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Abstract

We present α-expansion β-shrink moves, a
simple generalization of the widely-used αβ-
swap and α-expansion algorithms for approx-
imate energy minimization. We show that in
a certain sense, these moves dominate both
αβ-swap and α-expansion moves, but un-
like previous generalizations the new moves
require no additional assumptions and are
still solvable in polynomial-time. We show
promising experimental results with the new
moves, which we believe could be used in any
context where α-expansions are currently em-
ployed.

1 Introduction

We focus on the problem of finding the most probable
configuration in a pairwise Markov random field over
discrete variables, a fundamental problem in the study
of graphical models. This is equivalent to minimizing
the sum of a set of unary and pairwise energy func-
tions defined over a set of discrete variables. Problems
of this type arise in many applications, but in general
it is NP-hard to solve these problems even in the case
of binary variables (see Kolmogorov and Zabih, 2002,
Theorem 4.2). A classical method for computing an
approximate solution to this problem is Besag’s iter-
ated conditional mode (ICM) algorithm (Besag, 1986),
but due to the local nature of this method it may be-
come stuck in a poor local optimum.

In the special case where the variables are binary and
the pairwise energy functions satisfy a submodular-
ity condition, it is possible to solve this problem in
polynomial-time (Hammer, 1965; Greig et al., 1989;
Kolmogorov and Zabih, 2002). This has motivated the
αβ-swap and α-expansion moves proposed by Boykov
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et al. (1998, 1999), which we review in §2. These meth-
ods find an approximate solution to a non-binary prob-
lem satisfying a submodularity condition over pairs of
states (or triplets of states in the case of α-expansions)
by solving a sequence of binary submodular problems.
The experiments of Szeliski et al. (2008) show that
these algorithms perform well compared to competing
approximate minimization methods at minimizing the
energy functions arising from problems in computer
vision, such as stereo image matching, creating photo
montages, and image restoration. Further, this study
found that α-expansions are often faster than compet-
ing methods with similar performance for these prob-
lems (such as variational message-passing algorithms
like tree-reweighted belief propagation). While orig-
inally introduced in the context of computer vision,
these algorithms and their generalizations have also
proved to be effective in other domains, such as pro-
tein structure prediction (Gould et al., 2009).

In a sense that we formally define in §3, αβ-swaps
and α-expansions dominate the classic ICM algorithm.
However, although α-expansions often lead to better
experimental results than αβ-swaps (Szeliski et al.,
2008), under our definition of dominance neither of
these more advanced methods dominates the other. In
this paper we propose a new type of move, α-expansion
β-shrink moves (§4). These move are a simple gen-
eralization of both αβ-swap and α-expansions, that
dominates them both. Although we delay discussion of
other generalizations of these moves to the end (§6),
we note that unlike previous generalizations the new
moves require no additional assumptions beyond those
needed to apply α-expansions, and the moves can be
computed in polynomial-time by solving a binary sub-
modular problem defined on the original graph struc-
ture. Thus, we can use them in place of α-expansions
for applications where these moves are currently used.
Our experiments on standard test problems from the
field of computer vision (§5) show that the new moves
can lead to improved performance.



2 Approximate Energy Minimization

The problem that we formally address is

max
x∈{1,2,...,N}p

p(x) ∝
∏
i∈V

φi(xi)
∏

(i,j)∈A

φij(xi, xj),

where V and A are the vertices and arcs of a graph
(V,A), while the potentials φi(xi) and φij(xi, xj) map
assignments of subsets of the discrete vector x to non-
negative values. If we define the real-valued energy
functions

Ei(xi) = − log φi(xi), Eij = − log φij(xi, xj),

then finding the optimal assignment is equivalent to
the following energy minimization problem:

min
x∈{1,2,...,N}p

∑
i∈V

Ei(xi) +
∑

(i,j)∈A

Eij(xi, xj), (1)

In general, solving this optimization problem is NP-
hard (see Kolmogorov and Zabih, 2002, Theorem 4.2),
and a common approach to finding an approximate
minimizer is with an iterative descent algorithm. The
input to each iteration of these algorithms is a par-
ticular configuration of the variables x, and at each
iteration an iterative descent method finds a configu-
ration that minimizes the energy among a setM(x) of
possible ‘moves’, i.e. the next iteration is an element
of

argmin
y∈M(x)

∑
i∈V

Ei(yi) +
∑

(i,j)∈A

Eij(yi, yj). (2)

We have two conflicting desiderata on the set of moves
M(xk): we would like this set to be as large as pos-
sible, but we would like to able to efficiently find the
optimal move.

2.1 Iterated Conditional Mode

In the classic ICM algorithm (Besag, 1986), a node j
is selected and we replace xj with a value that maxi-
mizes the conditional probability p(xj |x−j), where x−j
are the states of all variables except j. In the frame-
work of energy minimization, this can be viewed as an
iterative descent method where the elements y of the
set of possible moves have the form

yi ←

{
γ ∈ {1, 2, . . . , N} if i = j,
xi otherwise.

That is, the current state of node j can be replaced by
any other possible state, a form of coordinate descent.
We use MI

j (x) to denote the set of all y of this form.
With this definition of the move space, the iterative

descent update (2) for the ICM move given x and j
simplifies to

argmin
y∈MI

j (x)

Ej(yj |x−j), (3)

where we will find it convenient to define the condi-
tional energy of a variable i given a set of variables a
as

Ei(xi|xa) = Ei(xi)

+
∑

j|j∈a,(i,j)∈A

Eij(yi, xj)

+
∑

j|j∈a,(j,i)∈A

Eij(xj , yi).

(4)

While Ei(xi|x−i) ∝ − log p(xi|x−i), this is a slight
abuse of the conditioning notation since for other con-
ditioning sets a it ignores factors that depend on vari-
ables besides i and those in a. Clearly, we can ef-
ficiently compute the optimal ICM move by simply
testing each Ej(yj |x−j).

2.2 αβ-Swaps

We say that a pairwise energy function Eij defined
on binary variables is submodular if it satisfies the in-
equality1

Eij(1, 1) + Eij(2, 2) ≤ Eij(2, 1) + Eij(1, 2). (5)

This type of pairwise energy prefers the neighbour-
ing variables to take the same state. In the special
case of binary variables where all pairwise energies are
submodular, the optimal solution to (1) can be com-
puted in polynomial-time as a minimum-cut problem,
see (Kolmogorov and Zabih, 2002).2

In some non-binary problems we have, for all combi-
nations of states α and β, that the pairwise energies
Eij satisfy

Eij(α, α) + Eij(β, β) ≤ Eij(β, α) + Eij(α, β). (6)

That is, when restricted to any two states α and β,
the energy function is submodular. Though we can
no longer guarantee that we can find the optimal solu-
tion in polynomial-time given only this restriction, it

1Submodularity is normally defined as a property of
functions on sets, and its use here is because it is
equivalent to submodularity of a function that takes the
set of variables labeled 2 and returns the corresponding
Eij(Kolmogorov and Zabih, 2002, §7).

2There also exist several other notable cases where
it possible to compute the solution in polynomial-time,
such as the case where the pairwise energies are con-
vex (Ishikawa, 2003), or in the case of general energies
where the graph structure has low treewidth (Koller and
Friedman, 2009, §13) or is outer-planar (Schraudolph and
Kamenetsky, 2009). However, these are not our focus and
a full discussion of this extensive literature is outside the
scope of the current work.



does allow us to take advantage of the ability to effi-
ciently solve binary submodular problems in order to
implement a more powerful descent move.

In particular, given two states α and β, the set of
moves MS

αβ(x) associated with the αβ-swap move in-
troduced by Boykov et al. (1998) are of the form:

yi ←

{
α or β if xi = α or xi = β,
xi otherwise.

That is, the move can simultaneously change any com-
bination of nodes labeled α to β, and any combination
of nodes labeled β to α. In this case, the iterative
descent update is a solution of the problem

argmin
y∈MS

αβ(x)

∑
i∈V|xi∈{α,β}

Ei(yi|x−αβ)

+
∑

(i,j)∈A|xi,xj∈{α,β}

Eij(yi, yj),

where we again make use of our definition of the con-
ditional energy (4) and where we have used x−αβ to
reference the states of the variables not labeled α or β.
This is a binary problem over the subgraph induced by
the nodes labeled α or β, and under condition (6) this
update can be computed in polynomial-time because
all edges in the induced subgraph are submodular.

2.3 α-Expansions

A closely-related set of moves later proposed
by Boykov et al. (1999) are α-expansions. Here, we
choose a state α and we can use α to replace the cur-
rent state of any variable. Thus, this set of moves
ME

α (x) is of the form

yi ←

{
α if xi = α,
α or xi otherwise.

We can write the optimal α-expansion as the solution
to the problem

argmin
y∈ME

α (x)

∑
i∈V|xi 6=α

Ei(yi|xα)

+
∑

(i,j)∈A|xi 6=α,xj 6=α

Eij(yi, yj),

where we use xα to reference variables labeled α. This
is again a binary problem, this time on the subgraph
induced by those nodes not labeled α. However, con-
dition (6) is no longer sufficient to guarantee that the
edges in the induced subgraph are submodular since
each pairwise term involves the three states α, xi, and
xj (which may all be different). Nevertheless, it is
sufficient to ensure that

Eij(α, α) + Eij(γ1, γ2) ≤ Eij(γ1, α) + Eij(α, γ2), (7)

for all combinations of states α, γ1, and γ2. This is a
stronger condition than (6), which corresponds to the
special case where γ1 = γ2. If Eij(α, α) = 0 for all α,
this is the triangle inequality.

3 Local Dominance of Iterative
Algorithms

Some authors analyze the approximation accuracy of
local optima found by iterative descent methods such
as α-expansions (Veksler, 1999, §4.3.4), but the guar-
antees on the approximation accuracy tend to be very
conservative since these global bounds must hold over
all possible optima. Further, they often do not provide
guidance in choosing between iterative descent meth-
ods. For example, a small modification to the analy-
sis of (see Veksler, 1999, §4.3.4) gives us an identical
global bound for the ICM algorithm.

Instead of focusing on such a global analysis, we in-
stead focus on a simple local analysis of the methods.
Specifically, we are interested in the improvement in
the objective function that can be obtained in a single
iteration with different types of moves, given the same
input to the iteration. From this viewpoint, we say
that a move setMA(x) dominates a move setMB(x)
if:

1. For any energy function E(x) and any input con-
figuration x, optimizing over MA(x) never gives
a higher energy than optimizing over MB(x):

∀E,x, min
y∈MA(x)

E(x) ≤ min
y∈MB(x)

E(x). (8)

2. There exists energy functions E(x) and input
configurations x where optimizing over MA(x)
gives a strictly lower energy than optimizing over
MB(x):

∃E,x, min
y∈MA(x)

E(x) < min
y∈MB(x)

E(x). (9)

This is an intuitive notion of the relative local improve-
ment that is made by different moves, but it can also
be used as a measure of the relative ‘strengths’ of local
optima found by different types of moves; if the move
set MA(x) dominates the move set MB(x), then no
move in the set MB(x) will ever be able to improve
on a local minimum with respect to move set MA(x),
but the optimal move in move setMA(x) may be able
to escape from a local minima with respect to move
set MB(x).

To establish dominance relations between various
search moves, it will be convenient to define versions
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Figure 1: From left to right: Initial labeling, labeling after αβ-swap, labeling after α-expansion, labeling after
α-expansion β-shrink. The optimal labeling of the α pixels is outlined by a white triangle, and is achieved from
the initial labeling by one α-expansion β-shrink move.

of the moves that do not depend on any parameters
except x. Thus, we make the following definitions:

MI(x) = ∪jMI
j (x),

MS(x) = ∪α,βMS
αβ(x),

ME(x) = ∪αME
α (x).

That is, these expanded move spaces simply search
over all possible values of the parameter(s). Under
these definitions, it is straightforward to establish the
following relationships between the methods:

Proposition 1. The αβ-swap move set MS(x) dom-
inates the ICM move set MI(x). The α-expansion
move setME(x) dominates the ICM move setMI(x).

Proof. Assume an arbitrary energy function E and
configuration x, and let y be the optimal move in
MI(x), which must be an element of MI

j (x) for some
j. Then the optimal ICM move is in MS

αβ(x) with
α = xj and β = yj , which establishes (8). To estab-
lish (9), it is sufficient to construct an energy function
E along with a configuration x where the optimal so-
lution involves changing two elements of x. For ex-
ample, take a two variable problem with x = (1, 1)
where the optimal solution is (2, 2). Establishing that
α-expansions dominate ICM can be done similarly.

Proposition 2. The α-expansion move set ME(x)
does not dominate the αβ-swap move setMS(x). The
αβ-swap move set MS(x) does not dominate the α-
expansion move set ME(x).

Proof. To establish that α-expansions do not domi-
nate αβ-swaps, it is sufficient to construct an energy
function E and configuration x where the optimal so-
lution is obtained by a single αβ-swap but can not be
obtained by a single α-expansion. For example, take
a two-variable problem with x = (1, 2) where the op-
timal solution is (2, 1). We can similarly show that
αβ-swaps do not dominate α-expansions by taking a
three variable problem with x = (1, 2, 3) where the
optimal solution is (1, 1, 1).

Thus, based on the definition of dominance discussed
in this section, we should prefer both αβ-swaps and α-
expansions to ICM. However, local dominance does not
guide us in selecting between these two more advanced
methods.

4 α-Expansion β-Shrink Moves

Towards the goal of developing a method that dom-
inates both these methods, consider a generalization
of both αβ-swaps and α-expansions where the set of
moves MG

αβ(x) are of the form:

yi ←

{
α or β if xi = α

α or xi otherwise

That is, we allow any node not currently labeled α to
take the value α, but in addition we allow the nodes
currently labeled α to take the value β (α expands
everywhere, but is shrunk by β). We call these α-
expansion β-shrink moves, and Figure 2.3 illustrates
an instance of the move.

Under the definition of the previous section, we have
the following result for an analogously definedMG(x):

Proposition 3. The α-expansion β-shrink move set
MG(x) dominates the αβ-swap move setMS(x). The
α-expansion β-shrink move set MG(x) dominates the
α-expansion move set ME(x).

Proof. To establish (8), we note that MG(x) includes
all αβ-swaps and α-expansions as special cases. Fur-
ther, it also includes moves that are not instances of
either of these moves (i.e. cases where α expands into
more than one state, but β shrinks into α). Thus, to
establish (9) we can simply take a three variable prob-
lem with x = (1, 2, 3) where the optimal solution is
(2, 1, 1).

Note that the argument above can also be used to show
that the new move setMG(x) also dominates the move
setMS ∪ME , the union of αβ-swap and α-expansion
moves.



We can write the optimal α-expansion β-shrink move
as a solution to the problem

argmin
y∈MG

αβ(x)

∑
i∈V

Ei(yi) +
∑

(i,j)∈A

Eij(yi, yj), (10)

Note that unlike the previous move sets we have dis-
cussed where the move is computed by solving a prob-
lem involving conditional energies over an induced sub-
graph, this move involves solving a problem with the
original unary energies on the original graph struc-
ture. In some scenarios, these properties might make
the generalized move simpler to implement than αβ-
swaps or α-expansions. Further, if the original graph
has a special structure, it allows the use of special-
ized codes for solving binary minimum-cut problems
with this structure. For example, Delong and Boykov
(2008) propose a method for the special case of prob-
lems with very large grid structures. The simple form
of the subproblem may also simplify the implementa-
tion of dynamic graph cuts (Kohli and Torr, 2007),
where the similarity between subproblems when using
the same value of α (and β) is used to substantially
speed up the computation.

There are many possible moves we could define that
would dominate one or more of the methods discussed
in §2, and we return to this topic in §6. However, an
appealing property of α-expansion β-shrink moves is
the following:

Proposition 4. If for each edge Eij condition (7)
holds for all γ1 and γ2, then all edge energies Eij in
problem (10) are submodular.

Proof. It is sufficient to show this for an arbitrary Eij
and any possible assignment to xi and xj . If xi 6= α
and xj 6= α, then we require Eij(α, α) + Eij(xi, xj) ≤
Eij(xi, α) + Eij(α, xj) as with α-expansion moves,
which is (7) with γ1 = xi and γ2 = xj . If xi = α
and xj = α, then we require Eij(α, α) + Eij(β, β) ≤
Eij(β, α) + Eij(α, β) as with αβ-swap moves, which
is (7) with γ1 = β and γ2 = β. If xi = α and
xj 6= α, then we require Eij(α, α) + Eij(β, xj) ≤
Eij(β, α) + Eij(α, xj), which is (7) with γ1 = β and
γ2 = xj . The remaining possibility is similar.

This implies that an optimal α-expansion β-shrink
move can be computed by solving a minimum-cut
problem, using (for example) the construction of Kol-
mogorov and Zabih (2002). Thus, an optimal α-
expansion β-shrink move can be computed in poly-
nomial time under the same condition required to
use α-expansions. Further, computing an optimal
α-expansion move and computing an optimal α-
expansion β-shrink move have the same worst-case
time-complexity. This would indicate that the new

moves could be used in place of α-expansions in any of
the many applications where these moves are currently
used.

4.1 Problems with Many States

In the computer vision problems that originally mo-
tivated the moves based on minimum-cuts, the num-
ber of states N may be non-trivial, since the states
may represent a discretization of a continuous value.
For example, Szeliski et al. (2008) evaluate the perfor-
mance of these moves on problems with 256 states,
each state representing an intensity level in an im-
age. Thus, in addition to their better empirical perfor-
mance, α-expansions may be preferred over αβ-swaps
simply because the number of possible values of α is N ,
while the number of (non-exchangeable) combinations
of α and β is N(N − 1)/2.

This quadratic scaling in terms of N would also seem
to be a problem for α-expansion β-shrink moves. How-
ever, if we consider any strategy for choosing a value
of β given α, then we still obtain an algorithm that
dominates α-expansions (assuming we do not always
choose α = β, corresponding to the special case of α-
expansions). Thus, the new moves can be modified to
have the same scaling with N as α-expansions. That
is, if N is very large we can consider variants where
β is function of α so that we only consider N moves
instead of N2, and these variants would still dominate
α-expansions. We empirically evaluate three possible
strategies for selecting β given α in §5.

4.2 Truncation for Non-Submodular
Potentials

In many problems condition (7) is not satisfied. In
these cases, a widely-used approach is to modify the
potentials to be submodular, in such a way that an op-
timal move with the modified energy is guaranteed to
not increase the original energy (Rother et al., 2005).
In the case of α-expansions, one way to construct such
a modified energy is by replacing each Eij(xi, xj) with

Ēij(xi, xj) = min{Eij(xi, xj),
Eij(α, xj) + Eij(xi, α)− Eij(α, α)}.

Condition (7) holds with this modified energy by con-
struction. Further, the optimal α-expansion with this
modified energy does not increase the original energy,
since the modified energy simply decreases the en-
ergy of the current assignment (xi, xj). As discussed
in (Rother et al., 2005), we can alternately increase
Eij(xi, α) or Eij(α, xj) to make condition (7) satisfied
while maintaining the descent property of the moves.

We can define a modified energy function with sim-
ilar properties in the case of α-expansion β-shrink



moves, though maintaining the descent property re-
quires a slightly more complicated construction. Al-
though there are many possible constructions, we de-
scribe one here. If xi 6= α and xj 6= α, then as before
we take:

Ēij(xi, xj) = min{Eij(xi, xj),
Eij(α, xj) + Eij(xi, α)− Eij(α, α)}.

If xi = α and xj = α, then we take:

Ēij(α, α) = min{Eij(α, α),
Eij(α, β) + Eij(β, α)− Eij(β, β)}.

If xi 6= α and xj = α, then we take:

Ēij(α, β) = max{Eij(α, β),
Eij(α, α) + Eij(xi, β)− Eij(xi, α)}.

Finally, if xi = α with xj 6= α we take:

Ēij(β, α) = max{Eij(β, α),
Eij(α, α) + Eij(β, xj)− Eij(α, xj)}.

The other terms in the energy function are unchanged.
If (7) is already satisfied, then the modified energy
under this construction is identical to the original en-
ergy. This construction maintains the appealing prop-
erty that any move that does not increase the modified
energy will not increase the original energy.

5 Experiments

To empirically evaluate the performance of the new
moves, we performed several experiments on the non-
binary data sets examined by Szeliski et al. (2008).
These data sets are summarized in Table 1, and we
extracted the terms in the energy functions from the
code available online.3

Our experiments compared the following methods:

• αβ-Swap: performing αβ-swap moves in the order
β = 1, 2, . . . , N in an outer loop and α = β+1, β+
2, . . . , N in an inner loop.

• α-Expansion: performing α-expansion moves in
the order α = 1, 2, . . . , N .

• Random β: performing α-expansion β-shrink
moves in the order α = 1, 2, . . . , N with β selected
randomly among {1, 2, . . . , N}.

• β = α − 1: performing α-expansion β-shrink
moves in the order α = 1, 2, . . . , N with β set
to max{1, α− 1}.

3http://vision.middlebury.edu/MRF/

Table 1: Data sets from Szeliski et al. (2008) used in
the experiments.

Name Task Nodes Edges States
Family Montage 425632 849946 5
Pano Montage 514080 1026609 7
Tsukuba Stereo 110592 220512 16
Venus Stereo 166222 331627 20
Teddy Stereo 168750 336675 60
Penguin Restoration 21838 43375 256
House Restoration 65536 130560 256

• β = α + 1: performing α-expansion β-shrink
moves in the order α = 1, 2, . . . , N with β set
to min{N,α+ 1}.

• All β: performing α-expansion β-shrink moves in
the order β = 1, 2, . . . , N in an outer loop and
α = 1, 2, . . . , N in an inner loop.

Note that the iterations of the first and last method
are much more expensive for large N because they
consider O(N2) combinations of α and β, while the
remaining methods only consider N moves.

In our first experiment, we initialized all variables to
the first state and ran each method until the energy did
not change between iterations. We used the truncation
described in §4.2 for problems that did not satisfy (7)
for all triplets of states. In Table 2, we show the energy
of the local minima obtained divided by the energy of
the local minimum with respect to α-expansion moves.
In this table, a value of 1 indicates that the energy
was identical to the energy obtained by α-expansion
moves, and we use 1.0000 if the energy is close but
not identical. In this experiment, the new moves with
all β obtained the lowest energy on 6 of the 7 data
sets, and strictly so in 4 of these cases (the exceptions
were Teddy where using a random β lead to a lower
score, and the montage data sets where other meth-
ods reached the same energy). Among the remaining
methods, the more computationally efficient strategy
of simply setting β = α+1 obtained the lowest energy
on 5 of the 7 data sets.

In our second experiment we used the local minimum
with respect to α-expansion moves as the initialization,
and tested whether the methods that only consider N
moves could escape from this local minimum. Table 3
shows the energies of the local optima obtained with
this initialization. Here, we see that even with these
simple choices of β that the new moves are able to es-
cape the local minimum with respect to α-expansions
for 5 out of the 7 data sets. In this experiment choos-
ing β = α+ 1 gave the lowest energy on all data sets,
and gave a strictly lower energy on 4 of the 7. Select-
ing β = α + 1 is somewhat intuitive, the moves can



Table 2: Energy of local minima with respect to iterative descent methods beginning from all variables set to
state 1, divided by the energy of the local minima with respect to α-expansion moves.

Name αβ-Swap α-Expansion Random β β = α− 1 β = α+ 1 All β
Family 1.0203 1 0.9998 1 0.9998 0.9998
Pano 1.3182 1 1.0006 1 1 1
Tsukuba 1.0315 1 1.0012 1 1.0000 1.0000
Venus 1.8561 1 1.0015 0.9992 0.9979 0.9968
Teddy 1.0037 1 0.9998 1 1.0007 0.9999
Penguin 1.1283 1 1.0037 0.9936 0.9793 0.9758
House 0.7065 1 0.7841 0.9973 0.7038 0.7032

Table 3: Relative energy of local minima for different
choices of β when initializing with a local minima with
respect to α-expansions.

Name Random β β = α− 1 β = α+ 1
Family 0.9998 1 0.9998
Pano 1 1 1
Tsukuba 1 1 1
Venus 1.0000 0.9992 0.9979
Teddy 1 1 0.9999
Penguin 0.9998 0.9902 0.9775
House 0.8050 0.9971 0.7038

be viewed as ‘prematurely’ expanding the next value
of α into the region occupied by the current value of
α. Although an improved configuration was found on
at least one data set for each of the three tasks, the
largest improvements were seen in the image restora-
tion/inpainting tasks. This is likely due to the 256
possible labels, which is much larger than the other
tasks. In Figure 5, we show the restoration of the
house data where the largest improvement was ob-
served. In this figure we see a noticeable difference
between the local minima with respect to the different
moves. This visual difference is also reflected quanti-
tatively; the new moves lead to a reconstruction er-
ror (`1-norm distance to the original image) that is
approximately two-thirds that of the local minimum
with respect to α-expansions (reduced from 1303537
to 911207).

6 Discussion

There have been a variety of other generalizations of
αβ-swaps and α-expansions proposed in the litera-
ture, and an exhaustive list of this literature would
be outside our scope. However, among the gener-
alizations we are aware of these other moves either
(i) require additional assumptions, or (ii) can not
be solved in polynomial-time. For example, range-
swap and range-expansion moves generalize αβ-swaps
and α-expansions (respectively), but these can not be

computed in polynomial-time without further assump-
tions (Veksler, 2007; Gould et al., 2009; Kumar et al.,
2011). Kolmogorov and Rother (2007) consider imple-
menting minimum-cut methods wihout restrictions on
the energy functions, but in general their algorithm
can not compute the optimal move. Lempitsky et al.
(2010) consider a general class of moves called fusion
moves. These moves consider two full configurations
of the variables x and z, and the set of moves are of
the form

yi ←
{
xi or zi.

That is, we can replace an arbitrary number of ele-
ments of x by the corresponding elements from some
alternative configuration z. The α-expansion β-shrink
moves proposed here are a special case of this type of
move, where zi is set to β if xi = α and zi is set to
α otherwise. However, while Proposition 4 shows that
this special case is solvable in polynomial-time under
condition (7), Lempitsky et al. (2010) do not give re-
strictions that would allow an optimal general fusion
move to be solved in polynomial time. Indeed, because
of the generality of fusion moves, any such restriction
would need to be much more restrictive than (7).

Although in this paper we have focused on the case of
minimizing unary and pairwise energies, it is possible
to apply αβ-swaps and α-expansions to certain classes
of higher-order energies (Kohli et al., 2007). We ex-
pect that the new moves discussed in this paper can
also be extended to these scenarios, and indeed we be-
lieve that the new moves could be used in place of
α-expansions in any of the many applications where
these moves are currently used. Finally, we note that
the implementation of the new moves will be made
available online.
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