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The advent of large-scale datasets and “big learning”

From “The Promise and Perils of Benchmark Datasets and Challenges”, D. Forsyth, A.
Efros, F.-F. Li, A. Torralba and A. Zisserman, Talk at “Frontiers of Computer Vision”
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Large-scale supervised learning

Large-scale supervised learning
Let (x1, y1), . . . , (xn, yn) ∈ Rd × Y be i.i.d. labelled training data,
and Remp(·) the empirical risk for any W ∈ Rd×k.

Constrained formulation

minimize Remp(W)

subject to Ω(W) ≤ ρ

Penalized formulation

minimize λΩ(W) +Remp(W)

Problem : minimize such objectives in the large-scale setting

# examples� 1, # features� 1, # classes� 1
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Large-scale supervised learning

Large-scale supervised learning
Let (x1, y1), . . . , (xn, yn) ∈ Rd × Y be i.i.d. labelled training data,
and Remp(·) the empirical risk for any W ∈ Rd×k.

Constrained formulation

minimize Remp(W)

subject to Ω(W) ≤ ρ

Penalized formulation

minimize λΩ(W) +Remp(W)

Problem : minimize such objectives in the large-scale setting

n� 1, d� 1, k � 1
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Machine learning cuboid

n
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k
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Motivating example :
multi-class classification with trace-norm penalty

Motivating the trace-norm penalty

Embedding assumption : classes may embedded in a low-dimensional
subspace of the feature space
Computational efficiency : training time and test time efficiency
require sparse matrix regularizers

Trace-norm
The trace-norm, aka nuclear norm, is defined as

‖σ(W)‖1 =

min(d,k)∑
p=1

σp(W)

where σ1(W), . . . , σmin(d,k)(W) denote the singular values of W.
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Large-scale supervised learning

Multi-class classification with trace-norm regularization
Let (x1, y1), . . . , (xn, yn) ∈ Rd × Y be i.i.d. labelled training data,
and Remp(·) the empirical risk for any W ∈ Rd×k.

Constrained formulation

minimize Remp(W)

subject to ‖σ(W)‖1 ≤ ρ

Penalized formulation

minimize λ ‖σ(W)‖1 +Remp(W)

Trace-norm reg. penalty (Amit et al., 2007 ; Argyriou et al., 2007)
Enforces a low-rank structure of W (sparsity of spectrum σ(W))
Convex problems
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About the different formulations

“Alleged” equivalence
For a particular set of examples, for any value ρ of the constraint in the
constrained formulation, there exists a value of λ in the penalized
formulation so that the solutions of resp. the constrained formulation and
the penalized formulation coincide.

Statistical learning theory

theoretical results on penalized estimators and constrained estimators
are of different nature → no rigorous comparison possible
equivalence frequently called as the rescue depending on the
theoretical tools available to jump from one formulation to the other
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Summary

In practice
Recall that eventually “hyperparameters” (λ, ρ, ε, · · · ) will have to be tuned.

Choose the formulation in which you can easily incorporate prior knowledge

Constrained formulation I Minimize
W∈Rd×k

{
1

n

n∑
i=1

Lossi : ‖σ(W)‖1 ≤ ρ

}

Penalized formulation Minimize
W∈Rd×k

{
1

n

n∑
i=1

Lossi + λ ‖σ(W)‖1

}

Constrained formulation II Minimize
W∈Rd×k

{
λ ‖σ(W)‖1 :

∣∣∣∣∣ 1n
n∑

i=1

Lossi −Rtarget
emp

∣∣∣∣∣ ≤ ε
}
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Learning with trace-norm penalty : a convex problem

Supervised learning with trace-norm regularization penalty
Let (x1, y1), . . . , (xn, yn) ∈ Rd × Y be a set of i.i.d. labelled training data,
with Y = {0, 1}k for multi-class classification

Minimize
W∈Rd×k

1

n

n∑
i=1

Lossi + λ‖σ(W)‖1︸ ︷︷ ︸
convex

Penalized formulation

Trace-norm reg. penalty (Amit et al., 2007 ; Argyriou et al., 2007)
Enforces a low-rank structure of W (sparsity of spectrum σ(W))
Convex, but non-differentiable
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Possible approaches

Generic approaches

“Blind” approach : subgradient, bundle method → slow convergence
rate
Other approaches : alternating optimization, iteratively reweighted
least-squares, etc. → no finite-time convergence guarantees
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Learning with trace-norm penalty : convex but non-smooth

Supervised learning with trace-norm regularization penalty
Let (x1, y1), . . . , (xn, yn) ∈ Rd × Y be a set of i.i.d. labelled training data,
with Y = {0, 1}k for multi-class classification

Minimize
W∈Rd×k

λ ‖σ(W)‖1︸ ︷︷ ︸
nonsmooth

+
1

n

n∑
i=1

Lossi︸ ︷︷ ︸
smooth

where Lossi is e.g. the multinomial logistic loss of i-th example

Lossi = log

1 +
∑

`∈Y\{yi}

exp
{
wT
` xi −wT

y xi
}
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Learning with trace-norm penalty : a convex problem

Supervised learning with trace-norm regularization penalty
Let (x1, y1), . . . , (xn, yn) ∈ Rd × Y be a set of i.i.d. labelled training data,
with Y = {0, 1}k for multi-class classification

Minimize
W∈Rd×k

λ‖σ(W)‖1 +
1

n

n∑
i=1

Lossi

Penalized formulation
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Composite minimization for penalized formulation

Strengths of composite minimization (aka proximal-gradient)

Attractive algorithms when proximal operator is cheap, as e.g. for
vector `1-norm
Accurate with medium-accuracy, finite-time accuracy guarantees
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Proximal gradient

Algorithm

Initialize : W = 0

Iterate :

Wt+1 = Proxλ/LΩ(·)

(
Wt −

1

L
∇Remp(Wt)

)
with Proxλ/LΩ(·)(U) := min

W

1

2
‖U−W‖2 +

λ

L
Ω(W)
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Composite minimization for penalized formulation

Strengths of composite minimization (aka proximal-gradient)

Attractive algorithms when proximal operator is cheap, as e.g. for
vector `1-norm
Accurate with medium-accuracy, finite-time accuracy guarantees

Weaknesses of composite minimization

Inappropriate when proximal operator is expensive to compute
Too sensitive to conditioning of design matrix (correlated features)

Situation with trace-norm, i.e. ProxµΩ(·)(·) with Ω(·) = ‖ · ‖σ,1

proximal operator corresponds to singular value thresholding, requiring
an SVD running in O(krk(W)2) in time → impractical for large-scale
problems
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Alternative approach : conditional gradient

We want an algorithm with no SVD, i.e. without any projection or proximal
step. Let us get some inspiration from the constrained setting.

Problem

Minimize
W∈Rd×k

{
1

n

n∑
i=1

Lossi : W ∈ ρ · convex hull ({Mt}t≥1)

}

Gauge/atomic decomposition of trace-norm

‖σ(W)‖1 = inf
θ

{
N∑
i=1

θi | ∃N, θi > 0,Mi ∈M with W =

N∑
i=1

θiMi

}
M = {uvT | u ∈ Rd, v ∈ RY , ‖u‖2 = ‖v‖2 = 1}

Zaid Harchaoui (INRIA) Conditional gradient algorithms Nov. 26th, 2013 17 / 42



Conditional gradient descent

Algorithm

Initialize : W = 0

Iterate : Find Mt ∈ ρ · convex hull (M) , such that

Mt = Arg max
M`∈M

〈M`,−∇Remp(Wt)〉︸ ︷︷ ︸
linear min. oracle

Perform line-search between Wt and Mt

Wt+1 = (1− δ)Wt + δMt
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Conditional gradient descent :
example with trace-norm constraint

Algorithm

Initialize : W = 0

Iterate : Find Mt ∈ ρ · convex hull (M) such that

Mt = Arg max
`

〈u`vT` ,−∇Remp(Wt)〉

= Arg max
‖u‖2=‖v‖2=1

uT (−∇Remp(Wt))v

i.e. compute top pair of singular vectors of −∇Remp(Wt).
Perform line-search between Wt and Mt

Wt+1 = (1− δ)Wt + δMt
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Conditional gradient descent

Algorithm

Initialize : W = 0

Iterate : Find Mt ∈ ρ · convex hull (M) such that

Mt = Arg max
M`∈M

〈M`,−∇Remp(Wt)〉︸ ︷︷ ︸
easy

Perform line-search between Wt and Mt

Wt+1 = (1− δ)Wt + δMt
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Finite-time guarantee

Assumptions

(A) [Smoothness] The empirical risk Remp(·) is convex continuously
differentiable on D = ρ · conv(M), with Lipschitz constant L w.r.t D

Let {Wt} be a sequence generated by the conditional gradient algorithm.
Then

F (Wt)− F ? ≤
2L

t+ 1
, t = 1, 2, . . .
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Conditional gradient algorithm : review

Conditional gradient for constrained programming

aka the Frank-Wolfe algorithm (1956, originally for quadratic
programming)
convergence results in general Banach spaces in (Demyanov &
Rubinov, 1970)
finite-time guarantees in (Pshenichnyi, 1975 ; Dunn, 1979)
superseded by sequential quadratic programming in the early 80s, and
ended up in the “mathematical programming” attic
rediscovered several times and revisited with new variants in machine
learning ;
lately, (Hazan, 2008 ; Jaggi & Sulovsky, 2010 ; Tewari et al., 2011 ;
Bach et al., 2012)

See (HJN, 2013) and (Jaggi, 2013) for modern proofs.
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Conditional gradient algorithms

Question

is it possible to design a conditional-gradient-type algorithm for
penalized formulations ?
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Conditional gradient vs Proximal gradient

Conditional gradient : iteration

Wt+1 = (1− δ)Wt + δMt

Mt = Arg max
M`∈M

〈M`,−∇Remp(Wt)〉︸ ︷︷ ︸
easy

Proximal gradient : iteration

Wt+1 = Proxλ/LΩ(·) (Wt − 1/L∇Remp(Wt))

Proxλ/LΩ(·)(U) := min
W

1

2
‖U−W‖2 +

λ

L
Ω(W)︸ ︷︷ ︸

hard
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Conditional gradient approach for penalized formulations

Let K ⊂ E a closed convex cone, E a euclidean space,
and ‖ · ‖ a norm on E.

Problem

Minimize
W∈K

λ‖W‖ +
1

n

n∑
i=1

Lossi(W)

Penalized formulation

Sketch

Augment the variable W by one dimension to handle the
regularization penalty
Perform a sequence of iterations akin to the conditional gradient
iterations
and so on...
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Turning the problem into a cone constrained problem

Problem
Introducing the variable Z := [W, r], we get

minimize F (Z)

subject to Z ∈ K+

where

F (Z) := λr +
1

n

n∑
i=1

Lossi(W)

K+ := {[W; r], W ∈ K, ‖W‖ ≤ r} .
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linear minimization oracle

First-order information and linear minimization oracle
For any W , we can get

Remp(W) the empirical risk
∇Remp(W) the gradient of the empirical risk

For any g ∈ E∗ we have access to a linear minimization oracle

Oracle(g) := Arg max
W∈K1

〈W,−g〉 .

where

K1 := {W ∈ K, ‖W‖ ≤ 1} .
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Linear minimization oracle

First-order information and linear minimization oracle
For any W , we can get

Remp(W) the empirical risk
∇Remp(W) the derivative of the empirical risk

and any iteration t we have access to a linear minimization oracle

Oracle(g) := Arg max
W∈K1

〈W,−g〉 .

where

K1 := {W ∈ K, ‖W‖ ≤ 1} .

Zaid Harchaoui (INRIA) Conditional gradient algorithms Nov. 26th, 2013 28 / 42



Conditional gradient for penalized formulation

Algorithm

Inputs : instrumental bound D+ on ‖W?‖, first-order oracle, and
minim. oracle
Iterate : Compute ∇Remp(Wt) at Zt = (Wt, rt)

Call the linear minimization oracle

Oracle(∇Remp(Wt)) := Arg max
W∈K1

〈W,−∇Remp(Wt)〉︸ ︷︷ ︸
linear minimization oracle

.

...

The instrumental bound D+ can be loose.
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Conditional gradient for penalized formulation

Algorithm

Inputs : instrumental bound D+ on ‖W?‖, first-order oracle, and
minim. oracle
Iterate :
Compute ∇Remp(Wt) at Zt = (Wt, rt)

Get Z̄t = [Oracle(∇Remp(Wt)), 1] from the linear minimization oracle.

Perform line-search to get

Zt+1 ∈ argminZ
{
F (Z), Z ∈ Conv{0, Zt, D+Z̄t}

}
.

The instrumental bound D+ can be loose.
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Conditional gradient for penalized formulation

Algorithm

Inputs : instrumental bound D+ on ‖W?‖, first-order oracle, and
minim. oracle
Iterate :
Compute ∇Remp(Wt) at Zt = (Wt, rt)

Get Z̄t = [Oracle(∇Remp(Wt)), 1] from the linear minimization oracle.

Perform line-search to get

Zt+1 = αt+1Z̄t + βt+1Zt

(αt+1, βt+1) = Arg min
α,β

{F (αZ̄t + βZt), α+ β ≤ 1, α ≥ 0, β ≥ 0 } .

Output : WT can be retrieved from ZT = [WT , rT ].
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Memory-based extensions : convex-hull

Convex-hull memory-based extension (“restricted simplicial acceleration”)
Instead to the 2D line-search, we can perform at each iteration for some
M > 0

Zt+1 ∈ Arg min
Z

{F (Z), Z ∈ Ct} .

where

Ct =

{
Conv{0; D+Z̄0, ..., D

+Z̄t}, t ≤M ,
Conv{0;Zt−M+1, ..., Zt; D

+Z̄t−M+1, ..., D
+Z̄t}, t > M .

Important computational considerations

Line-search sub-problem can be solved with ellipsoid algorithm
Maintaining the factorization of W along iterations is essential for
speed
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Memory-based extensions : conic-hull

Conic-hull memory-based extension
Instead to the 2D line-search, we can perform at each iteration for some
M > 0

Zt+1 ∈ Arg min
Z

{F (Z), Z ∈ Bt} .

where

Bt =

{
Conic{Z̄0, ..., Z̄t}, t ≤M ,
Conic{Zt−M+1, ..., Zt; Z̄t−M+1, ..., Z̄t}, t > M .

M = +∞ : we recover the Atom-Descent algorithm of (DHM, 2012)

Important computational considerations

Line-search sub-problem can be solved with coordinate-descent
Maintaining factorization of W along iterations essential for speed
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Finite-time guarantee

Assumptions

(A) [Smoothness] The empirical risk Remp(·) is convex continuously
differentiable with Lipschitz constant L.

(B) [Effective domain] There exists D < 1 such that ‖W‖ ≤ r and
r +Remp(W) < Remp(0) imply that r ≤ D

Let {Zt} be a sequence generated by the algorithm. Then

F (Zt)− F ? ≤
8LD2

t+ 1
, t = 2, 3, . . .
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Finite-time guarantee

Finite-time guarantee
Let {Zt} be a sequence generated by the algorithm. Then

F (Zt)− F ? ≤
8LD2

t+ 1
, t = 2, 3, . . .

Important remark
The O(1/t) convergence rate depends on D (unknown and not required by
the algorithm), but does not depend on D+ ! (known and required by the
algorithm).
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Finite-time guarantee

Finite-time guarantee
Let {Zt} be a sequence generated by the algorithm. Then

F (Zt)− F ? ≤
8LD2

t+ 1
, t = 2, 3, . . .

Theoretical convergence rate is independent of D+.
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Generalization to gauge regularization penalty

Gauge regularization penalty

Gauge definition : Ω(W) := inf{t ≥ 0 |W ∈ tB}
Unit “ball” : B := convM
Atoms set :M = {Mi ∈ Rd×k : i ∈ I} be a compact set of
matrices, called atoms → “overcomplete basis”
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Generalization to gauge regularization penalty

Properties

Ω(tW) = tΩ(W) for all W and t ≥ 0

Ω(W + W′) ≤ Ω(W) + Ω(W′) for all W and W′.

Additional properties
Assuming 0 ∈ intB, we also have

Ω(W) ≥ 0, with equality if and only if W = 0

{W : Ω(W) ≤ t} = tB for t ≥ 0, i.e., level sets are compact.

Polar duality

Support function : Ω◦(G) := supM∈B〈M,G〉 = supM∈M〈M,G〉.
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Some examples

Examples of gauges with their atomic decomposition

∑
i,j

|Wi,j | Mlasso =
{
±ejeT` | j ∈ {1, . . . , d}, ` ∈ {1, . . . , k}

}
∑
i

‖Wi,:‖ Mgp-lasso = {ejvT | j ∈ {1, . . . , d}, v ∈ Rk, ‖v‖2 = 1}∑
p

σp(Wi,:) Mtr-norm = {uvT | u ∈ Rd, v ∈ Rk, ‖u‖2 = ‖v‖2 = 1}
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Conclusion and perspectives

Large-scale learning

conditional gradient algorithm for learning problems with
atomic-decomposition-norm regularization
efficient and competitive algorithm for large-scale multi-class
classification
scheme applies to all problems with atomic decomposition norm
regularizers (Harchaoui et al., 2011, Chandrasekaran et al., 2012) :
nuclear-norm, total-variation norm, overlapping-blocks sparse norm,
etc.

Extensions

non-smooth loss functions ; see (Pierucci et al., ICCOPT 2013)
online/mini-batch extensions
path-following extensions
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