possible (i.e., with as small ρ as possible) alternative $H_{1}(\rho)$.

A particular case: signal detection in convolution

[Yin, 1988, Wang, 1995, Muller 1999, Gustavson, 2000, Antoniadis, Gijbels, 2002, Goldenshluger et al., 2008,...]

We consider the model with observation

$$
\omega=A(s+v)+\sigma \xi
$$

where $s, v \in \mathbb{R}^{n}$, and $\xi \sim \mathcal{N}\left(0, I_{m}\right)$ with known $\sigma>0$.
Let $\mu=\left[\mu_{1} ; \ldots \mu_{m}\right]$ be the vector of m consecutive outputs of a discrete time linear dynamical system with a given impulse response $\left\{g_{k}\right\}, k=1, \ldots, T$, i.e. $\mu \in \mathbb{R}^{m}$ is the convolution image of n-dimensional "signal" s (that is, $n=m+T-1$).
A is the Toeplitz $m \times n$ matrix of the described linear mapping $x \mapsto \mu$.

Convolution kernel, $m=100, n=159$

We want to detect the presence of the signal $s=r e[i]$, where $e[i], i=1, \ldots, n$, are some given vectors in \mathbb{R}^{n}.

Situation, formally

Given are

- "Observation space" Ω, P
Ω : Polish (complete separable metric) space
$P: \quad \sigma$-finite σ-additive Borel measure on Ω
- Family $\mathcal{P}=\left\{P_{\mu}(d \omega)=p_{\mu}(\omega) P(d \omega): \mu \in \mathcal{M}\right\}$ of probability distributions on Ω μ : distribution's parameter running through "parameter space" $\mathcal{M} \subset \mathbb{R}^{m}$ p_{μ} : density of distribution P_{μ} w.r.t. the reference measure P
- "Parameter spaces" - two nonempty convex compact subsets $M_{0} \subset \mathcal{M}$ and $M_{1} \subset \mathcal{M}$.

Assumptions

We assume that

- $\mathcal{M} \subset \mathbb{R}^{m}$ is a convex set which coincides with its relative interior;
- distributions $P_{\mu} \in \mathcal{P}$ possess densities $p_{\mu}(\omega)$ w.r.t. the measure P on the space Ω. We assume that $p_{\mu}(\omega)$ is continuous in $\mu \in \mathcal{M}$ and is positive for all $\omega \in \Omega$;
- We are given a finite-dimensional linear space \mathcal{F} of continuous functions on Ω containing constants such that $\ln \left(p_{\mu}(\cdot) / p_{\nu}(\cdot)\right) \in \mathcal{F}$ whenever $\mu, \nu \in \mathcal{M}$;

Assumptions

We assume that

- $\mathcal{M} \subset \mathbb{R}^{m}$ is a convex set which coincides with its relative interior;
- distributions $P_{\mu} \in \mathcal{P}$ possess densities $p_{\mu}(\omega)$ w.r.t. the measure P on the space Ω. We assume that $p_{\mu}(\omega)$ is continuous in $\mu \in \mathcal{M}$ and is positive for all $\omega \in \Omega$;
- We are given a finite-dimensional linear space \mathcal{F} of continuous functions on Ω containing constants such that $\ln \left(p_{\mu}(\cdot) / p_{\nu}(\cdot)\right) \in \mathcal{F}$ whenever $\mu, \nu \in \mathcal{M}$;
- For every $\phi \in \mathcal{F}$, the function $F_{\phi}(\mu)=\ln \left(\int_{\Omega} \exp \{\phi(\omega)\} p_{\mu}(\omega) P(d \omega)\right)$ is well defined and concave in $\mu \in \mathcal{M}$.

We call the just described situation a good observation scheme.

... and goal

Given observation scheme [observation space (Ω, P) and family of distributions $\left\{p_{\mu}(\cdot)\right\}_{\mu \in \mathcal{M}}$, "parameter spaces" M_{0}, M_{1}, and random observation

$$
\omega \sim p_{\mu}(\cdot)
$$

coming from some unknown μ, known to belong either to M_{0} (hypothesis H_{0}) or to M_{1} (hypothesis H_{1}), decide between H_{0} and H_{1}.

Risk of the test: given a test (we interpret value 0 as accepting H_{0} and 1 as accepting H_{1}), we consider the quantities

$$
\begin{aligned}
\epsilon_{0} & =\sup _{\mu \in M_{0}} \operatorname{Prob}_{\omega \sim P_{\mu}}\left\{\text { test rejects } H_{0}\right\}, \\
\epsilon_{1} & =\sup _{\mu \in M_{1}} \operatorname{Prob}_{\omega \sim P_{\mu}}\left\{\text { test rejects } H_{1}\right\},
\end{aligned}
$$

We say that risk of the test is $\leq \epsilon$, if both error probabilities are $\leq \epsilon$.

Example: Gaussian case

Given an noisy observation

$$
\omega=\mu+\xi, \quad \xi \sim \mathcal{N}(0, I)
$$

make conclusions about μ.

The observation scheme is

- $(\Omega, P): \mathbb{R}^{m}$ with Lebesque measure
- $p_{\mu}(\omega)=\mathcal{N}(\mu, I), \mu \in \mathcal{M}:=\mathbb{R}^{m}$
- $\mathcal{F}=\left\{\phi(\omega)=a^{T} \omega+b: a \in \mathbb{R}^{m}, b \in \mathbb{R}\right\}$, and

$$
\left.\ln \left(\int_{\mathbb{R}^{m}} \mathrm{e}^{\mathrm{a}^{T} \omega+b} p_{\mu}(\omega) d \omega\right)\right)=b+a^{T} \mu+\frac{a^{T} a}{2}
$$

is concave in μ

Gaussian observation scheme is good!

Example: Poisson case

Given m realizations of independent Poisson random variables

$$
\omega_{i} \sim \operatorname{Poisson}\left(\mu_{i}\right)
$$

with parameters μ_{i}, make conclusions about μ.

The observation scheme is

- $(\Omega, P): \mathbb{Z}_{+}^{m}$ with counting measure
- $p_{\mu}(\omega)=\frac{\mu^{\omega}}{\omega!} \mathrm{e}^{-\sum_{i} \mu_{i}}, \mu \in \mathcal{M}=\operatorname{int} \mathbb{R}_{+}^{m}$
- $\mathcal{F}=\left\{\phi(\omega)=a^{T} \omega+b: a \in \mathbb{R}^{m}, b \in \mathbb{R}\right\}$, and

$$
\ln \left(\sum_{\omega \in \mathbb{Z}_{+}^{m}} \mathrm{e}^{\mathrm{a}^{T} \omega+b} p_{\mu}(\omega)\right)=b+\sum_{i=1}^{m}\left[\mathrm{e}^{a_{i}}-1\right] \mu_{i}
$$

is concave in μ

Poisson observation scheme is good!

Example: discrete case

Given realization of random variable ω taking values $1, \ldots, m$ with probabilities μ_{i}

$$
\mu_{i}:=\operatorname{Prob}\{\omega=i\},
$$

make conclusions about μ.
The observation scheme is

- $(\Omega, P):\{1, \ldots, m\}$ with counting measure
- $p_{\mu}(\omega)=\mu_{\omega}, \mu \in \mathcal{M}=\left\{\mu \in \mathbb{R}^{m}: \begin{array}{l}\mu>0, \\ \sum_{\omega=1}^{m} \mu_{\omega}=1\end{array}\right\}$
- $\mathcal{F}=\mathbb{R}(\Omega)=\mathbb{R}^{m}$, and

$$
\ln \left(\sum_{\omega \in \Omega} \mathrm{e}^{\phi(\omega)} p_{\mu}(\omega)\right)=\ln \left(\sum_{\omega=1}^{m} \mathrm{e}^{\phi(\omega)} \mu_{\omega}\right),
$$

is concave in μ.

Discrete observation scheme is good!

Simple test

Simple (Cramer's) test: a simple test is specified by a detector $\phi(\cdot) \in \mathcal{F}$; it accepts H_{0}, the observation being ω, if $\phi(\omega) \geq 0$, and accepts H_{1} otherwise.

We can easily bound the risk of a simple test ϕ : for $\mu \in M_{0}$ we have

$$
\operatorname{Prob}_{\omega \sim P_{\mu}}(\phi(\omega)<0) \leq E_{\omega \sim P_{\mu}}\left(e^{-\phi(\omega)}\right)=\int_{\Omega} e^{-\phi(\omega)} p_{\mu}(\omega) P(d \omega)
$$

and for $\nu \in M_{1}$,

$$
\operatorname{Prob}_{\omega \sim P_{\nu}}(\phi(\omega) \geq 0) \leq E_{\omega \sim P_{\nu}}\left(e^{\phi(\omega)}\right)=\int_{\Omega} e^{\phi(\omega)} p_{\nu}(\omega) P(d \omega)
$$

We associate with $\phi(\cdot) \in \mathcal{F}$, and $[\mu ; \nu] \in M_{0} \times M_{1}$ the aggregate

$$
\Phi(\phi,[\mu ; \nu])=\ln \left(\int_{\Omega} e^{-\phi(\omega)} p_{\mu}(\omega) P(d \omega)\right)+\ln \left(\int_{\Omega} e^{\phi(\omega)} p_{\nu}(\omega) P(d \omega)\right)
$$

Key observation: in a good observation scheme $\Phi(\phi,[\mu ; \nu])$ is continuous on its domain, convex in $\phi(\cdot) \in \mathcal{F}$ and concave in $[\mu ; \nu] \in M_{0} \times M_{1}$.

Main result

Theorem 1
(i) $\Phi(\phi,[\mu ; \nu])$ possesses a saddle point (min in ϕ, \max in $[\mu ; \nu])\left(\phi_{*}(\cdot),\left[x_{*} ; y_{*}\right]\right)$ on $\mathcal{F} \times\left(M_{0} \times M_{1}\right)$ with the saddle value

$$
\min _{\phi \in \mathcal{F}} \max _{[\mu ; \nu] \in M_{0} \times M_{1}} \Phi(\phi,[\mu ; \nu]):=2 \ln \left(\varepsilon_{*}\right) .
$$

The risk of the simple test associated with the detector ϕ_{*} on the composite hypotheses $H_{M_{0}}, H_{M_{1}}$ is $\leq \varepsilon_{*}$.

Main result

Theorem 1

(i) $\Phi(\phi,[\mu ; \nu])$ possesses a saddle point (min in $\phi, \max \operatorname{in}[\mu ; \nu])\left(\phi_{*}(\cdot),\left[x_{*} ; y_{*}\right]\right)$ on $\mathcal{F} \times\left(M_{0} \times M_{1}\right)$ with the saddle value

$$
\min _{\phi \in \mathcal{F}} \max _{[\mu ; \nu] \in M_{0} \times M_{1}} \Phi(\phi,[\mu ; \nu]):=2 \ln \left(\varepsilon_{*}\right) .
$$

The risk of the simple test associated with the detector ϕ_{*} on the composite hypotheses $H_{M_{0}}, H_{M_{1}}$ is $\leq \varepsilon_{*}$.
(ii) The detector ϕ_{*} is readily given by the $[\mu ; \nu]$-component $\left[\mu_{*} ; \nu_{*}\right]$ of the associated saddle point of Φ, specifically,

$$
\phi_{*}(\cdot)=\frac{1}{2} \ln \left[p_{\mu_{*}}(\cdot) / p_{\nu_{*}}(\cdot)\right]
$$

Main result

Theorem 1

(i) $\Phi(\phi,[\mu ; \nu])$ possesses a saddle point (min in ϕ, \max in $[\mu ; \nu])\left(\phi_{*}(\cdot),\left[x_{*} ; y_{*}\right]\right)$ on $\mathcal{F} \times\left(M_{0} \times M_{1}\right)$ with the saddle value

$$
\min _{\phi \in \mathcal{F}} \max _{[\mu ; \nu] \in M_{0} \times M_{1}} \Phi(\phi,[\mu ; \nu]):=2 \ln \left(\varepsilon_{*}\right) .
$$

The risk of the simple test associated with the detector ϕ_{*} on the composite hypotheses $H_{M_{0}}, H_{M_{1}}$ is $\leq \varepsilon_{*}$.
(ii) The detector ϕ_{*} is readily given by the $[\mu ; \nu]$-component $\left[\mu_{*} ; \nu_{*}\right]$ of the associated saddle point of Φ, specifically,

$$
\phi_{*}(\cdot)=\frac{1}{2} \ln \left[p_{\mu_{*}}(\cdot) / p_{\nu_{*}}(\cdot)\right] .
$$

(iii) Let $\epsilon \geq 0$ be such that there exists a (whatever) test for deciding between two simple hypotheses

$$
(A): \omega \sim p(\cdot):=p_{\mu_{*}}(\cdot), \quad(B): \omega \sim q(\cdot):=p_{\nu_{*}}(\cdot)
$$

with the sum of error probabilities $\leq 2 \epsilon$. Then $\varepsilon_{*} \leq 2 \sqrt{\epsilon}$.

Example: Gaussian case

[Chencov, 70's, Burnashev 1979, 1982, Ingster, Suslina, 2002,...]
Here (Ω, P) is \mathbb{R}^{m} with the Lebesque measure, $\mathcal{M}=\mathbb{R}^{m}, p_{\mu}(\cdot)$ is the density of the Gaussian distribution $\mathcal{N}(\mu, I)$, and \mathcal{F} is the space of all affine functions on $\Omega=\mathbb{R}^{m}$.

Assuming that the nonempty convex compact sets M_{0}, M_{1} do not intersect, we get

$$
\left[\mu_{*} ; \nu_{*}\right] \in \underset{\mu \in M_{0}, \nu \in M_{1}}{\operatorname{Argmin}}\|\mu-\nu\|_{2} .
$$

and

$$
\phi_{*}(\omega)=\xi^{T} \omega-\alpha \text {, where } \xi=\frac{1}{2}\left[\mu_{*}-\nu_{*}\right], \quad \alpha=\frac{1}{2} \xi^{T}\left[\mu_{*}+\nu_{*}\right]
$$

The error probabilities of the associated simple test do not exceed

$$
1-F_{\mathcal{N}}\left(\left\|\mu_{*}-\nu_{*}\right\|_{2} / 2\right),
$$

where $F_{\mathcal{N}}(\cdot)$ is the standard normal c.d.f..

Example: discrete case

[Birge 1982, 1983]
Let (Ω, P) be a finite set of cardinality m with counting measure $P, \mathcal{M} \subset \mathbb{R}^{m}$ is the relative interior of the standard simplex in \mathbb{R}^{m} :

$$
\mathcal{M}=\left\{\mu=\left\{\mu_{\omega}: \omega \in \Omega\right\}: \mu>0, \sum_{\omega} \mu_{\omega}=1\right\}
$$

with $p_{\mu}(\omega)=\mu_{\omega}$, and $\mathcal{F}=\mathbb{R}(\Omega)$ is the space of all real-valued functions on Ω.

Assuming that the sets M_{0}, M_{1} do not intersect, we get

$$
\left[\mu_{*} ; \nu_{*}\right] \in \underset{\mu \in M_{0}, \nu \in M_{1}}{\operatorname{Argmax}} \sum_{\omega} \sqrt{\mu_{\omega} \nu_{\omega}},
$$

and

$$
\phi_{*}(\omega)=\ln \sqrt{\frac{\left[\mu_{*}\right]_{\omega}}{\left[\nu_{*}\right]_{\omega}}}, \quad \varepsilon_{*}=\sum_{\omega \in \Omega} \sqrt{\left[\mu_{*}\right]_{\omega}\left[\nu_{*}\right]_{\omega}} .
$$

Example: Poisson case

Here $\Omega=\mathbb{Z}_{+}^{m}$ is the grid of nonnegative integer vectors in \mathbb{R}^{m}, P is the counting measure on $\Omega, \mathcal{M}=\mathbb{R}_{++}^{m}:=\left\{\mu \in \mathbb{R}^{m}: \mu>0\right\}$, and

$$
p_{\mu}(\omega)=\prod_{i=1}^{m}\left[\frac{\mu_{i}^{\omega_{i}}}{\omega_{i}!} e^{-\mu_{i}}\right]
$$

is the distribution of the random vector with independent Poisson entries $\omega_{1}, \ldots, \omega_{m}$. \mathcal{F} is comprised of the restrictions onto \mathbb{Z}_{+}^{m} of affine functions.

Assuming, same as above, that the sets M_{0}, M_{1} do not intersect, we get

$$
\left[\begin{array}{rl}
{\left[\mu_{*} ; \nu_{*}\right]} & \in \operatorname{Argmin}_{\mu \in M_{0}, \nu \in M_{1}} \sum_{\ell=1}^{m}\left[\sqrt{\mu_{\ell}}-\sqrt{\nu_{\ell}}\right]^{2} \\
\mathrm{Opt} & =\frac{1}{2} \sum_{\ell=1}^{m}\left[\sqrt{\left[\mu_{*}\right]_{\ell}}-\sqrt{\left[\nu_{*}\right]_{\ell}}\right]^{2}
\end{array}\right]
$$

and

$$
\phi_{*}(\omega)=\sum_{\ell=1}^{m} \ln \left(\sqrt{\left[\mu_{*}\right]_{\ell} /\left[\nu_{*}\right]_{\ell}}\right) \omega_{\ell}-\frac{1}{2} \sum_{\ell=1}^{m}\left[\mu_{*}-\nu_{*}\right]_{\ell}
$$

with $\varepsilon_{*}=\exp \{-\mathrm{Opt}\}$.

Illustration: PET

Ring of detector cells and line of response
The collected data is the list of total numbers of coincidences registered in every bin (pair of detector cells) over a given time T. The goal is to infer about the density x of the tracer. After suitable discretization, we arrive at Poisson case

$$
\omega=\left\{\omega_{i} \sim \operatorname{Poisson}\left(\mu_{i}\right)\right\}_{i=1}^{m}, \quad \mu_{i}=\sum_{j=1}^{n} A_{i j} x_{j}
$$

- $\quad m$ bins and n voxels (small cubes in which the field of view is split)
- x_{j} : average tracer's density in voxel j
- $A_{i j}: T \times\left[\begin{array}{c}\text { probability for line of response originating } \\ \text { in voxel } j \text { to be registered in bin } i\end{array}\right]$

We consider 2D PET with $m=64$ detector cells and 40×40 field of view:

Detector cells and field of view. 1296 bins, 1600 pixels

- $X \cup Y$: the set of tracer's densities $x \in \mathbb{R}^{40 \times 40}$ satisfying some regularity assumptions and at average not exceeding 1
- $M_{1}=A Y: X$ is the set of densities with the average over the 3×3 red spot at least 1.1
- $M_{0}=A X: Y$ is the set of densities with average over the red spot at most 1 .
- The observation time is chosen to allow to decide on H_{0} vs. H_{1} with risk 0.01 .

Results of 1024 simulations:

- Wrongly rejecting H_{0} in 0% of cases
- Wrongly rejecting H_{1} in 0.1% of cases

Top plot: x_{*}, middle plot: y_{*}, bottom plot: $x_{*}-y_{*}$

Case of repeated observations

Assume we are given a good observation scheme $\left((\Omega, P),\left\{p_{\mu}(\cdot): \mu \in \mathcal{M}\right\}, \mathcal{F}\right)$, along with same as above M_{0}, M_{1}.

We now observe a sample of K independent realizations

$$
\omega_{k} \sim p_{\mu}(\cdot), \quad k=1, \ldots, K
$$

what corresponds to the observation scheme

- observation space $\Omega^{(K)}=\left\{\omega^{K}=\left(\omega_{1}, \ldots, \omega_{K}\right): \omega_{k} \in \Omega \forall k\right\}$ equipped with the measure $P^{(K)}=P \times \ldots \times P$,
- family $\left\{p_{\mu}^{(K)}\left(\omega^{K}\right)=\prod_{k=1}^{K} p_{\mu}\left(\omega_{k}\right), \mu \in \mathcal{M}\right\}$ of densities of observations w.r.t.

$$
P^{(K)}, \text { and } \mathcal{F}^{(K)}=\left\{\phi^{(K)}\left(\omega^{K}\right)=\sum_{k=1}^{K} \phi\left(\omega_{k}\right), \phi \in \mathcal{F}\right\}
$$

We want to decide between the hypotheses that the (K-element) observation ω^{K} comes from a distribution $p_{\mu}^{(K)}(\cdot)$ with $\mu \in M_{0}$ (hypothesis H_{0}) or with $\mu \in M_{1}$ (hypothesis H_{1}).

Detectors $\phi_{*}, \phi_{*}^{(K)}$ and risk bounds $\varepsilon_{*}, \varepsilon_{*}^{(K)}$ given by Theorem 1, as applied to the original and the K-repeated observation schemes are linked by the relations

$$
\phi_{*}^{(K)}\left(\omega_{1}, \ldots, \omega_{K}\right)=\sum_{k=1}^{K} \phi_{*}\left(\omega_{k}\right), \quad \varepsilon_{*}^{(K)}=\left(\varepsilon_{*}\right)^{K} .
$$

As a result, the "near-optimality claim" Theorem 1.iii can be reformulated as follows:
Corollary Assume that for some integer $K^{*} \geq 1$ and some $\epsilon \in(0,1 / 4)$, the hypotheses H_{0}, H_{1} can be decided, by a whatever procedure utilising K^{*} observations, with error probabilities $\leq \epsilon$. Then with

$$
K^{+}=\operatorname{Ceil}\left(\frac{2 \ln (1 / \epsilon)}{\ln (1 / \epsilon)-2 \ln (2)} K^{*}\right)
$$

observations, the simple test with the detector $\phi_{*}^{\left(\kappa^{+}\right)}$decides between H_{0} and H_{1} with risk $\leq \epsilon$.

Multiple hypothesis testing

Assume that we are given

- convex compact sets M_{ℓ} in $\mathcal{M} \subset \mathbb{R}^{m}, 1 \leq \ell \leq L$;
- a good observation scheme $\left((\Omega, P),\left\{p_{\mu}(\cdot), \mu \in \mathcal{M} \subset \mathbb{R}^{m}\right\}, \mathcal{F}\right)$.

Given an observation $\omega \in \Omega$, our goal is to decide between the hypotheses H_{ℓ}, $1 \leq \ell \leq L$, stating that the observation $\omega \sim p_{\mu}(\cdot)$ corresponds to $\mu \in M_{\ell}$.

Pairwise testing

Consider all (unordered) pairs $\left\{\ell, \ell^{\prime}\right\}$ with $\ell \neq \ell^{\prime}$ and $1 \leq \ell, \ell^{\prime} \leq L$, and associate with such a pair a simple test given by detector $\phi_{*}^{\ell, \ell^{\prime}}(\cdot)$, along with the upper bound $\varepsilon_{*}\left[\ell, \ell^{\prime}\right]$ on the risk of this test yielded by Theorem 1, as applied to $M_{0}=M_{\ell}, \quad M_{1}=M_{\ell^{\prime}}$. Let \mathcal{C} be a collection of pairs $\left\{\ell, \ell^{\prime}\right\}$.

Testing procedure: given an observation ω, we "look" one by one at all pairs $\left\{\ell, \ell^{\prime}\right\} \in \mathcal{C}$ and apply to our observation ω the simple test, given by the detector $\phi_{*}^{\ell, \ell^{\prime}}(\cdot)$, to decide between the hypotheses $H_{\ell}, H_{\ell^{\prime}}$.

The outcome of the inference process is the list of these rejected hypotheses.

The (un)reliability of such an inference can be naturally upper-bounded by the quantity

$$
\epsilon[\mathcal{C}]:=\max _{\ell \leq L} \sum_{\ell^{\prime}:\left\{\ell, \ell^{\prime}\right\} \in \mathcal{C}} \varepsilon_{*}\left[\ell, \ell^{\prime}\right] .
$$

Application to multisensor detection

The setting: We are given an observation $\omega \sim P_{\mu}$ parameterized by the vector parameter $\mu=A(\underbrace{s+v}_{x})$, where $A \in \mathbb{R}^{m \times n}$ is a known matrix.

Useful signal $s=r e[i] \in \mathbb{R}^{n}$ is known up to its "position" $i \in\{1, \ldots, n\}$ and the scalar factor r, and v is the nuisance known to belong to a given set $\mathcal{V} \subset \mathbb{R}^{n}$, which we assume to be convex and compact.

Objective: solve the testing problem $\left(\mathcal{D}_{\rho}\right)$, i.e., decide between $H_{0}: s=0$ and

$$
H_{1}\left(\rho=\left[\rho_{1} ; \ldots \rho_{n}\right]\right)=\left\{s=r e[i] \text { for some } i \text { and } r \text { such that }|r| \geq \rho_{i}\right\}
$$

Given a test $\phi(\cdot)$ and $\epsilon>0$, we call a collection $\rho=\left[\rho_{1} ; \ldots ; \rho_{n}\right]$ of positive reals the ϵ-rate profile of the test ϕ if

- whenever $s=0$ and $v \in \mathcal{V}$, the probability for the test to reject H_{0} is $\leq \epsilon$;
- whenever the signal s underlying our observation is re[i] for some i and r with $\rho_{i} \leq|r|$, and the nuisance $v \in \mathcal{V}$, the test rejects H_{0} with probability $\geq 1-\epsilon$.

Our goal is to design a test with the "best possible" ϵ-rate profile:

Definition. Let $\kappa \geq 1$. A test ϕ with risk ϵ in the problem $\left(\mathcal{D}_{\rho}\right)$ is said to be κ-rate optimal, if there is no test with the risk ϵ in the problem ($\mathcal{D}_{\underline{\rho}}$) with $\underline{\rho}<\kappa^{-1} \rho$.

Multisensor detection: Gaussian case

Let the distribution P_{μ} of ω be normal with the mean μ, i.e. $\omega \sim \mathcal{N}\left(\mu, \sigma^{2} I\right)$ with known variance $\sigma^{2}>0$. For the sake of simplicity, assume also that the (convex and compact) nuisance set \mathcal{V} is symmetric w.r.t. the origin.

- The null hypothesis is $H_{0}: \mu \in A \mathcal{V}=\{\mu=A v, v \in \mathcal{V}\}$.
- The alternative $H_{1}(\rho)$ can be represented as the union, over $i=1, \ldots, n$, of $2 n$ hypotheses

$$
\begin{array}{cl}
H^{ \pm, i}\left(\rho_{i}\right): & \mu \in \pm A X_{i}\left(\rho_{i}\right)=\left\{\mu=A x, x \in \pm A X_{i}\left(\rho_{i}\right)\right\} \\
\text { where } & X_{i}\left(\rho_{i}\right)=\left\{x \in \mathbb{R}^{n}: x=r e[i]+v, v \in \mathcal{V}, \rho_{i} \leq r\right\}
\end{array}
$$

Let $1 \leq i \leq n$ be fixed, and suppose we want to distinguish H_{0} from $H_{i}^{+i}(\rho)$. The separation with risk ϵ is impossible unless

$$
\operatorname{dist}\left(A \mathcal{V}, A X_{i}(\rho)\right) \geq q_{\mathcal{N}}(\epsilon / 2)
$$

meaning that

$$
\rho \geq \rho_{*, i}^{G}(\epsilon)=\max _{\rho, r, u, v}\left\{r:\|A u-A(r e[i]+v)\|_{2} \leq 2 \sigma q_{\mathcal{N}}(\epsilon / 2), \quad u, v \in \mathcal{V}\right\}
$$

where $q_{\mathcal{N}}(s)$ is the $1-s$-quantile of $\mathcal{N}(0,1)$.
To ensure the "total risk" of separation of H_{0} and $\bigcup_{i} H^{ \pm, i}\left(\rho_{i}\right)$ to be $\leq \epsilon$, one can take

$$
\rho_{i} \geq \rho_{i}^{G}(\epsilon)=\max _{\rho, r, u, v}\left\{r:\|A u-A(r e[i]+v)\|_{2} \leq 2 \sigma q_{\mathcal{N}}(\epsilon /(4 n)), \quad u, v \in \mathcal{V}\right\}
$$

Let $1 \leq i \leq n$ be fixed, and suppose we want to distinguish H_{0} from $H_{i}^{+i}(\rho)$. The separation with risk ϵ is impossible unless

$$
\operatorname{dist}\left(A \mathcal{V}, A X_{i}(\rho)\right) \geq q_{\mathcal{N}}(\epsilon / 2)
$$

meaning that

$$
\rho \geq \rho_{*, i}^{G}(\epsilon)=\max _{\rho, r, u, v}\left\{r:\|A u-A(r e[i]+v)\|_{2} \leq 2 \sigma q_{\mathcal{N}}(\epsilon / 2), \quad u, v \in \mathcal{V}\right\}
$$

where $q_{\mathcal{N}}(s)$ is the $1-s$-quantile of $\mathcal{N}(0,1)$.

We can be a bit smarter: when deciding between H_{0} and each of $H^{ \pm, i}\left(\rho_{i}\right)$ we can "skew" the test so that

- probability of wrongly rejecting H_{0} is $\epsilon / 4 n$
- probability of wrongly rejecting $H^{ \pm, i}\left(\rho_{i}\right)$ is $\epsilon / 2$.

In this case, the risk ϵ is attained if

$$
\rho_{i} \geq \rho_{i}^{G}(\epsilon)=\max _{\rho, r, u, v}\left\{r:\|A u-A(r e[i]+v)\|_{2} \leq \sigma\left[q_{\mathcal{N}}\left(\frac{\epsilon}{4 n}\right)+q_{\mathcal{N}}\left(\frac{\epsilon}{2}\right)\right], u, v \in \mathcal{V}\right\}
$$

So, for $1 \leq i \leq n$ we set

$$
\begin{equation*}
\rho_{i}^{G}(\epsilon)=\max _{\rho, r, u, v}\left\{r:\|A u-A(r e[i]+v)\|_{2} \leq 2 \sigma\left[q_{\mathcal{N}}\left(\frac{\epsilon}{4 n}\right)+q_{\mathcal{N}}\left(\frac{\epsilon}{2}\right)\right], u, v \in \mathcal{V}\right\} \tag{i}
\end{equation*}
$$

Let

$$
\phi_{i, \pm}(\omega)= \pm\left[A u^{i}-A\left(r^{i} e[i]+v^{i}\right)\right]^{T} \omega-\alpha_{i}
$$

with

$$
\alpha_{i}=\left[A u^{i}-A\left(r^{i} e[i]+v^{i}\right)\right]^{T} \frac{\left[q_{\mathcal{N}}(\epsilon / 4 n) A\left(r^{i} e[i]+v^{i}\right)+q_{\mathcal{N}}(\epsilon / 2) A u^{i}\right]}{q_{\mathcal{N}}(\epsilon / 4 n)+q_{\mathcal{N}}(\epsilon / 2)}
$$

where u^{i}, v^{i}, r^{i} are the u, v, r-components of an optimal solution to $\left(G_{\epsilon}^{i}\right)$ (of course, $\left.r^{i}=\rho_{i}^{G}\right)$.

Finally, set

$$
\begin{aligned}
\rho^{G}[\epsilon] & =\left[\rho_{1}^{G}(\epsilon) ; \ldots ; \rho_{n}^{G}(\epsilon)\right] \\
\widehat{\phi}_{G}(\omega) & =\min _{1 \leq i \leq n} \phi_{i, \pm}(\omega)
\end{aligned}
$$

Consider the test (we refer to it as to $\widehat{\phi}_{G}$) which

- accepts H_{0} when $\widehat{\phi}_{G}(\omega) \geq 0$ (i.e., with observation ω, all simple tests with detectors $\phi_{i, \pm}, 1 \leq i \leq n$, when deciding on H_{0} vs. $H^{ \pm, i}$, accept H_{0}),
- otherwise accepts $H_{1}(\rho)$.

Proposition [Gaussian]

(i) Whenever $\rho \geq \rho^{G}[\epsilon]$ the risk of the test $\widehat{\phi}_{G}$ in the Gaussian case of problem $\left(\mathcal{D}_{\rho}\right)$ is $\leq \epsilon$.
(ii) When $\rho=\rho^{G}[\epsilon]$, the test is κ_{n}-rate optimal with

$$
\kappa_{n}=\kappa_{n}(\epsilon):=\frac{q_{\mathcal{N}}\left(\frac{\epsilon}{4 n}\right)+q_{\mathcal{N}}\left(\frac{\epsilon}{2}\right)}{2 q_{\mathcal{N}}\left(\frac{\epsilon}{2}\right)}
$$

Note that $\kappa_{n}(\epsilon) \rightarrow 1$ as $\epsilon \rightarrow+0$.

Illustration: jump detection in convolution

We consider here the "convolution model" with observation

$$
\omega=A(s+v)+\xi
$$

where $s, v \in \mathbb{R}^{n}$, and $\xi \sim \mathcal{N}\left(0, I_{m}\right)$, and A is the matrix of discrete convolution.
We are to decide between the hypotheses

- $H_{0}: \mu \in A \mathcal{V}$ and
- $H_{1}(\rho)=\cup_{1 \leq i \leq n} H^{ \pm, i}\left(\rho_{i}\right)$, with the hypotheses $H^{ \pm, i}\left(\rho_{i}\right)$ as above.

$$
\mathcal{V}_{L}=\left\{u \in \mathbb{R}^{n}:,\left|u_{i}-2 u_{i-1}-u_{i-2}\right| \leq L, i=3, \ldots, n\right\}
$$

where L is experiment's parameter ($L=0.1$ in the experiment below).

baseline and nominal ρ-profiles, $\epsilon=0.1$

difference signal $s^{i}+v^{i}-u^{i}$, jump at $i=100$

ρ-profiles ratio, $\epsilon=0.1$

corresponding observation, $\epsilon=0.1$

baseline and nominal ρ-profiles, $\epsilon=0.1$

difference signal $s^{i}+v^{i}-u^{i}$, jump at $i=100$

ρ-profile ratio, $\epsilon=0.1$

corresponding observation and detector, $\epsilon=0.1$

Jump detection in convolution model: numerical lower bound

Question: can the $\log n$-factor can be removed?

Answer (partial, theoretical): [Goldenshluger et al, 2008] in certain (inverse) models the $\log n$-factor cannot be removed

Answer (numerical): we can lower bound the performance of any test by the performance of the Bayesian test on the problem of testing of

- $H_{0}: \mu=0$, and
- $H_{1}(\rho)$ which is the union, over $i=1, \ldots, n$, of $2 n$ hypotheses

$$
H^{ \pm, i}\left(\rho_{i}\right): \mu= \pm A x^{i}:= \pm A\left(\rho_{i} e[i]+v^{i}-u^{i}\right)\left[= \pm A\left(\rho_{i} e[i]+2 v^{i}\right)\right], v, u \in \mathcal{V}
$$

Numerical lower bound in the periodic case

Sum ε of error probabilities in testing H_{0} versus $H_{1}(\rho)$ as a function of $\rho\left(=\rho_{i}\right), n=100$.

-- $\quad-\log _{10}$ (union upper bound)
$-\quad-\log _{10}(\varepsilon)$ of the Bayesian test over uniform prior on $\nu^{k}, k=1, \ldots, n(1 e 6 \operatorname{sim})$
-. $\quad-\log _{10}$ (baseline error)

Numerical lower bound in the periodic case

Sum ε of error probabilities in testing H_{0} versus $H_{1}(\rho)$ as a function of $\rho\left(=\rho_{i}\right)$, $n=1000$.

$-\quad-\log _{10}$ (union upper bound)
$-\quad-\log _{10}(\varepsilon)$ of the Bayesian test over uniform prior on $\nu^{k}, k=1, \ldots, n(1 e 6 \operatorname{sim})$
-. $\quad-\log _{10}$ (baseline error)

Numerical example: event detection in sensor networks

Same as above, the available observation is

$$
\omega=A(s+v)+\xi
$$

where $s, v \in \mathbb{R}^{n}$, and $\xi \sim \mathcal{N}\left(0, I_{m}\right), A$ is the $m \times n$ matrix of sensor responses.
We are to decide between the hypotheses

- $H_{0}: \mu \in A \mathcal{V}$ (observation is a result of a pure nuisance) and
- $H_{1}(\rho)=\cup_{1 \leq i \leq n} H^{ \pm, i}\left(\rho_{i}\right)$, with the hypothesis $H^{ \pm, i}\left(\rho_{i}\right)$ saying that an event at the node i produced a signal $s=r e[i],|r| \geq \rho_{i}$.

Setup: The signal signatures $e[i], 1 \leq i \leq n$ are the standard basic orths in \mathbb{R}^{n}, and the nuisance set \mathcal{V} is defined as

$$
\mathcal{V}_{L}=\left\{u \in \mathbb{R}^{n}:,|\mathcal{L} v| \leq L\right\}
$$

where \mathcal{L} is the discrete Laplace operator.
In the reported experiment $m=20, n=20^{2}, L=0.1$.

response of the 6 th sensor

signal $s+v$ of the event at $\gamma=(5,20)$

ρ-profile, $\epsilon=0.1$

corresponding detector, $\epsilon=0.1$

