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Motivation: event detection in sensor networks

[Tartakovsky, Veeravalli, 2004, 2008]
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Array of 20 sensors on the uniform grid along the left and bottom edges of [0, 1]°.
“+" represent the points of the uniform 20 x 20—grid T,

®" are sensor positions, interposed with contour plot of the response of the 6th sensor
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Suppose that m sensors are deployed on the domain G C R?. Given a grid
M= (7)i=1,..n C G.

An event at a node «; € I produces the signal s = re[i]: T — R" of known signature
e[i] with unknown real factor r.

The signal is contaminated by a nuisance (a background signal) v € V , where V is a
known convex and compact set in R".

Observation w = [wi; ...; wm] of the array of m sensors is a linear transformation of the
signal, contaminated with random noise:

w~ P,
— a random vector in R™ with the distribution parameterized by ;. € R™, where
p=A(s+v),

and A € R™*" is a known matrix of sensor responses.
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Objective: testing the (null) hypothesis Hy that no event happened against
the alternative H;that exactly one event took place.
We require that

e Ae[i] #0 for all §

e under Hi, when an event occurs at a node ~; € ', we have s = re[i] with |r] > p;
with some given p; > 0.

Problem (D,): Given p = [p1; ...; pa] > 0, decide between
® hypothesis Hp : s = 0 against
e alternative Hi(p) : s = re[i] for some i € {1, ..., n} and r with |r| > p;.

The risk of the test is the maximal probability to reject Hy when the hypothesis is true
or to accept Ho when Hi(p) is true.

Our goal is, given an € € (0,1), construct a test with risk < € for as wide as possible
(i.e., with as small p as possible) alternative Hi(p).
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A particular case: signal detection in convolution

[Yin, 1988, Wang, 1995, Muller 1999, Gustavson, 2000, Antoniadis, Gijbels, 2002,
Goldenshluger et al., 2008,...]

We consider the model with observation
w=A(s+v)+0¢,
where s,v € R”, and £ ~ N(0, I,) with known o > 0.

Let u = [p1; ... 14m] be the vector of m

consecutive outputs of a discrete time °

linear dynamical system with a given -

impulse response {gk}, k=1,..., T, i.e.

1 € R™ is the convolution image of o

n-dimensional “signal” s ::

(thatis, n=m+ T — 1). ou

A is the Toeplitz m x n matrix of the S s m W e % m

described linear mapping x — p.
Convolution kernel, m = 100, n = 159

We want to detect the presence of the signal s = re[i], where e[i], i =1, ..., n, are some

given vectors in R". i



Situation, formally

Given are

® “Observation space” Q, P
Q:  Polish (complete separable metric) space
P:  o-finite o-additive Borel measure on Q

e Family P = {P,(dw) = pu(w)P(dw) : p € M} of probability distributions on
1% distribution’s parameter running through “parameter space” M C R™
pu:  density of distribution P, w.r.t. the reference measure P

® “Parameter spaces” — two nonempty convex compact subsets My C M and

M1CM.

6
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Assumptions

We assume that
e M C R" is a convex set which coincides with its relative interior;

e distributions P, € P possess densities p,(w) w.r.t. the measure P on the space Q.
We assume that p,(w) is continuous in p € M and is positive for all w € Q;

® We are given a finite-dimensional linear space F of continuous functions on 2
containing constants such that In(p.(-)/p.(-)) € F whenever u,v € M;



Assumptions

We assume that
e M C R" is a convex set which coincides with its relative interior;

e distributions P, € P possess densities p,(w) w.r.t. the measure P on the space Q.
We assume that p,(w) is continuous in p € M and is positive for all w € Q;

® We are given a finite-dimensional linear space F of continuous functions on 2
containing constants such that In(p.(-)/p.(-)) € F whenever u,v € M;

e For every ¢ € F, the function Fy(u) = In ([, exp{¢(w)}pu(w)P(dw)) is well
defined and concave in p € M.

We call the just described situation a good observation scheme.



and goal

Given observation scheme [observation space (€2, P) and family of distributions
{pu(-)}uem, “parameter spaces” My, My, and random observation

w p#(')a

coming from some unknown u, known to belong either to My (hypothesis Hy) or to M
(hypothesis H. ), decide between Hy and H;.

Risk of the test: given a test (we interpret value 0 as accepting Ho and 1 as accepting
H1), we consider the quantities

€0 = sup Proby,.p, {test rejects Ho},
HEMo

€1 = sup Proby~p, {test rejects H;},
neM;

We say that risk of the test is < ¢, if both error probabilities are < e.
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Example: Gaussian case

Given an noisy observation

w:M+£’ §NN(07I)3

make conclusions about .

The observation scheme is
e (Q,P): R™ with Lebesque measure
® pu(w) =N 1), p€ M:=R"
o F={p(w)=a"w+b: acR™ beR} and
T a’a
In (/Rm e’ w+bpu(w)dw)> =b+a p+ =2,

2

is concave in p

Gaussian observation scheme is good!
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Example: Poisson case

Given m realizations of independent Poisson random variables
wj ~ Poisson(u;)

with parameters p;, make conclusions about u.

The observation scheme is
e (Q,P): ZT with counting measure
° pu(w) = %ele'“’g nwEM=intRT
o F={p(w)=a"w+b: acR" bcR} and

T m .
In Z e “Tp (w) | = b+ Z[ea’ — 1] ui,

w€eZT i=1

is concave in u

Poisson observation scheme is good!
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Example: discrete case

Given realization of random variable w taking values 1, ..., m with probabilities p;
ui := Prob{w =i},
make conclusions about .
The observation scheme is
e (Q,P): {1,...,m} with counting measure
°pu(w):uw’u€M:{u€R"’: p>0 }

Zw:lp’“’ =1
e F=R(Q2)=R", and

In <Z e¢(“)pu(w)) =In (i e(f)(w)yw) ,

wEeN

is concave in p.

Discrete observation scheme is good!
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Simple test

Simple (Cramer’s) test: a simple test is specified by a detector ¢(-) € F;
it accepts Hop, the observation being w, if ¢(w) > 0, and accepts H; otherwise.

We can easily bound the risk of a simple test ¢: for u € My we have
Prober, (9(u) < 0) < Eunr, () = [ &%, (0)P(d)
and for v € My,
Probep, (6(w) > 0) < Eup, (")) = /Q ) p, (w)P(dw).
We associate with ¢(-) € F, and [u; v] € My x My the aggregate

&(, [p;v]) = In (fﬂ ef‘b(“’)pu(w)P(dw)) +In (fQ e¢(“)py(w)P(dw))

Key observation: in a good observation scheme ®(¢, [u; v]) is continuous on its domain,
convex in ¢(-) € F and concave in [p;v] € Mg x M.
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Main result

Theorem 1
(i) ®(¢,[u;v]) possesses a saddle point (min in ¢, max in [w; v]) (@« (-), [X«; y«])
F x (Mo x My) with the saddle value

i [} : = 21In(ey).
UL (&, [ v]) n(e«)

The risk of the simple test associated with the detector ¢+ on the composite
hypotheses Hy,, Hu, is < €.

on
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Theorem 1
(i) ®(¢,[u;v]) possesses a saddle point (min in ¢, max in [u; v]) (¢« (-), [x«; y«]) on
F x (Mo x My) with the saddle value

i [} : = 21In(ey).
UL (&, [ v]) n(e«)

The risk of the simple test associated with the detector ¢+ on the composite
hypotheses Hy,, Hu, is < €.

(i) The detector ¢. is readily given by the [u; v]-component [u+; v.] of the associated
saddle point of , specifically,

¢+() = 3 [pu. ()/Po. ()]

(i) Let € > 0 be such that there exists a (whatever) test for deciding between two
simple hypotheses

(A):w~p() = pu.(), (B):w~q():=pu()

with the sum of error probabilities < 2e. Then €, < 24/e.
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Example: Gaussian case

[Chencov, 70’s, Burnashev 1979, 1982, Ingster, Suslina, 2002,...]

Here (2, P) is R™ with the Lebesque measure, M = R™, p,(-) is the density of the

Gaussian distribution N'(p, /), and F is the space of all affine functions on Q = R".

Assuming that the nonempty convex compact sets My, M; do not intersect, we get

[t; v4] € Argmin [|p —v|2.
HEMy,veM;

and

9-(w) = €Tw — 0, where €= . —w], = 2&7[us + 0]

The error probabilities of the associated simple test do not exceed

L= Fu (g = vel2/2),
where Fpr(+) is the standard normal c.d.f..
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Example: discrete case

[Birge 1982, 1983]

Let (2, P) be a finite set of cardinality m with counting measure P, M C R" is the
relative interior of the standard simplex in R™:

M=Ap={p:we}: u>0,Zuw:1}
with p,(w) = pw, and F = R(Q) is the space of all real-valued functions on €.

Assuming that the sets My, M; do not intersect, we get

[ts; V] € Argmax Z VoV,

nEMy,veMy =7

ou() =ty e = 3 VL

and

16
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Example: Poisson case

Here Q = ZT is the grid of nonnegative integer vectors in R™, P is the counting
measure on Q, M =R7, :={p € R": u > 0}, and

) = [T [ 2]

i=1

is the distribution of the random vector with independent Poisson entries w1, ..., wm.

F is comprised of the restrictions onto Z of affine functions.

Assuming, same as above, that the sets My, M; do not intersect, we get

[eive] € Argmingepy vem, > [\/éTf - \/1/7]2
opt = 1¥7, Vil - Vi ’

and

m

9-(@) = Y in (VI /BT ) wr — 2 >l — vl
(=1

=1
with e, = exp{—Opt}.

17 /41



[[lustration: PET

Ring of detector cells and line of response

The collected data is the list of total numbers of coincidences registered in every bin
(pair of detector cells) over a given time T. The goal is to infer about the density x of
the tracer. After suitable discretization, we arrive at Poisson case

n
w = {w; ~ Poisson(ui)}2y, pi= Z Ajix;
j=1

m bins and n voxels (small cubes in which the field of view is split)
Xj: average tracer's density in voxel j
probability for line of response originating
° A,J T % . . . . ..
in voxel j to be registered in bin i
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We consider 2D PET with m = 64 detector cells and 40 x 40 field of view:
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Detector cells and field of view. 1296 bins, 1600 pixels

X U Y: the set of tracer's densities x € R*** satisfying some regularity
assumptions and at average not exceeding 1

M; = AY: X is the set of densities with the average over the 3 X 3 red spot at
least 1.1

My = AX: Y is the set of densities with average over the red spot at most 1.

The observation time is chosen to allow to decide on Hy vs. H; with risk 0.01.
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Results of 1024 simulations:

® Wrongly rejecting Ho in 0% of cases

e Wrongly rejecting Hy in 0.1% of cases
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Top plot: x«, middle plot: y., bottom plot: xs — y«
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Case of repeated observations

Assume we are given a good observation scheme ((2, P), {pu(:) : p € M}, F), along
with same as above My, M.

We now observe a sample of K independent realizations
Wi ~ pN(')7 k=1,.,K,
what corresponds to the observation scheme

e observation space Q) = {WX = (w1, ..., wk) : wk € QVk} equipped with the
measure PX) = P x ... x P,

e family {pf‘K)(wK) =1, pulwk), p € M} of densities of observations w.r.t.
P, and F) = {3 (") = I, élwi), ¢ € F}.

We want to decide between the hypotheses that the (K -element) observation w®

comes
from a distribution pl)(-) with ;1 € My (hypothesis Ho) or with ju € My (hypothesis Hy ).
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Detectors ¢., q&SfO and risk bounds ¢, EiK) given by Theorem 1, as applied to the
original and the K-repeated observation schemes are linked by the relations

qﬁiK)(wl, iy WK) = Zf:1¢*(wk)’ €S<K) = (8*)K.

As a result, the “near-optimality claim” Theorem Ll.iii can be reformulated as follows:

Corollary Assume that for some integer K* > 1 and some € € (0,1/4), the hypotheses
Ho, Hi can be decided, by a whatever procedure utilising K* observations, with error
probabilities < €. Then with

P 21n(1/e) i
< = (g )

n
observations, the simple test with the detector qb(*K ) decides between Hy and Hy with
risk < e.



Multiple hypothesis testing

Assume that we are given
® convex compact sets M, in M CR™, 1< /(<L
® a good observation scheme ((2, P), {p.(),n € M C R™}, F).

Given an observation w € Q, our goal is to decide between the hypotheses Hp,
1 < ¢ < L, stating that the observation w ~ p,(-) corresponds to u € M.
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Pairwise testing

Consider all (unordered) pairs {¢, ¢’} with £ # ¢ and 1 < ¢,¢' < L, and associate with

such a pair a simple test given by detector qbf:f/(»), along with the upper bound &.[¢, ']
on the risk of this test yielded by Theorem 1, as applied to My = My, My = M,.
Let C be a collection of pairs {¢,¢'}.

Testing procedure: given an observation w, we “look” one by one at all pairs {£,¢'} € C
and apply to our observation w the simple test, given by the detector ¢£’Z (), to decide
between the hypotheses H;, H,:.

The outcome of the inference process is the list of these rejected hypotheses.

The (un)reliability of such an inference can be naturally upper-bounded by the quantity

€lC] := max Z e [6,0].

= e {e}ec
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Application to multisensor detection

The setting: We are given an observation w ~ P, parameterized by the vector
parameter u = A(s + v), where A € R™*" is a known matrix.
——

X

Useful signal s = re[i] € R" is known up to its “position” i € {1,..., n} and the scalar
factor r, and v is the nuisance known to belong to a given set V C R”, which we assume
to be convex and compact.

Objective: solve the testing problem (D,), i.e., decide between Hy : s =0 and

Hi(p = [p1; ---pn]) = {s = re[i] for some i and r such that |r| > pi}.
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Given a test ¢(-) and € > 0, we call a collection p = [p1; ...; pn] of positive reals the
e-rate profile of the test ¢ if

® whenever s =0 and v € V, the probability for the test to reject Hy is < ¢;

® whenever the signal s underlying our observation is re[i] for some i and r with
pi < |r|, and the nuisance v € V, the test rejects Hy with probability > 1 — €.

Our goal is to design a test with the “best possible” e-rate profile:

Definition. Let k > 1. A test ¢ with risk € in the problem (D,) is said to be k—rate
optimal, if there is no test with the risk € in the problem (D,) with p < £ 'p.

26
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Multisensor detection: Gaussian case

Let the distribution P, of w be normal with the mean p, i.e. w ~ A (p, 0°1) with known

variance o2 > 0. For the sake of simplicity, assume also that the (convex and compact)
nuisance set V is symmetric w.r.t. the origin.

® The null hypothesisis Ho: pe€ AV = {u = Av, v e V}.

® The alternative Hi(p) can be represented as the union, over i = 1,...,n, of 2n
hypotheses

HE (i) : p€ £AXi(pi) = {1 = Ax,x € £AXi(pi)},
where  Xi(p)) ={x€R": x=re[il+v, veV, pi<r}.
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Let 1 < i < n be fixed, and suppose we want to distinguish Ho from H;"(p).
The separation with risk ¢ is impossible unless

dist(AV, AX(0)) > au(c/2),
meaning that
p > pSi(e) = max {r:||Au— A(re[i] + v)|> < 20 qrr(¢/2), u,v € V}.
p,r,u,v

where gar(s) is the 1 — s—quantile of A/(0,1).

To ensure the “total risk” of separation of Ho and |J; H"/(p;) to be < ¢, one can take

pi > pf(€) = max {r: ||Au— A(re[i] + v)||l2 < 20 qnr(¢/(4n)), u,v € V}.

pyriU,v
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Let 1 < i < n be fixed, and suppose we want to distinguish Ho from H;"(p).
The separation with risk € is impossible unless

dist(AV, AXi(p)) > ax(c/2),
meaning that

p> pf’,-(e) = max {r: ||Au— A(re[i] + v)|2 < 20 qn(€/2), u,v € V}.
P

shhu,v

where gur(s) is the 1 — s—quantile of N/(0,1).

We can be a bit smarter: when deciding between Ho and each of H*"(p;) we can
“skew” the test so that

e probability of wrongly rejecting Hp is €/4n
e probability of wrongly rejecting H/(p;) is €/2.

In this case, the risk € is attained if

pi > pfe) = max {r CAu — A(relil + V)| < o [qN (4—6,7) + qn (%)] , u,vE V} .
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So, for 1 < i < n we set

pf(€) = max { [|[Au — A(re[i] + v)|2 < 20 [q,v( ) + qn (2” ,u,vE V}.

p,ryu,v |
(G)
Let . - .
b1+ (w) = H[AW — A(r'e[i] + V)] w — as,
with

7 [an(e/4n)A(r'e[i] + v') + qnr(¢/2)Au]
qn (€/4n) + qur(€/2) ’
where ', v/, r' are the u, v, r-components of an optimal solution to (G;) (of course,
i G
r=pj )

= [Ad' — A(r e[i] + V')

Finally, set
ApG[e] = [p7(e)iipn ()],
de(w) = min drx(w).
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Consider the test (we refer to it as to ¢¢) which

® accepts Hy when (E(;(w) > 0 (i.e., with observation w, all simple tests with
detectors ¢;+, 1 < i < n, when deciding on Hp vs. HE, accept Hyp),

® otherwise accepts Hi(p).

Proposition [Gaussian]

(i) Whenever p > pC[e] the risk of the test d¢ in the Gaussian case of problem (D,)
is <.

(i) When p = p®[e], the test is k,-rate optimal with

an(5) +av(s)

i = nl€) = T )

Note that k,(e) — 1 as e — 0.
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lllustration: jump detection in convolution

We consider here the “convolution model” with observation
w=A(s+v)+¢,

where s,v € R", and £ ~ N(0, I»), and A is the matrix of discrete convolution.
We are to decide between the hypotheses

e Ho: p€ AV and
o Hi(p) = Ui<i<nH™(p;), with the hypotheses H¥(p;) as above.

V. = {U eR": 7\u,- —2ui_1 — U,;zl < L7 | = 37...,n},

where L is experiment’s parameter (L = 0.1 in the experiment below).
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300

baseline and nominal p-profiles, e = 0.1

40

20

-20

-80,
~60  -40  -20 o 20 40 60 80 100

difference signal s' + v/ — u', jump at i = 100

21

corresponding observation and detector, ¢ = 0.1
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Jump detection in convolution model: numerical lower
bound

Question: can the logn—factor can be removed?

Answer (partial, theoretical): [Goldenshluger et al, 2008] in certain (inverse) models the
logn—factor cannot be removed

Answer (numerical): we can lower bound the performance of any test by the
performance of the Bayesian test on the problem of testing of

® Hy: =0, and

® Hi(p) which is the union, over i =1, ..., n, of 2n hypotheses

H (pi) : p=£Ax = £A(pielil + v/ — u') [= £A(preli] +2v')], v,u € V.
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Numerical lower bound in the periodic case

Sum ¢ of error probabilities in testing Ho versus Hi(p) as a function of p(= p;), n = 100.

——  —log;o(union upper bound )
- —log,o(¢) of the Bayesian test over uniform prior on v*, k =1,...,n (1e6 sim)
—- —log;o(baseline error)
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Numerical lower bound in the periodic case

Sum € of error probabilities in testing Ho versus Hi(p) as a function of p(= p;),
n = 1000.

5 6 7 8 s 1 u
——  —log;o(union upper bound )
— —log,o(¢) of the Bayesian test over uniform prior on v*, k =1,...,n (1e6 sim)

—- —log;o(baseline error)
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Numerical example: event detection in sensor networks

Same as above, the available observation is

w=A(s+v) +¢,

where s,v € R”, and £ ~ N(0, I), A is the m x n matrix of sensor responses.
We are to decide between the hypotheses

® Hy: p € AV (observation is a result of a pure nuisance) and

e Hi(p) = Ur<i<nH®(pi), with the hypothesis H*/(p;) saying that an event at the
node i produced a signal s = re[i], |r| > pi.

Setup: The signal signatures €[i], 1 < i < n are the standard basic orths in R”, and the
nuisance set V is defined as

Vi={ueR":,|Lv|] <L},

where L is the discrete Laplace operator.

In the reported experiment m = 20, n =202, L = 0.1.
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response of the 6th sensor

signal s + v of the event at v = (5, 20)

p-profile, e = 0.1

4 6 8 10 12 14 16 18 20

corresponding detector, € = 0.1
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