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Motivation: event detection in sensor networks

[Tartakovsky, Veeravalli, 2004, 2008]
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Array of 20 sensors on the uniform grid along the left and bottom edges of [0, 1]2.
“+” represent the points of the uniform 20× 20–grid Γ,
“•” are sensor positions, interposed with contour plot of the response of the 6th sensor
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Suppose that m sensors are deployed on the domain G ⊆ Rd . Given a grid
Γ = (γi )i=1,...,n ⊂ G .

An event at a node γi ∈ Γ produces the signal s = re[i ] : Γ→ Rn of known signature
e[i ] with unknown real factor r .

The signal is contaminated by a nuisance (a background signal) v ∈ V , where V is a
known convex and compact set in Rn.

Observation ω = [ω1; ...;ωm] of the array of m sensors is a linear transformation of the
signal, contaminated with random noise:

ω ∼ Pµ

– a random vector in Rm with the distribution parameterized by µ ∈ Rm, where

µ = A(s + v),

and A ∈ Rm×n is a known matrix of sensor responses.
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Objective: testing the (null) hypothesis H0 that no event happened against
the alternative H1that exactly one event took place.

We require that

• Ae[i ] 6= 0 for all i

• under H1, when an event occurs at a node γi ∈ Γ, we have s = re[i ] with |r | ≥ ρi
with some given ρi > 0.

Problem (Dρ): Given ρ = [ρ1; ...; ρn] > 0, decide between

• hypothesis H0 : s = 0 against

• alternative H1(ρ) : s = re[i ] for some i ∈ {1, ..., n} and r with |r | ≥ ρi .
The risk of the test is the maximal probability to reject H0 when the hypothesis is true
or to accept H0 when H1(ρ) is true.

Our goal is, given an ε ∈ (0, 1), construct a test with risk ≤ ε for as wide as possible
(i.e., with as small ρ as possible) alternative H1(ρ).
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A particular case: signal detection in convolution

[Yin, 1988, Wang, 1995, Muller 1999, Gustavson, 2000, Antoniadis, Gijbels, 2002,
Goldenshluger et al., 2008,...]

We consider the model with observation

ω = A(s + v) + σξ,

where s, v ∈ Rn, and ξ ∼ N (0, Im) with known σ > 0.

Let µ = [µ1; ...µm] be the vector of m
consecutive outputs of a discrete time
linear dynamical system with a given
impulse response {gk}, k = 1, ...,T , i.e.
µ ∈ Rm is the convolution image of
n-dimensional “signal” s
(that is, n = m + T − 1).

A is the Toeplitz m × n matrix of the
described linear mapping x 7→ µ.

−60 −40 −20 0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Convolution kernel, m = 100, n = 159

We want to detect the presence of the signal s = re[i ], where e[i ], i = 1, ..., n, are some
given vectors in Rn.
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Situation, formally

Given are

• “Observation space” Ω,P
Ω: Polish (complete separable metric) space
P: σ-finite σ-additive Borel measure on Ω

• Family P = {Pµ(dω) = pµ(ω)P(dω) : µ ∈M} of probability distributions on Ω
µ: distribution’s parameter running through “parameter space” M⊂ Rm

pµ: density of distribution Pµ w.r.t. the reference measure P

• “Parameter spaces” – two nonempty convex compact subsets M0 ⊂M and
M1 ⊂M.
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Assumptions

We assume that

• M⊂ Rm is a convex set which coincides with its relative interior;

• distributions Pµ ∈ P possess densities pµ(ω) w.r.t. the measure P on the space Ω.
We assume that pµ(ω) is continuous in µ ∈M and is positive for all ω ∈ Ω;

• We are given a finite-dimensional linear space F of continuous functions on Ω
containing constants such that ln(pµ(·)/pν(·)) ∈ F whenever µ, ν ∈M;

• For every φ ∈ F , the function Fφ(µ) = ln
(∫

Ω
exp{φ(ω)}pµ(ω)P(dω)

)
is well

defined and concave in µ ∈M.

We call the just described situation a good observation scheme.
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... and goal

Given observation scheme [observation space (Ω,P) and family of distributions
{pµ(·)}µ∈M, “parameter spaces” M0, M1, and random observation

ω ∼ pµ(·),

coming from some unknown µ, known to belong either to M0 (hypothesis H0) or to M1

(hypothesis H1), decide between H0 and H1.

Risk of the test: given a test (we interpret value 0 as accepting H0 and 1 as accepting
H1), we consider the quantities

ε0 = sup
µ∈M0

Probω∼Pµ{test rejects H0},

ε1 = sup
µ∈M1

Probω∼Pµ{test rejects H1},

We say that risk of the test is ≤ ε, if both error probabilities are ≤ ε.
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Example: Gaussian case

Given an noisy observation

ω = µ+ ξ, ξ ∼ N (0, I ),

make conclusions about µ.

The observation scheme is

• (Ω,P): Rm with Lebesque measure

• pµ(ω) = N (µ, I ), µ ∈M := Rm

• F = {φ(ω) = aTω + b : a ∈ Rm, b ∈ R}, and

ln

(∫
Rm

ea
Tω+bpµ(ω)dω)

)
= b + aTµ+

aTa

2
,

is concave in µ

Gaussian observation scheme is good!
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Example: Poisson case

Given m realizations of independent Poisson random variables

ωi ∼ Poisson(µi )

with parameters µi , make conclusions about µ.

The observation scheme is

• (Ω,P): Zm
+ with counting measure

• pµ(ω) = µω

ω!
e−

∑
i µi , µ ∈M = intRm

+

• F = {φ(ω) = aTω + b : a ∈ Rm, b ∈ R}, and

ln

∑
ω∈Zm

+

ea
Tω+bpµ(ω)

 = b +
m∑
i=1

[eai − 1]µi ,

is concave in µ

Poisson observation scheme is good!
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Example: discrete case

Given realization of random variable ω taking values 1, ...,m with probabilities µi

µi := Prob{ω = i},

make conclusions about µ.

The observation scheme is

• (Ω,P): {1, ...,m} with counting measure

• pµ(ω) = µω, µ ∈M =

{
µ ∈ Rm :

µ > 0,∑m
ω=1 µω = 1

}
• F = R(Ω) = Rm, and

ln

(∑
ω∈Ω

eφ(ω)pµ(ω)

)
= ln

(
m∑
ω=1

eφ(ω)µω

)
,

is concave in µ.

Discrete observation scheme is good!
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Simple test

Simple (Cramer’s) test: a simple test is specified by a detector φ(·) ∈ F ;
it accepts H0, the observation being ω, if φ(ω) ≥ 0, and accepts H1 otherwise.

We can easily bound the risk of a simple test φ: for µ ∈ M0 we have

Probω∼Pµ(φ(ω) < 0) ≤ Eω∼Pµ(e−φ(ω)) =

∫
Ω

e−φ(ω)pµ(ω)P(dω),

and for ν ∈ M1,

Probω∼Pν (φ(ω) ≥ 0) ≤ Eω∼Pν (eφ(ω)) =

∫
Ω

eφ(ω)pν(ω)P(dω).

We associate with φ(·) ∈ F , and [µ; ν] ∈ M0 ×M1 the aggregate

Φ(φ, [µ; ν]) = ln
(∫

Ω
e−φ(ω)pµ(ω)P(dω)

)
+ ln

(∫
Ω

eφ(ω)pν(ω)P(dω)
)

Key observation: in a good observation scheme Φ(φ, [µ; ν]) is continuous on its domain,
convex in φ(·) ∈ F and concave in [µ; ν] ∈ M0 ×M1.
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Main result

Theorem 1

(i) Φ(φ, [µ; ν]) possesses a saddle point (min in φ, max in [µ; ν]) (φ∗(·), [x∗; y∗]) on
F × (M0 ×M1) with the saddle value

min
φ∈F

max
[µ;ν]∈M0×M1

Φ(φ, [µ; ν]) := 2 ln(ε∗).

The risk of the simple test associated with the detector φ∗ on the composite
hypotheses HM0 , HM1 is ≤ ε∗.

(ii) The detector φ∗ is readily given by the [µ; ν]-component [µ∗; ν∗] of the associated
saddle point of Φ, specifically,

φ∗(·) = 1
2 ln [pµ∗(·)/pν∗(·)] .

(iii) Let ε ≥ 0 be such that there exists a (whatever) test for deciding between two
simple hypotheses

(A) : ω ∼ p(·) := pµ∗(·), (B) : ω ∼ q(·) := pν∗(·)

with the sum of error probabilities ≤ 2ε. Then ε∗ ≤ 2
√
ε.
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Example: Gaussian case

[Chencov, 70’s, Burnashev 1979, 1982, Ingster, Suslina, 2002,...]

Here (Ω,P) is Rm with the Lebesque measure, M = Rm, pµ(·) is the density of the
Gaussian distribution N (µ, I ), and F is the space of all affine functions on Ω = Rm.

Assuming that the nonempty convex compact sets M0, M1 do not intersect, we get

[µ∗; ν∗] ∈ Argmin
µ∈M0,ν∈M1

‖µ− ν‖2.

and

φ∗(ω) = ξTω − α, where ξ =
1

2
[µ∗ − ν∗], α =

1

2
ξT [µ∗ + ν∗]

The error probabilities of the associated simple test do not exceed

1− FN (‖µ∗ − ν∗‖2/2) ,

where FN (·) is the standard normal c.d.f..
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Example: discrete case

[Birge 1982, 1983]

Let (Ω,P) be a finite set of cardinality m with counting measure P, M⊂ Rm is the
relative interior of the standard simplex in Rm:

M = {µ = {µω : ω ∈ Ω} : µ > 0,
∑
ω

µω = 1}

with pµ(ω) = µω, and F = R(Ω) is the space of all real-valued functions on Ω.

Assuming that the sets M0, M1 do not intersect, we get

[µ∗; ν∗] ∈ Argmax
µ∈M0,ν∈M1

∑
ω

√
µωνω,

and

φ∗(ω) = ln

√
[µ∗]ω
[ν∗]ω

, ε∗ =
∑
ω∈Ω

√
[µ∗]ω[ν∗]ω.
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Example: Poisson case

Here Ω = Zm
+ is the grid of nonnegative integer vectors in Rm, P is the counting

measure on Ω, M = Rm
++ := {µ ∈ Rm : µ > 0}, and

pµ(ω) =
m∏
i=1

[
µωi
i

ωi !
e−µi

]
is the distribution of the random vector with independent Poisson entries ω1, ..., ωm.
F is comprised of the restrictions onto Zm

+ of affine functions.

Assuming, same as above, that the sets M0, M1 do not intersect, we get [µ∗; ν∗] ∈ Argminµ∈M0,ν∈M1

∑m
`=1

[√
µ` −

√
ν`
]2

Opt = 1
2

∑m
`=1

[√
[µ∗]` −

√
[ν∗]`

]2

 ,
and

φ∗(ω) =
m∑
`=1

ln
(√

[µ∗]`/[ν∗]`
)
ω` −

1

2

m∑
`=1

[µ∗ − ν∗]`

with ε∗ = exp{−Opt}.
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Illustration: PET

Ring of detector cells and line of response

The collected data is the list of total numbers of coincidences registered in every bin
(pair of detector cells) over a given time T . The goal is to infer about the density x of
the tracer. After suitable discretization, we arrive at Poisson case

ω = {ωi ∼ Poisson(µi )}mi=1, µi =
n∑

j=1

Aijxj

• m bins and n voxels (small cubes in which the field of view is split)
• xj : average tracer’s density in voxel j

• Aij : T ×
[

probability for line of response originating
in voxel j to be registered in bin i

]
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We consider 2D PET with m = 64 detector cells and 40× 40 field of view:

Detector cells and field of view. 1296 bins, 1600 pixels

• X ∪ Y : the set of tracer’s densities x ∈ R40×40 satisfying some regularity
assumptions and at average not exceeding 1

• M1 = AY : X is the set of densities with the average over the 3× 3 red spot at
least 1.1

• M0 = AX : Y is the set of densities with average over the red spot at most 1.

• The observation time is chosen to allow to decide on H0 vs. H1 with risk 0.01.
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Results of 1024 simulations:

• Wrongly rejecting H0 in 0% of cases

• Wrongly rejecting H1 in 0.1% of cases
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Case of repeated observations

Assume we are given a good observation scheme ((Ω,P), {pµ(·) : µ ∈M},F), along
with same as above M0,M1.

We now observe a sample of K independent realizations

ωk ∼ pµ(·), k = 1, ...,K ,

what corresponds to the observation scheme

• observation space Ω(K) = {ωK = (ω1, ..., ωK ) : ωk ∈ Ω ∀k} equipped with the
measure P(K) = P × ...× P,

• family
{

p
(K)
µ (ωK ) =

∏K
k=1 pµ(ωk), µ ∈M

}
of densities of observations w.r.t.

P(K), and F (K) =
{
φ(K)(ωK ) =

∑K
k=1 φ(ωk), φ ∈ F

}
.

We want to decide between the hypotheses that the (K-element) observation ωK comes

from a distribution p
(K)
µ (·) with µ ∈ M0 (hypothesis H0) or with µ ∈ M1 (hypothesis H1).
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Detectors φ∗, φ
(K)
∗ and risk bounds ε∗, ε

(K)
∗ given by Theorem 1, as applied to the

original and the K-repeated observation schemes are linked by the relations

φ(K)
∗ (ω1, ..., ωK ) =

∑K

k=1
φ∗(ωk), ε(K)

∗ = (ε∗)
K .

As a result, the “near-optimality claim” Theorem 1.iii can be reformulated as follows:

Corollary Assume that for some integer K∗ ≥ 1 and some ε ∈ (0, 1/4), the hypotheses
H0, H1 can be decided, by a whatever procedure utilising K∗ observations, with error
probabilities ≤ ε. Then with

K + = Ceil

(
2 ln(1/ε)

ln(1/ε)− 2 ln(2)
K∗
)

observations, the simple test with the detector φ
(K+)
∗ decides between H0 and H1 with

risk ≤ ε.
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Multiple hypothesis testing

Assume that we are given

• convex compact sets M` in M⊂ Rm, 1 ≤ ` ≤ L;

• a good observation scheme ((Ω,P), {pµ(·), µ ∈M ⊂ Rm},F).

Given an observation ω ∈ Ω, our goal is to decide between the hypotheses H`,
1 ≤ ` ≤ L, stating that the observation ω ∼ pµ(·) corresponds to µ ∈ M`.
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Pairwise testing

Consider all (unordered) pairs {`, `′} with ` 6= `′ and 1 ≤ `, `′ ≤ L, and associate with

such a pair a simple test given by detector φ`,`
′

∗ (·), along with the upper bound ε∗[`, `
′]

on the risk of this test yielded by Theorem 1, as applied to M0 = M`, M1 = M`′ .
Let C be a collection of pairs {`, `′}.

Testing procedure: given an observation ω, we “look” one by one at all pairs {`, `′} ∈ C
and apply to our observation ω the simple test, given by the detector φ`,`

′
∗ (·), to decide

between the hypotheses H`, H`′ .

The outcome of the inference process is the list of these rejected hypotheses.

The (un)reliability of such an inference can be naturally upper-bounded by the quantity

ε[C] := max
`≤L

∑
`′:{`,`′}∈C

ε∗[`, `
′].
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Application to multisensor detection

The setting: We are given an observation ω ∼ Pµ parameterized by the vector
parameter µ = A(s + v︸ ︷︷ ︸

x

), where A ∈ Rm×n is a known matrix.

Useful signal s = re[i ] ∈ Rn is known up to its “position” i ∈ {1, ..., n} and the scalar
factor r , and v is the nuisance known to belong to a given set V ⊂ Rn, which we assume
to be convex and compact.

Objective: solve the testing problem (Dρ), i.e., decide between H0 : s = 0 and

H1(ρ = [ρ1; ...ρn]) = {s = re[i ] for some i and r such that |r | ≥ ρi} .
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Given a test φ(·) and ε > 0, we call a collection ρ = [ρ1; ...; ρn] of positive reals the
ε-rate profile of the test φ if

• whenever s = 0 and v ∈ V, the probability for the test to reject H0 is ≤ ε;
• whenever the signal s underlying our observation is re[i ] for some i and r with
ρi ≤ |r |, and the nuisance v ∈ V, the test rejects H0 with probability ≥ 1− ε.

Our goal is to design a test with the “best possible” ε-rate profile:

Definition. Let κ ≥ 1. A test φ with risk ε in the problem (Dρ) is said to be κ–rate
optimal, if there is no test with the risk ε in the problem (Dρ) with ρ < κ−1ρ.

26 / 41



Multisensor detection: Gaussian case

Let the distribution Pµ of ω be normal with the mean µ, i.e. ω ∼ N (µ, σ2I ) with known
variance σ2 > 0. For the sake of simplicity, assume also that the (convex and compact)
nuisance set V is symmetric w.r.t. the origin.

• The null hypothesis is H0 : µ ∈ AV = {µ = Av , v ∈ V}.
• The alternative H1(ρ) can be represented as the union, over i = 1, ..., n, of 2n

hypotheses

H±,i (ρi ) : µ ∈ ±AXi (ρi ) = {µ = Ax , x ∈ ±AXi (ρi )},
where Xi (ρi ) = {x ∈ Rn : x = re[i ] + v , v ∈ V, ρi ≤ r}.
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μk = A(ρks[k] + vk)

A(ρke[k] + V)

μ1

μ2

Auk

Au2
Au1

AV
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Let 1 ≤ i ≤ n be fixed, and suppose we want to distinguish H0 from H+i
i (ρ).

The separation with risk ε is impossible unless

dist(AV,AXi (ρ)) ≥ qN (ε/2),

meaning that

ρ ≥ ρG∗,i (ε) = max
ρ,r,u,v

{r : ‖Au − A(re[i ] + v)‖2 ≤ 2σ qN (ε/2), u, v ∈ V} .

where qN (s) is the 1− s–quantile of N (0, 1).

To ensure the “total risk” of separation of H0 and
⋃

i H±,i (ρi ) to be ≤ ε, one can take

ρi ≥ ρGi (ε) = max
ρ,r,u,v

{r : ‖Au − A(re[i ] + v)‖2 ≤ 2σ qN (ε/(4n)), u, v ∈ V} .
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We can be a bit smarter: when deciding between H0 and each of H±,i (ρi ) we can
“skew” the test so that

• probability of wrongly rejecting H0 is ε/4n

• probability of wrongly rejecting H±,i (ρi ) is ε/2.

In this case, the risk ε is attained if

ρi ≥ ρGi (ε) = max
ρ,r,u,v

{
r : ‖Au − A(re[i ] + v)‖2 ≤ σ

[
qN
( ε

4n

)
+ qN

( ε
2

)]
, u, v ∈ V

}
.
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So, for 1 ≤ i ≤ n we set

ρGi (ε) = max
ρ,r,u,v

{
r : ‖Au − A(re[i ] + v)‖2 ≤ 2σ

[
qN
( ε

4n

)
+ qN

( ε
2

)]
, u, v ∈ V

}
.

(G i
ε)

Let
φi,±(ω) = ±[Aui − A(r ie[i ] + v i )]Tω − αi ,

with

αi = [Aui − A(r ie[i ] + v i )]T
[qN (ε/4n)A(r ie[i ] + v i ) + qN (ε/2)Aui ]

qN (ε/4n) + qN (ε/2)
,

where ui , v i , r i are the u, v , r -components of an optimal solution to (G i
ε) (of course,

r i = ρGi ).

Finally, set

ρG [ε] = [ρG1 (ε); ...; ρGn (ε)],

φ̂G (ω) = min
1≤i≤n

φi,±(ω).
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Consider the test (we refer to it as to φ̂G ) which

• accepts H0 when φ̂G (ω) ≥ 0 (i.e., with observation ω, all simple tests with
detectors φi,±, 1 ≤ i ≤ n, when deciding on H0 vs. H±,i , accept H0),

• otherwise accepts H1(ρ).

Proposition [Gaussian]

(i) Whenever ρ ≥ ρG [ε] the risk of the test φ̂G in the Gaussian case of problem (Dρ)
is ≤ ε.

(ii) When ρ = ρG [ε], the test is κn-rate optimal with

κn = κn(ε) :=
qN ( ε

4n
) + qN ( ε

2
)

2qN ( ε
2
)

.

Note that κn(ε)→ 1 as ε→ +0.
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Illustration: jump detection in convolution

We consider here the “convolution model” with observation

ω = A(s + v) + ξ,

where s, v ∈ Rn, and ξ ∼ N (0, Im), and A is the matrix of discrete convolution.
We are to decide between the hypotheses

• H0 : µ ∈ AV and

• H1(ρ) = ∪1≤i≤nH±,i (ρi ), with the hypotheses H±,i (ρi ) as above.

VL = {u ∈ Rn : , |ui − 2ui−1 − ui−2| ≤ L, i = 3, ..., n},
where L is experiment’s parameter (L = 0.1 in the experiment below).
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Jump detection in convolution model: numerical lower
bound

Question: can the logn–factor can be removed?

Answer (partial, theoretical): [Goldenshluger et al, 2008] in certain (inverse) models the
logn–factor cannot be removed

Answer (numerical): we can lower bound the performance of any test by the
performance of the Bayesian test on the problem of testing of

• H0 : µ = 0, and

• H1(ρ) which is the union, over i = 1, ..., n, of 2n hypotheses

H±,i (ρi ) : µ = ±Ax i := ±A(ρie[i ] + v i − ui ) [= ±A(ρie[i ] + 2v i )], v , u ∈ V.
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μk = A(ρks[k] + vk)

A(ρke[k] + V)

μ1

μ2

Auk

Au2
Au1

AV
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O

νk = A(ρks[k] + vk)− Auk

ν1

ν2
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Numerical lower bound in the periodic case

Sum ε of error probabilities in testing H0 versus H1(ρ) as a function of ρ(= ρi ), n = 100.
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−− −log10(union upper bound )
− −log10(ε) of the Bayesian test over uniform prior on νk , k = 1, ..., n (1e6 sim)
−· −log10(baseline error)
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Numerical lower bound in the periodic case

Sum ε of error probabilities in testing H0 versus H1(ρ) as a function of ρ(= ρi ),
n = 1000.
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Numerical example: event detection in sensor networks

Same as above, the available observation is

ω = A(s + v) + ξ,

where s, v ∈ Rn, and ξ ∼ N (0, Im), A is the m × n matrix of sensor responses.
We are to decide between the hypotheses

• H0 : µ ∈ AV (observation is a result of a pure nuisance) and

• H1(ρ) = ∪1≤i≤nH±,i (ρi ), with the hypothesis H±,i (ρi ) saying that an event at the
node i produced a signal s = re[i ], |r | ≥ ρi .

Setup: The signal signatures e[i ], 1 ≤ i ≤ n are the standard basic orths in Rn, and the
nuisance set V is defined as

VL = {u ∈ Rn : , |Lv | ≤ L},

where L is the discrete Laplace operator.

In the reported experiment m = 20, n = 202, L = 0.1.
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