Nonparametric testing by convex optimization

Anatoli Juditsky*

joint research with Alexander Goldenshluger[‡] and Arkadi Nemirovski[†] *University J. Fourier, [‡]University of Haifa, [†]ISyE, Georgia Tech, Atlanta

Gargantua, November 26, 2013

Motivation: event detection in sensor networks

[Tartakovsky, Veeravalli, 2004, 2008]

Array of 20 sensors on the uniform grid along the left and bottom edges of $[0,1]^2.$ "+" represent the points of the uniform 20 \times 20–grid Γ ,

" are sensor positions, interposed with contour plot of the response of the 6th sensor

Suppose that *m* sensors are deployed on the domain $G \subseteq \mathbb{R}^d$. Given a grid $\Gamma = (\gamma_i)_{i=1,...,n} \subset G$.

An event at a node $\gamma_i \in \Gamma$ produces the signal $s = re[i] : \Gamma \to \mathbb{R}^n$ of known signature e[i] with unknown real factor r.

The signal is contaminated by a nuisance (a background signal) $v \in V$, where V is a known convex and compact set in \mathbb{R}^n .

Observation $\omega = [\omega_1; ...; \omega_m]$ of the array of *m* sensors is a linear transformation of the signal, contaminated with random noise:

$$\omega \sim P_{\mu}$$

– a random vector in \mathbb{R}^m with the distribution parameterized by $\mu \in \mathbb{R}^m$, where

$$\mu = A(s + v),$$

and $A \in \mathbb{R}^{m \times n}$ is a known matrix of sensor responses.

Objective: testing the (null) hypothesis H_0 that no event happened against the alternative H_1 that exactly one event took place.

We require that

- $Ae[i] \neq 0$ for all i
- under H₁, when an event occurs at a node γ_i ∈ Γ, we have s = re[i] with |r| ≥ ρ_i with some given ρ_i > 0.

Problem (\mathcal{D}_{ρ}) : Given $\rho = [\rho_1; ...; \rho_n] > 0$, decide between

- hypothesis H_0 : s = 0 against
- alternative $H_1(\rho)$: s = re[i] for some $i \in \{1, ..., n\}$ and r with $|r| \ge \rho_i$.

The risk of the test is the maximal probability to reject H_0 when the hypothesis is true or to accept H_0 when $H_1(\rho)$ is true.

Our goal is, given an $\epsilon \in (0, 1)$ *, construct a test with risk* $\leq \epsilon$ *for as wide as possible (i.e., with as small* ρ *as possible) alternative* $H_1(\rho)$ *.*

A particular case: signal detection in convolution

[Yin, 1988, Wang, 1995, Muller 1999, Gustavson, 2000, Antoniadis, Gijbels, 2002, Goldenshluger et al., 2008,...]

We consider the model with observation

$$\omega = A(s+v) + \sigma\xi$$

where $s, v \in \mathbb{R}^n$, and $\xi \sim \mathcal{N}(0, I_m)$ with known $\sigma > 0$.

Let $\mu = [\mu_1; ..., \mu_m]$ be the vector of m consecutive outputs of a discrete time linear dynamical system with a given impulse response $\{g_k\}, k = 1, ..., T$, i.e. $\mu \in \mathbb{R}^m$ is the convolution image of *n*-dimensional "signal" *s* (that is, n = m + T - 1).

A is the Toeplitz $m \times n$ matrix of the described linear mapping $x \mapsto \mu$.

Convolution kernel, m = 100, n = 159

We want to detect the presence of the signal s = re[i], where e[i], i = 1, ..., n, are some given vectors in \mathbb{R}^n .

Situation, formally

Given are

- "Observation space" Ω, P
 - Ω : Polish (complete separable metric) space
 - **P**: σ -finite σ -additive Borel measure on Ω
- Family $\mathcal{P} = \{P_{\mu}(d\omega) = p_{\mu}(\omega)P(d\omega) : \mu \in \mathcal{M}\}$ of probability distributions on Ω
 - μ : distribution's parameter running through "parameter space" $\mathcal{M} \subset \mathbb{R}^m$
 - p_{μ} : density of distribution P_{μ} w.r.t. the reference measure P
- "Parameter spaces" two nonempty convex compact subsets $M_0 \subset \mathcal{M}$ and $M_1 \subset \mathcal{M}$.

Assumptions

We assume that

- $\mathcal{M} \subset \mathbb{R}^m$ is a convex set which coincides with its relative interior;
- distributions P_μ ∈ P possess densities p_μ(ω) w.r.t. the measure P on the space Ω. We assume that p_μ(ω) is continuous in μ ∈ M and is positive for all ω ∈ Ω;
- We are given a finite-dimensional linear space *F* of continuous functions on Ω containing constants such that ln(p_μ(·)/p_ν(·)) ∈ *F* whenever μ, ν ∈ *M*;

Assumptions

We assume that

- $\mathcal{M} \subset \mathbb{R}^m$ is a convex set which coincides with its relative interior;
- distributions P_μ ∈ P possess densities p_μ(ω) w.r.t. the measure P on the space Ω. We assume that p_μ(ω) is continuous in μ ∈ M and is positive for all ω ∈ Ω;
- We are given a finite-dimensional linear space *F* of continuous functions on Ω containing constants such that ln(p_μ(·)/p_ν(·)) ∈ *F* whenever μ, ν ∈ *M*;
- For every φ ∈ F, the function F_φ(μ) = ln (∫_Ω exp{φ(ω)}p_μ(ω)P(dω)) is well defined and concave in μ ∈ M.

We call the just described situation a good observation scheme.

... and goal

Given observation scheme [observation space (Ω, P) and family of distributions $\{p_{\mu}(\cdot)\}_{\mu \in \mathcal{M}}$, "parameter spaces" M_0 , M_1 , and random observation

$$\omega \sim p_{\mu}(\cdot),$$

coming from some unknown μ , known to belong either to M_0 (hypothesis H_0) or to M_1 (hypothesis H_1), decide between H_0 and H_1 .

Risk of the test: given a test (we interpret value 0 as accepting H_0 and 1 as accepting H_1), we consider the quantities

$$\epsilon_{0} = \sup_{\mu \in M_{0}} \operatorname{Prob}_{\omega \sim P_{\mu}} \{ \text{test rejects } H_{0} \},\$$

$$\epsilon_{1} = \sup_{\mu \in M_{1}} \operatorname{Prob}_{\omega \sim P_{\mu}} \{ \text{test rejects } H_{1} \},\$$

We say that risk of the test is $\leq \epsilon$, if both error probabilities are $\leq \epsilon$.

Example: Gaussian case

Given an noisy observation

$$\omega = \mu + \xi, \ \xi \sim \mathcal{N}(0, I),$$

make conclusions about μ .

The observation scheme is

• (Ω, P) : \mathbb{R}^m with Lebesque measure

•
$$p_{\mu}(\omega) = \mathcal{N}(\mu, I), \ \mu \in \mathcal{M} := \mathbb{R}^{m}$$

•
$$\mathcal{F} = \{\phi(\omega) = a^T \omega + b: a \in \mathbb{R}^m, b \in \mathbb{R}\}$$
, and

$$\ln\left(\int_{\mathbb{R}^m} e^{a^T \omega + b} p_{\mu}(\omega) d\omega\right) = b + a^T \mu + \frac{a^T a}{2},$$

is concave in $\boldsymbol{\mu}$

Gaussian observation scheme is good!

Example: Poisson case

Given m realizations of independent Poisson random variables

 $\omega_i \sim \text{Poisson}(\mu_i)$

with parameters μ_i , make conclusions about μ .

The observation scheme is

•
$$(\Omega, P)$$
: \mathbb{Z}_{+}^{m} with counting measure
• $p_{\mu}(\omega) = \frac{\mu^{\omega}}{\omega!} e^{-\sum_{i} \mu_{i}}, \ \mu \in \mathcal{M} = \operatorname{int} \mathbb{R}_{+}^{m}$
• $\mathcal{F} = \{\phi(\omega) = a^{T}\omega + b : \ a \in \mathbb{R}^{m}, b \in \mathbb{R}\}, \text{ and}$
 $\ln\left(\sum_{\omega \in \mathbb{Z}_{+}^{m}} e^{a^{T}\omega + b} p_{\mu}(\omega)\right) = b + \sum_{i=1}^{m} [e^{a_{i}} - 1]\mu_{i},$

is concave in μ

Poisson observation scheme is good!

Example: discrete case

Given realization of random variable ω taking values 1, ..., *m* with probabilities μ_i

 $\mu_i := \operatorname{Prob}\{\omega = i\},\$

make conclusions about μ .

The observation scheme is

• (Ω, P) : $\{1, ..., m\}$ with counting measure

•
$$p_{\mu}(\omega) = \mu_{\omega}, \ \mu \in \mathcal{M} = \left\{ \mu \in \mathbb{R}^m : \begin{array}{l} \mu > 0, \\ \sum_{\omega=1}^m \mu_{\omega} = 1 \end{array} \right\}$$

•
$$\mathcal{F} = \mathbb{R}(\Omega) = \mathbb{R}^m$$
, and

$$\ln\left(\sum_{\omega\in\Omega} e^{\phi(\omega)} p_{\mu}(\omega)\right) = \ln\left(\sum_{\omega=1}^{m} e^{\phi(\omega)} \mu_{\omega}\right),$$

is concave in μ .

Discrete observation scheme is good!

Simple test

Simple (Cramer's) test: a simple test is specified by a detector $\phi(\cdot) \in \mathcal{F}$; it accepts H_0 , the observation being ω , if $\phi(\omega) \geq 0$, and accepts H_1 otherwise.

We can easily bound the risk of a simple test ϕ : for $\mu \in M_0$ we have

$$\operatorname{Prob}_{\omega \sim P_{\mu}}(\phi(\omega) < 0) \leq E_{\omega \sim P_{\mu}}(e^{-\phi(\omega)}) = \int_{\Omega} e^{-\phi(\omega)} p_{\mu}(\omega) P(d\omega),$$

and for $\nu \in M_1$,

$$\operatorname{Prob}_{\omega \sim P_{\nu}}(\phi(\omega) \geq 0) \leq E_{\omega \sim P_{\nu}}(e^{\phi(\omega)}) = \int_{\Omega} e^{\phi(\omega)} p_{\nu}(\omega) P(d\omega).$$

We associate with $\phi(\cdot) \in \mathcal{F}$, and $[\mu; \nu] \in M_0 \times M_1$ the aggregate

$$\Phi(\phi, [\mu; \nu]) = \ln\left(\int_{\Omega} e^{-\phi(\omega)} p_{\mu}(\omega) P(d\omega)\right) + \ln\left(\int_{\Omega} e^{\phi(\omega)} p_{\nu}(\omega) P(d\omega)\right)$$

Key observation: in a good observation scheme $\Phi(\phi, [\mu; \nu])$ is continuous on its domain, convex in $\phi(\cdot) \in \mathcal{F}$ and concave in $[\mu; \nu] \in M_0 \times M_1$.

Main result

Theorem 1

(i) $\Phi(\phi, [\mu; \nu])$ possesses a saddle point (min in ϕ , max in $[\mu; \nu]$) $(\phi_*(\cdot), [x_*; y_*])$ on $\mathcal{F} \times (M_0 \times M_1)$ with the saddle value

$$\min_{\phi\in\mathcal{F}}\max_{[\mu;\nu]\in\mathcal{M}_0\times\mathcal{M}_1}\Phi(\phi,[\mu;\nu]):=2\ln(\varepsilon_*).$$

The risk of the simple test associated with the detector ϕ_* on the composite hypotheses H_{M_0} , H_{M_1} is $\leq \varepsilon_*$.

Main result

Theorem 1

(i) $\Phi(\phi, [\mu; \nu])$ possesses a saddle point (min in ϕ , max in $[\mu; \nu]$) $(\phi_*(\cdot), [x_*; y_*])$ on $\mathcal{F} \times (M_0 \times M_1)$ with the saddle value

$$\min_{\phi \in \mathcal{F}} \max_{[\mu;\nu] \in \mathcal{M}_0 \times \mathcal{M}_1} \Phi(\phi, [\mu; \nu]) := 2 \ln(\varepsilon_*).$$

The risk of the simple test associated with the detector ϕ_* on the composite hypotheses H_{M_0} , H_{M_1} is $\leq \varepsilon_*$.

(ii) The detector φ_{*} is readily given by the [μ; ν]-component [μ_{*}; ν_{*}] of the associated saddle point of Φ, specifically,

$$\phi_*(\cdot) = \frac{1}{2} \ln \left[p_{\mu_*}(\cdot) / p_{\nu_*}(\cdot) \right].$$

Main result

Theorem 1

(i) $\Phi(\phi, [\mu; \nu])$ possesses a saddle point (min in ϕ , max in $[\mu; \nu]$) $(\phi_*(\cdot), [x_*; y_*])$ on $\mathcal{F} \times (M_0 \times M_1)$ with the saddle value

$$\min_{\phi \in \mathcal{F}} \max_{[\mu;\nu] \in \mathcal{M}_0 \times \mathcal{M}_1} \Phi(\phi, [\mu; \nu]) := 2 \ln(\varepsilon_*).$$

The risk of the simple test associated with the detector ϕ_* on the composite hypotheses H_{M_0} , H_{M_1} is $\leq \varepsilon_*$.

(ii) The detector φ_{*} is readily given by the [μ; ν]-component [μ_{*}; ν_{*}] of the associated saddle point of Φ, specifically,

$$\phi_*(\cdot) = \frac{1}{2} \ln \left[p_{\mu_*}(\cdot) / p_{\nu_*}(\cdot) \right].$$

(iii) Let $\epsilon \ge 0$ be such that there exists a (whatever) test for deciding between two simple hypotheses

$$(A): \omega \sim p(\cdot) := p_{\mu_*}(\cdot), \quad (B): \omega \sim q(\cdot) := p_{\nu_*}(\cdot)$$

with the sum of error probabilities $\leq 2\epsilon$. Then $\varepsilon_* \leq 2\sqrt{\epsilon}$.

Example: Gaussian case

[Chencov, 70's, Burnashev 1979, 1982, Ingster, Suslina, 2002,...]

Here (Ω, P) is \mathbb{R}^m with the Lebesque measure, $\mathcal{M} = \mathbb{R}^m$, $p_{\mu}(\cdot)$ is the density of the Gaussian distribution $\mathcal{N}(\mu, I)$, and \mathcal{F} is the space of all affine functions on $\Omega = \mathbb{R}^m$.

Assuming that the nonempty convex compact sets M_0 , M_1 do not intersect, we get

$$[\mu_*; \nu_*] \in \operatorname{Argmin}_{\mu \in M_0, \nu \in M_1} \|\mu - \nu\|_2.$$

and

$$\phi_*(\omega) = \xi^T \omega - lpha, \text{ where } \xi = \frac{1}{2}[\mu_* - \nu_*], \ \ lpha = \frac{1}{2}\xi^T[\mu_* + \nu_*]$$

The error probabilities of the associated simple test do not exceed

$$1 - F_{\mathcal{N}} \left(\| \mu_* - \nu_* \|_2 / 2 \right),$$

where $F_{\mathcal{N}}(\cdot)$ is the standard normal c.d.f..

Example: discrete case

[Birge 1982, 1983]

Let (Ω, P) be a finite set of cardinality m with counting measure P, $\mathcal{M} \subset \mathbb{R}^m$ is the relative interior of the standard simplex in \mathbb{R}^m :

$$\mathcal{M} = \{\mu = \{\mu_\omega: \omega \in \Omega\}: \ \mu > 0, \sum_\omega \mu_\omega = 1\}$$

with $p_{\mu}(\omega) = \mu_{\omega}$, and $\mathcal{F} = \mathbb{R}(\Omega)$ is the space of all real-valued functions on Ω .

Assuming that the sets M_0 , M_1 do not intersect, we get

$$[\mu_*;\nu_*] \in \operatorname{Argmax}_{\mu \in M_0, \nu \in M_1} \sum_{\omega} \sqrt{\mu_{\omega} \nu_{\omega}},$$

and

$$\phi_*(\omega) = \ln \sqrt{rac{[\mu_*]_\omega}{[
u_*]_\omega}}, \hspace{0.1in} arepsilon_* = \sum_{\omega \in \Omega} \sqrt{[\mu_*]_\omega [
u_*]_\omega}.$$

Example: Poisson case

Here $\Omega = \mathbb{Z}_{+}^{m}$ is the grid of nonnegative integer vectors in \mathbb{R}^{m} , P is the counting measure on Ω , $\mathcal{M} = \mathbb{R}_{++}^{m} := \{\mu \in \mathbb{R}^{m} : \mu > 0\}$, and

$$m{p}_{\mu}(\omega) = \prod_{i=1}^{m} \left[rac{\mu_{i}^{\omega_{i}}}{\omega_{i}!} e^{-\mu_{i}}
ight]$$

is the distribution of the random vector with *independent* Poisson entries $\omega_1, ..., \omega_m$. \mathcal{F} is comprised of the restrictions onto \mathbb{Z}_+^m of affine functions.

Assuming, same as above, that the sets M_0 , M_1 do not intersect, we get

$$\begin{bmatrix} [\mu_*; \nu_*] \in \operatorname{Argmin}_{\mu \in M_0, \nu \in M_1} \sum_{\ell=1}^m \left[\sqrt{\mu_\ell} - \sqrt{\nu_\ell} \right]^2 \\ \operatorname{Opt} = \frac{1}{2} \sum_{\ell=1}^m \left[\sqrt{[\mu_*]_\ell} - \sqrt{[\nu_*]_\ell} \right]^2 \end{bmatrix},$$

and

$$\phi_*(\omega) = \sum_{\ell=1}^m \ln\left(\sqrt{[\mu_*]_\ell/[\nu_*]_\ell}\right) \omega_\ell - \frac{1}{2} \sum_{\ell=1}^m [\mu_* - \nu_*]_\ell$$

with $\varepsilon_* = \exp\{-Opt\}$.

Illustration: PET

Ring of detector cells and line of response

The collected data is the list of total numbers of coincidences registered in every bin (pair of detector cells) over a given time T. The goal is to infer about the density x of the tracer. After suitable discretization, we arrive at Poisson case

$$\omega = \{\omega_i \sim \text{Poisson}(\mu_i)\}_{i=1}^m, \ \mu_i = \sum_{j=1}^n A_{ij} x_j$$

- *m* bins and *n* voxels (small cubes in which the field of view is split)
- x_j: average tracer's density in voxel j
 - A_{ij} : $T \times \begin{bmatrix} \text{probability for line of response originating} \\ \text{in voxel } j \text{ to be registered in bin } i \end{bmatrix}$

We consider 2D PET with m = 64 detector cells and 40×40 field of view:

Detector cells and field of view. 1296 bins, 1600 pixels

- *X* ∪ *Y*: the set of tracer's densities *x* ∈ ℝ^{40×40} satisfying some regularity assumptions and at average not exceeding 1
- $M_1 = AY$: X is the set of densities with the average over the 3×3 red spot at least 1.1
- $M_0 = AX$: Y is the set of densities with average over the red spot at most 1.
- The observation time is chosen to allow to decide on H_0 vs. H_1 with risk 0.01.

Results of 1024 simulations:

- Wrongly rejecting H_0 in 0% of cases
- Wrongly rejecting H_1 in 0.1% of cases

Case of repeated observations

Assume we are given a good observation scheme ((Ω, P), { $p_{\mu}(\cdot) : \mu \in M$ }, \mathcal{F}), along with same as above M_0, M_1 .

We now observe a sample of K independent realizations

$$\omega_k \sim p_\mu(\cdot), \ k = 1, ..., K,$$

what corresponds to the observation scheme

observation space Ω^(K) = {ω^K = (ω₁,..., ω_K) : ω_k ∈ Ω ∀k} equipped with the measure P^(K) = P × ... × P,

• family
$$\left\{ p_{\mu}^{(K)}(\omega^{K}) = \prod_{k=1}^{K} p_{\mu}(\omega_{k}), \mu \in \mathcal{M} \right\}$$
 of densities of observations w.r.t.
 $P^{(K)}$, and $\mathcal{F}^{(K)} = \left\{ \phi^{(K)}(\omega^{K}) = \sum_{k=1}^{K} \phi(\omega_{k}), \phi \in \mathcal{F} \right\}$.

We want to decide between the hypotheses that the (K-element) observation ω^{K} comes from a distribution $p_{\mu}^{(K)}(\cdot)$ with $\mu \in M_{0}$ (hypothesis H_{0}) or with $\mu \in M_{1}$ (hypothesis H_{1}). Detectors ϕ_* , $\phi_*^{(K)}$ and risk bounds ε_* , $\varepsilon_*^{(K)}$ given by Theorem 1, as applied to the original and the K-repeated observation schemes are linked by the relations

$$\phi_*^{(\kappa)}(\omega_1,...,\omega_K) = \sum\nolimits_{k=1}^K \phi_*(\omega_k), \quad \varepsilon_*^{(K)} = (\varepsilon_*)^K.$$

As a result, the "near-optimality claim" Theorem 1.iii can be reformulated as follows:

Corollary Assume that for some integer $K^* \ge 1$ and some $\epsilon \in (0, 1/4)$, the hypotheses H_0 , H_1 can be decided, by a whatever procedure utilising K^* observations, with error probabilities $\le \epsilon$. Then with

$$\mathcal{K}^+ = \operatorname{Ceil}\left(rac{2\ln(1/\epsilon)}{\ln(1/\epsilon) - 2\ln(2)}\mathcal{K}^*
ight)$$

observations, the simple test with the detector $\phi_*^{(K^+)}$ decides between H_0 and H_1 with risk $\leq \epsilon$.

Assume that we are given

- convex compact sets M_{ℓ} in $\mathcal{M} \subset \mathbb{R}^m$, $1 \leq \ell \leq L$;
- a good observation scheme ((Ω, P), { $p_{\mu}(\cdot), \mu \in \mathcal{M} \subset \mathbb{R}^{m}$ }, \mathcal{F}).

Given an observation $\omega \in \Omega$, our goal is to decide between the hypotheses H_{ℓ} , $1 \leq \ell \leq L$, stating that the observation $\omega \sim p_{\mu}(\cdot)$ corresponds to $\mu \in M_{\ell}$.

Pairwise testing

Consider all (unordered) pairs $\{\ell, \ell'\}$ with $\ell \neq \ell'$ and $1 \leq \ell, \ell' \leq L$, and associate with such a pair a simple test given by detector $\phi_*^{\ell,\ell'}(\cdot)$, along with the upper bound $\varepsilon_*[\ell,\ell']$ on the risk of this test yielded by Theorem 1, as applied to $M_0 = M_\ell$, $M_1 = M_{\ell'}$. Let \mathcal{C} be a collection of pairs $\{\ell, \ell'\}$.

Testing procedure: given an observation ω , we "look" one by one at all pairs $\{\ell, \ell'\} \in C$ and apply to our observation ω the simple test, given by the detector $\phi_*^{\ell,\ell'}(\cdot)$, to decide between the hypotheses H_{ℓ} , $H_{\ell'}$.

The outcome of the inference process is the list of these rejected hypotheses.

The (un)reliability of such an inference can be naturally upper-bounded by the quantity

$$\epsilon[\mathcal{C}] := \max_{\ell \leq L} \sum_{\ell': \{\ell, \ell'\} \in \mathcal{C}} \varepsilon_*[\ell, \ell'].$$

Application to multisensor detection

The setting: We are given an observation $\omega \sim P_{\mu}$ parameterized by the vector parameter $\mu = A(\underbrace{s + v}_{\times})$, where $A \in \mathbb{R}^{m \times n}$ is a known matrix.

Useful signal $s = re[i] \in \mathbb{R}^n$ is known up to its "position" $i \in \{1, ..., n\}$ and the scalar factor r, and v is the nuisance known to belong to a given set $\mathcal{V} \subset \mathbb{R}^n$, which we assume to be convex and compact.

Objective: solve the testing problem (\mathcal{D}_{ρ}) , i.e., decide between H_0 : s = 0 and

 $H_1(\rho = [\rho_1; \dots \rho_n]) = \{s = re[i] \text{ for some } i \text{ and } r \text{ such that } |r| \ge \rho_i\}.$

Given a test $\phi(\cdot)$ and $\epsilon > 0$, we call a collection $\rho = [\rho_1; ...; \rho_n]$ of positive reals the ϵ -rate profile of the test ϕ if

- whenever s = 0 and $v \in V$, the probability for the test to reject H_0 is $\leq \epsilon$;
- whenever the signal s underlying our observation is re[i] for some i and r with $\rho_i \leq |r|$, and the nuisance $v \in \mathcal{V}$, the test rejects H_0 with probability $\geq 1 \epsilon$.

Our goal is to design a test with the "best possible" ϵ -rate profile:

Definition. Let $\kappa \ge 1$. A test ϕ with risk ϵ in the problem (\mathcal{D}_{ρ}) is said to be κ -rate optimal, if there is no test with the risk ϵ in the problem (\mathcal{D}_{ρ}) with $\rho < \kappa^{-1}\rho$.

Let the distribution P_{μ} of ω be normal with the mean μ , i.e. $\omega \sim \mathcal{N}(\mu, \sigma^2 I)$ with known variance $\sigma^2 > 0$. For the sake of simplicity, assume also that the (convex and compact) nuisance set \mathcal{V} is symmetric w.r.t. the origin.

- The null hypothesis is $H_0: \mu \in A\mathcal{V} = \{\mu = Av, v \in \mathcal{V}\}.$
- The alternative H₁(ρ) can be represented as the union, over i = 1, ..., n, of 2n hypotheses

 $\begin{array}{ll} H^{\pm,i}(\rho_i): & \mu \in \pm AX_i(\rho_i) = \{\mu = Ax, x \in \pm AX_i(\rho_i)\}, \\ \text{where} & X_i(\rho_i) = \{x \in \mathbb{R}^n: \ x = re[i] + v, \ v \in \mathcal{V}, \ \rho_i \leq r\}. \end{array}$

Let $1 \le i \le n$ be fixed, and suppose we want to distinguish H_0 from $H_i^{+i}(\rho)$. The separation with risk ϵ is impossible unless

 $\operatorname{dist}(A\mathcal{V}, AX_i(\rho)) \geq q_{\mathcal{N}}(\epsilon/2),$

meaning that

$$\rho \geq \rho_{*,i}^{\mathsf{G}}(\epsilon) = \max_{\rho,r,u,v} \left\{ r : \| \mathsf{A}u - \mathsf{A}(\mathsf{re}[i] + v) \|_2 \leq 2\sigma \, q_{\mathcal{N}}(\epsilon/2), \quad u, v \in \mathcal{V} \right\}.$$

where $q_{\mathcal{N}}(s)$ is the 1 - s-quantile of $\mathcal{N}(0, 1)$.

To ensure the "total risk" of separation of H_0 and $\bigcup_i H^{\pm,i}(\rho_i)$ to be $\leq \epsilon$, one can take

$$\rho_i \geq \rho_i^{\mathcal{G}}(\epsilon) = \max_{\rho, r, u, v} \left\{ r : \| Au - A(re[i] + v) \|_2 \leq 2\sigma \, q_{\mathcal{N}}(\epsilon/(4n)), \ u, v \in \mathcal{V} \right\}.$$

Let $1 \le i \le n$ be fixed, and suppose we want to distinguish H_0 from $H_i^{+i}(\rho)$. The separation with risk ϵ is impossible unless

$$\operatorname{dist}(A\mathcal{V}, AX_i(\rho)) \geq q_{\mathcal{N}}(\epsilon/2),$$

meaning that

$$\rho \geq \rho_{*,i}^{\mathsf{G}}(\epsilon) = \max_{\rho,r,u,v} \left\{ r : \|Au - A(re[i] + v)\|_2 \leq 2\sigma \, q_{\mathcal{N}}(\epsilon/2), \quad u, v \in \mathcal{V} \right\}.$$

where $q_{\mathcal{N}}(s)$ is the 1 - s-quantile of $\mathcal{N}(0, 1)$.

We can be a bit smarter: when deciding between H_0 and each of $H^{\pm,i}(\rho_i)$ we can "skew" the test so that

- probability of wrongly rejecting H_0 is $\epsilon/4n$
- probability of wrongly rejecting $H^{\pm,i}(\rho_i)$ is $\epsilon/2$.

In this case, the risk ϵ is attained if

$$\rho_i \geq \rho_i^G(\epsilon) = \max_{\rho,r,u,v} \left\{ r : \|Au - A(re[i] + v)\|_2 \leq \sigma \left[q_N\left(\frac{\epsilon}{4n}\right) + q_N\left(\frac{\epsilon}{2}\right) \right], \ u, v \in \mathcal{V} \right\}.$$

So, for $1 \leq i \leq n$ we set

$$\rho_i^{\mathsf{G}}(\epsilon) = \max_{\rho, r, u, v} \left\{ r : \|Au - A(re[i] + v)\|_2 \le 2\sigma \left[q_{\mathcal{N}} \left(\frac{\epsilon}{4n} \right) + q_{\mathcal{N}} \left(\frac{\epsilon}{2} \right) \right], \ u, v \in \mathcal{V} \right\}.$$

$$(G_{\epsilon}^i)$$

Let

$$\phi_{i,\pm}(\omega) = \pm [Au^{i} - A(r^{i}e[i] + v^{i})]^{T}\omega - \alpha_{i},$$

with

$$\alpha_i = [Au^i - A(r^i e[i] + v^i)]^T \frac{[q_{\mathcal{N}}(\epsilon/4n)A(r^i e[i] + v^i) + q_{\mathcal{N}}(\epsilon/2)Au^i]}{q_{\mathcal{N}}(\epsilon/4n) + q_{\mathcal{N}}(\epsilon/2)},$$

where u^i, v^i, r^i are the u, v, r-components of an optimal solution to (G_{ϵ}^i) (of course, $r^i = \rho_i^G$).

Finally, set

$$\rho^{G}[\epsilon] = [\rho_{1}^{G}(\epsilon); ...; \rho_{n}^{G}(\epsilon)],$$

$$\hat{\phi}_{G}(\omega) = \min_{1 \le i \le n} \phi_{i,\pm}(\omega).$$

Consider the test (we refer to it as to $\widehat{\phi}_{G}$) which

- accepts H₀ when φ_G(ω) ≥ 0 (i.e., with observation ω, all simple tests with detectors φ_{i,±}, 1 ≤ i ≤ n, when deciding on H₀ vs. H^{±,i}, accept H₀),
- otherwise accepts $H_1(\rho)$.

Proposition [Gaussian]

- (i) Whenever $\rho \ge \rho^{\mathsf{G}}[\epsilon]$ the risk of the test $\widehat{\phi}_{\mathsf{G}}$ in the Gaussian case of problem (\mathcal{D}_{ρ}) is $\le \epsilon$.
- (ii) When $\rho = \rho^{G}[\epsilon]$, the test is κ_{n} -rate optimal with

$$\kappa_n = \kappa_n(\epsilon) := rac{q_\mathcal{N}(rac{\epsilon}{4n}) + q_\mathcal{N}(rac{\epsilon}{2})}{2q_\mathcal{N}(rac{\epsilon}{2})}$$

Note that $\kappa_n(\epsilon) \to 1$ as $\epsilon \to +0$.

Illustration: jump detection in convolution

We consider here the "convolution model" with observation

$$\omega = A(s+v) + \xi,$$

where $s, v \in \mathbb{R}^n$, and $\xi \sim \mathcal{N}(0, I_m)$, and A is the matrix of discrete convolution. We are to decide between the hypotheses

• H_0 : $\mu \in AV$ and

• $H_1(\rho) = \bigcup_{1 \le i \le n} H^{\pm,i}(\rho_i)$, with the hypotheses $H^{\pm,i}(\rho_i)$ as above.

$$\mathcal{V}_L = \{ u \in \mathbb{R}^n : , |u_i - 2u_{i-1} - u_{i-2}| \le L, \ i = 3, ..., n \},$$

where L is experiment's parameter (L = 0.1 in the experiment below).

33 / 41

corresponding observation and detector, $\epsilon=0.1$

Jump detection in convolution model: numerical lower bound

Question: can the $\log n$ -factor can be removed?

Answer (partial, theoretical): [Goldenshluger et al, 2008] in certain (inverse) models the logn-factor cannot be removed

Answer (numerical): we can lower bound the performance of any test by the performance of the Bayesian test on the problem of testing of

- $H_0: \mu = 0$, and
- $H_1(\rho)$ which is the union, over i = 1, ..., n, of 2n hypotheses

 $H^{\pm,i}(\rho_i): \ \mu = \pm A x^i := \pm A(\rho_i e[i] + v^i - u^i) \ [= \pm A(\rho_i e[i] + 2v^i)], \ v, u \in \mathcal{V}.$

Numerical lower bound in the periodic case

Sum ε of error probabilities in testing H_0 versus $H_1(\rho)$ as a function of $\rho(=\rho_i)$, n = 100.

- -- $-\log_{10}(union upper bound)$
- $-\log_{10}(\varepsilon)$ of the Bayesian test over uniform prior on ν^k , k = 1, ..., n (1e6 sim)
- $-\cdot$ $-\log_{10}(\text{baseline error})$

Numerical lower bound in the periodic case

Sum ε of error probabilities in testing H_0 versus $H_1(\rho)$ as a function of $\rho(=\rho_i)$, n = 1000.

- -- $-\log_{10}(union upper bound)$
- $-\log_{10}(\varepsilon)$ of the Bayesian test over uniform prior on ν^k , k=1,...,n (1e6 sim)
- $-\cdot$ $-\log_{10}(\text{baseline error})$

Numerical example: event detection in sensor networks

Same as above, the available observation is

$$\omega = A(s+v) + \xi,$$

where $s, v \in \mathbb{R}^n$, and $\xi \sim \mathcal{N}(0, I_m)$, A is the $m \times n$ matrix of sensor responses. We are to decide between the hypotheses

- $H_0: \mu \in A\mathcal{V}$ (observation is a result of a pure nuisance) and
- H₁(ρ) = ∪_{1≤i≤n}H^{±,i}(ρ_i), with the hypothesis H^{±,i}(ρ_i) saying that an event at the node *i* produced a signal s = re[i], |r| ≥ ρ_i.

Setup: The signal signatures e[i], $1 \le i \le n$ are the standard basic orths in \mathbb{R}^n , and the nuisance set \mathcal{V} is defined as

$$\mathcal{V}_L = \{ u \in \mathbb{R}^n : , |\mathcal{L}v| \leq L \},$$

where \mathcal{L} is the discrete Laplace operator.

In the reported experiment m = 20, $n = 20^2$, L = 0.1.

