On Flat versus Hierarchical Classification in Large-Scale Taxonomies

R. Babbar, I. Partalas, É. Gaussier, M.-R. Amini

Gargantua (CNRS Mastodons) - November the 26th, 2013

Directory Mozilla

 \Box 5 \times 10⁶ sites \Box 10⁶ categories 10⁵ editors

Copyright © 2013 Netscape

5,292,731 sites - 99,941 editors - over 1,020,828 categories

Approaches for Large Scale Hierarchical Classification (LSHC)

Hierarchical

3/21

- Top-down solve individual classification problems at every node
- Big-bang solve the problem at once for entire tree
- Flat ignore the taxonomy structure *altogether*
- Flattening Approaches in LSHTC
 - Somewhat arbitrary as they flatten entire layers
 - Not quite clear which layers to flatten when taxonomy are much deeper with 10-15 levels

Key Challenges in LSHC

□ How reliable is the given hierarchical structure ?

- Arbitrariness in taxonomy creation based on personal biases and choices
- □ Other sources of *noise* include imbalanced nature of hierarchies

U Which Approach - Flat or Hierarchical ?

- Lack of clarity on exploiting the hierarchical structure of categories
- □ Speed versus Accuracy trade-off

□ hierarchy of classes $\mathcal{H} = (V, E)$ is defined in the form of a rooted tree, with a root \bot and a parent relationship π

□ Nodes at the leaf level, $\mathcal{Y} = \{y \in V : \nexists v \in V, (y, v) \in E\} \subset V$,

constitute the set of target classes

 $\forall v \in V \setminus \{\bot\}$, we define the set of its sisters

$$\mathfrak{S}(v) = \{v' \in V \setminus \{\bot\}; v \neq v' \land \pi(v) = \pi(v')\} \text{ and its daughters}$$

 $\exists \forall y \in \mathcal{Y}, \mathfrak{P}(y) = \{v_1^y, \dots, v_{k_y}^y; v_1^y = \pi(y) \land \forall l \in \{1, \dots, k_y - 1\}, v_{l+1}^y = \pi(v_l^y) \land \pi(v_{k_y}^y) = \bot \}$

hierarchy of classes $\mathcal{H} = (V, E)$ is defined in the form of a rooted tree, with a root \perp and a parent relationship π

□ Nodes at the leaf level, Y = {y ∈ V : ∄v ∈ V, (y, v) ∈ E} ⊂ V, constitute the set of target classes

∀v ∈ V \ {⊥}, we define the set of its sisters
𝔅(v) = {v' ∈ V \ {⊥}; v ≠ v' ∧ π(v) = π(v')} and its daughters
𝔅(v) = {v' ∈ V \ {⊥}; π(v') = v}
∀y ∈ 𝔅, 𝔅(y) = {v₁^y,...,v_{ky}^y; v₁^y = π(y) ∧ ∀l ∈ {1,...,k_y − 1}, v_{l+1}^y = π(v_l^y) ∧ π(v_k^y) =⊥}

hierarchy of classes $\mathcal{H} = (V, E)$ is defined in the form of a rooted tree, with a root \perp and a parent relationship π

Nodes at the leaf level, 𝔅 = {𝗴 ∈ 𝒱 : ∄𝗴 ∈ 𝒱, (𝑌, 𝑌) ∈ 𝑍} ⊂ 𝒱, constitute the set of target classes

□ $\forall v \in V \setminus \{\bot\}$, we define the set of its sisters $\mathfrak{S}(v) = \{v' \in V \setminus \{\bot\}; v \neq v' \land \pi(v) = \pi(v')\}$ and its daughters $\mathfrak{D}(v) = \{v' \in V \setminus \{\bot\}; \pi(v') = v\}$ □ $\forall y \in \mathcal{Y}, \mathfrak{P}(y) = \{v_1^{\vee}, \dots, v_{k_y}^{\vee}; v_1^{\vee} = \pi(y) \land \forall l \in \{1, \dots, k_y - 1\}, v_{l+1}^{\vee} = \pi(v_l^{\vee}) \land \pi(v_k^{\vee}) = \bot\}$

□ hierarchy of classes $\mathcal{H} = (V, E)$ is defined in the form of a rooted tree, with a root \bot and a parent relationship π

■ Nodes at the leaf level, $\mathcal{Y} = \{y \in V : \nexists v \in V, (y, v) \in E\} \subset V$, constitute the set of target classes

 $\forall v \in V \setminus \{\bot\}, \text{ we define the set of its sisters}$ $\mathfrak{S}(v) = \{v' \in V \setminus \{\bot\}; v \neq v' \land \pi(v) = \pi(v')\} \text{ and its daughters}$ $\mathfrak{D}(v) = \{v' \in V \setminus \{\bot\}; \pi(v') = v\}$

 $\forall y \in \mathcal{Y}, \mathfrak{P}(y) = \{v_1^y, \dots, v_{k_y}^y; v_1^y = \pi(y) \land \forall l \in \{1, \dots, k_y - 1\}, v_{l+1}^y = \pi(v_l^y) \land \pi(v_{k_y}^y) = \bot \}$

We consider a top-down hierarchical classification strategy ;

- \Box Let $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PDS kernel and let $\Phi: \mathcal{X} \to \mathbb{H}$ be the associated feature mapping function, we suppose that there exists R > 0 such that $K(\mathbf{x}, \mathbf{x}) \leq R^2$ for all $\mathbf{x} \in \mathcal{X}$;
- □ We consider the class of functions $f \in \mathcal{F}_B = \{f : (\mathbf{x}, v) \in \mathcal{F}_B \}$ $\mathcal{X} \times V \mapsto \langle \Phi(\mathbf{x}), \mathbf{w}_{v} \rangle \mid \mathbf{W} = (w_{1} \dots, w_{|V|}), ||\mathbf{W}||_{\mathbb{H}} \leq B \};$

$$\min_{v \in \mathfrak{P}(y)} \left(f(\mathbf{x}, v) - \max_{v' \in \mathfrak{S}(v)} f(\mathbf{x}, v') \right) \le 0$$

C

□ An exemple (\mathbf{x}, y) is misclassified iff by $f \in \mathcal{F}_B$

$$\min_{v\in\mathfrak{P}(y)}\left(f(\mathbf{x},v)-\max_{v'\in\mathfrak{S}(v)}f(\mathbf{x},v')\right)\leq 0$$

□ An exemple (\mathbf{x}, y) is misclassified iff by $f \in \mathcal{F}_B$

$$\min_{v \in \mathfrak{P}(y)} \underbrace{\left(f(\mathbf{x}, v) - \max_{v' \in \mathfrak{S}(v)} f(\mathbf{x}, v')\right)}_{\text{unitial second s$$

multi-class margin

□ Top-Down hierarchical techniques suffer from error propagation, but imbalancement harms less as it does for flat approaches ⇒ a generalization bound to study these effects.

Theorem

Let $S = ((\mathbf{x}^{(i)}, y^{(i)}))_{i=1}^{m}$ an *i.i.d.* training set drawn according to a probability distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, and let \mathcal{A} be a Lipschitz function with constant L dominating the 0/1 loss; further let $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PDS kernel and let $\Phi: \mathcal{X} \to \mathbb{H}$ be the associated feature mapping function. Assume R > 0 such that $K(\mathbf{x}, \mathbf{x}) \leq R^2$ for all $\mathbf{x} \in \mathcal{X}$. Then, with probability at least $(1 - \delta)$ the following bound holds for all $f \in \mathcal{F}_B = \{f : (\mathbf{x}, \mathbf{v}) \in \mathcal{X} \times \mathbf{V} \mapsto \langle \Phi(\mathbf{x}), \mathbf{w}_{\mathbf{v}} \rangle \mid \mathbf{W} = (w_1 \dots, w_{|\mathbf{v}|}), ||\mathbf{W}||_{\mathbb{H}} \leq B\}$

$$\mathcal{E}(g_f) \leq \frac{1}{m} \sum_{i=1}^m \mathcal{A}(g_f(\mathbf{x}^{(i)}, y^{(i)})) + \frac{8BRL}{\sqrt{m}} \sum_{v \in V \setminus \mathcal{Y}} |\mathfrak{D}(v)| (|\mathfrak{D}(v)| - 1) + 3\sqrt{\frac{\ln(2/\delta)}{2m}}$$
(1)

where $\mathcal{G}_{\mathcal{F}_{\mathcal{B}}} = \{ g_f : (\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y} \mapsto \min_{v \in \mathfrak{V}(v)} (f(\mathbf{x}, v) - \max_{v' \in \mathfrak{S}(v)} f(\mathbf{x}, v')) \mid$ $f \in \mathcal{F}_B$ and $|\mathfrak{D}(v)|$ denotes the number of daughters of node v.

Extension of an existing result for flat multi-class classification

Theorem (Guermeur, 2007)

Let $S = ((\mathbf{x}^{(i)}, \mathbf{y}^{(i)}))_{i=1}^{m}$ an *i.i.d.* training set drawn according to a probability distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, and let \mathcal{A} be a Lipschitz function with constant L dominating the 0/1 loss; further let $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PDS kernel and let $\Phi: \mathcal{X} \to \mathbb{H}$ be the associated feature mapping function. Assume R > 0 such that $K(\mathbf{x}, \mathbf{x}) \leq R^2$ for all $\mathbf{x} \in \mathcal{X}$. Then, with probability at least $(1 - \delta)$ the following bound holds for all

 $f \in \mathcal{F}_B = \{f : (\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y} \mapsto \langle \Phi(\mathbf{x}), \mathbf{w}_y \rangle \mid \mathbf{W} = (w_1 \dots, w_{|\mathcal{Y}|}), ||\mathbf{W}||_{\mathbb{H}} < B\}$

$$\mathcal{E}(g_f) \leq \frac{1}{m} \sum_{i=1}^{m} \mathcal{A}(g_f(\mathbf{x}^{(i)}, y^{(i)})) + \frac{8BRL}{\sqrt{m}} |\mathcal{Y}|(|\mathcal{Y}| - 1) + 3\sqrt{\frac{\ln(2/\delta)}{2m}}$$
 (2)

where

$$\mathcal{G}_{\mathcal{F}_B} = \{g_f : (\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y} \mapsto (f(\mathbf{x}, y) - \max_{y' \in \mathcal{Y} \setminus \{y\}} f(\mathbf{x}, y')) \mid f \in \mathcal{F}_B\}.$$

Trade-offs in Flat versus Top-down techniques

Empirical Error vs Error due to Complexity

- Empirical Error is higher in top-down method due to series of decisions to be made in cascade
- Complexity Term dominated by $|\mathfrak{D}(v)|(|\mathfrak{D}(v)|-1)$ is lower in top-down methods
- Degree of imbalance in training data
 - □ *Imbalanced data* (DMOZ) flat method suffers but top-down method can counter it better and also has lower error due to complexity term, and hence preferable
 - Balanced data (IPC with sample complexity bounds satisfied for most classes), flat method should be preferred
- Motivates Hierarchy Pruning to achieve the trade-off between error terms

Empirical study

Dataset	# Tr.	# Test	# Classes	# Feat.	CR	Error ratio
LSHTC2-1	25,310	6,441	1,789	145,859	0.008	1.24
LSHTC2-2	50,558	13,057	4,787	271,557	0.003	1.32
LSHTC2-3	38,725	10,102	3,956	145,354	0.004	2.65
LSHTC2-4	27,924	7,026	2,544	123,953	0.005	1.8
LSHTC2-5	68,367	17,561	7,212	192,259	0.002	2.12
IPC	46,324	28,926	451	1,123,497	0.02	12.27

- □ Complexity Ratio (CR) defined as $\sum_{v \in V \setminus \mathcal{V}} |\mathfrak{D}(v)| (|\mathfrak{D}(v)| - 1) / |\mathcal{Y}| (|\mathcal{Y}| - 1)$ is in favour of Top-down methods
- Empirical error ratio favours Flat approaches

Asymptotic Approximation Error Bounds

Relationship between the generalization error of a trained Multiclass Logistic Regression classifier and its asymptotic version.

Theorem

For a multi-class classification problem in d dimensional feature space with a training set of size m, $\{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{m}$, $\mathbf{x}^{(i)} \in \mathcal{X}$, $y^{(i)} \in \mathcal{Y}$, sampled i.i.d. from a probability distribution D, let h_m and h_∞ denote the multiclass logistic regression classifiers learned from a training set of finite size m and its asymptotic version respectively, and let $\mathcal{E}(h_m)$ and $\mathcal{E}(h_{\infty})$ be their generalization errors. Then, with probability at least $(1 - \delta)$ we have:

$$\mathcal{E}(h_m) \leq \mathcal{E}(h_\infty) + G_{\mathcal{Y}}\left(d\sqrt{\frac{R|\mathcal{Y}|\sigma_0}{\delta m}}\right)$$
 (3)

where \sqrt{R} is a bound on the function $\exp(\beta_0^y + \sum_{i=1}^d \beta_i^y x_i)$, $\forall \mathbf{x} \in \mathcal{X}$ and $\forall y \in \mathcal{Y}$, and σ_0 is a constant and $G_{\mathcal{Y}}(\tau)$ is a measure of confusion and increasing function of τ .

- □ The bounds (1) and (2) are not directly exploitable but indicate crucial (meta)features which control the generalization error
- □ We train a meta-classifier on a sub-hierarchy with meta-instances
- Meta-features include values of KL-divergence, category sizes, feature-set sizes etc. before and after pruning.
- □ For meta-classifier, applied AdaBoost with Random forest as base-classifier with different number of trees and depths

Experimental Setup

Datasets used : LSHTC2-1 and LSHTC2-2 used for training Meta-classifier

Dataset	# Tr.	# Test	# Classes	# Feat.	CR	Error ratio
LSHTC2-1	25,310 50 558	6,441 13.057	1,789 4 787	145,859 271 557	0.008	1.24
LSHTC2-3	38,725	10,102	3,956	145,354	0.004	2.65
LSHTC2-4 LSHTC2-5 IPC	27,924 68,367 46,324	7,020 17,561 28,926	2,544 7,212 451	123,955 192,259 1,123,497	0.005 0.002 0.02	2.12 12.27

Table : Datasets used, the complexity ratio of hierarchical over the flat case $(\sum_{v \in V \setminus \mathcal{V}} |\mathfrak{D}(v)| (|\mathfrak{D}(v)| - 1) / |\mathcal{Y}| (|\mathcal{Y}| - 1))$, the ratio of empirical error for hierarchical over flat models is shown in last two columns

Complexity Ratio is in favour of Top-down methods

Empirical error ratio favours Flat approaches

14/21	Challenges	Proposed approach	Hierarchy Pruning	Experiments	Conclusion a
J.		-	Error re	sults	

	LSHTC2-3			LSHTC2-4			IPC		
	MNB	MLR	SVM	MNB	MLR	SVM	MNB	MLR	SVM
FL	.729 ^{↓↓}	.528↓↓	.535	.848	.497	.501	.671	.546	.446
RN	.612 ^{↓↓}	.493 ^{↓↓}	.517 ^{↓↓}	.704 ^{↓↓}	.478 ^{↓↓}	.484 ^{↓↓}	.642 ^{↓↓}	.547↓	.458 ^{↓↓}
FH	.619 ^{↓↓}	.484↓↓	.498↓↓	.682↓	.473 ^{↓↓}	.476↓	.643 ^{↓↓}	.552↓	.465 ^{↓↓}
PR	.613	.480	.493	.677	.469	.472	.639	.544	.450

- Top-down method better than Flat approach on LSHTC datasets with a large fraction of *rare categories* but not on IPC dataset
- Pruning via meta-learning improves classification accuracy

Conclusion

- Generalization error bounds for multi-class hierarchical classifiers to theoretically explain the performance of flat and hierarchical methods
- Proposed a hierarchy pruning strategy for improvement in classification accuracy

Future Work

- □ Use the theoretical framework for building taxonomies
- Explore other frameworks for hierarchy pruning