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Abstract

With the rapid growth of camera-based mobile devices, applications that answer questions such as,

“What does this sign say?" are becoming increasingly popular. This is related to the problem of optical

character recognition (OCR) where the task is to recognize text occurring in images. The OCR problem

has a long history in the computer vision community. However, the success of OCR systems is largely

restricted to text from scanned documents. Scene text, such as text occurring in images captured with a

mobile device, exhibits a large variability in appearance. Recognizing scene text has been challenging,

even for the state-of-the-art OCR methods. Many scene understanding methods recognize objects and

regions like roads, trees, sky in the image successfully, but tend to ignore the text on the sign board.

Towards filling this gap, we devise robust techniques for scene text recognition and retrieval in this

thesis.

This thesis presents three approaches to address scene text recognition problems. First, we propose

a robust text segmentation (binarization) technique, and use it to improve the recognition performance.

We pose the binarization problem as a pixel labeling problem and define a corresponding novel energy

function which is minimized to obtain a binary segmentation image. This method makes it possible

to use standard OCR systems for recognizing scene text. Second, we present an energy minimization

framework that exploits both bottom-up and top-down cues for recognizing words extracted from street

images. The bottom-up cues are derived from detections of individual text characters in an image.

We build a conditional random field model on these detections to jointly model the strength of the

detections and the interactions between them. These interactions are top-down cues obtained from a

lexicon-based prior, i.e., language statistics. The optimal word represented by the text image is obtained

by minimizing the energy function corresponding to the random field model. The proposed method

significantly improves the scene text recognition performance. Thirdly, we present a holistic word

recognition framework, which leverages scene text image and synthetic images generated from lexicon

words. We then recognize the text in an image by matching the scene and synthetic image features
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with our novel weighted dynamic time warping approach. This approach does not require any language

statistics or language specific character-level annotations.

Finally, we address the problem of image retrieval using textual cues, and demonstrate large-scale

text-to-image retrieval. Given the recent developments in understanding text in images, an appealing

approach to address this problem is to localize and recognize the text, and then query the database, as in

a text retrieval problem. We show that this approach, despite being based on state-of-the art methods, is

insufficient, and propose an approach without relaying on an exact localization and recognition pipeline.

We take a query-driven search approach, where we find approximate locations of characters in the text

query, and then impose spatial constraints to generate a ranked list of images in the database.

We evaluate our proposed methods extensively on a number of scene text benchmark datasets,

namely, street view text, ICDAR 2003, 2011 and 2013, and a new dataset IIIT 5K-word, we intro-

duced, and show better performance than all the comparable methods. The retrieval performance is

evaluated on public scene text datasets as well as three large datasets, namely, IIIT scene text retrieval,

Sports-10K and TV series-1M, we introduced.
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Chapter 1

Introduction

According to a study, one trillion photos were captured in the year 20151, and this number is going to

keep increasing! In the context of such large data collections that continue to grow, there are many chal-

lenging problems like recognizing and retrieving relevant content. Text in the scene images or videos

can play a crucial role in understanding images. Given the rapid growth of camera-based applications

readily available on mobile phones, understanding scene text is more important than ever, and applica-

tion that are able to answer questions such as, “What does this sign say?" are becoming increasingly

popular. This is related to the problem of optical character recognition (OCR), which has a long history

in the computer vision community. However, the success of OCR systems is largely restricted to text

from scanned documents. Scene text exhibits a large variability in appearance, and can prove to be chal-

lenging even for state of the art OCR methods. Many scene understanding methods recognize objects

and regions like roads, trees, sky in the image successfully, but tend to ignore the text on sign boards.

The goal of this thesis is to fill this gap in understanding the scene by devising robust techniques for

scene text recognition. Figure 1.1 explains the larger goal of this thesis.

1.1 Scene text understanding: problems, challenges and applications

Substantial research effort has been dedicated to scene text understanding in the last decade [22, 30,

36, 40, 44, 66, 111, 113, 116, 132, 164, 167, 169, 171]. In this section, we discuss the challenges in scene

text understanding and its applications, and finally provide a literature survey.

1
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(a) (b)

Figure 1.1 Images containing text can be categorized into two broad categories: (a) scanned docu-

ments, (b) scene image containing text. Contrary to problem of understanding scanned documents like

(a), the problem of reading text in scene images is surprisingly challenging. At the same time, it has

many potential applications. Consider a typical street scene image taken from Google street view shown

in (b). It contains a few very prominent sign boards (with text) on the building. Given this text, one

might infer that the photo is taken in an English-speaking country, and what this shop sells? This thesis

attempts to address the broad area of scene text understanding, and addresses the problem of recognition

and retrieval in this context

1.1.1 Challenges: scene text recognition 6= OCR

Recognition of scene text is closely related to the classical problem of optical character recognition

(OCR). For cleanly scanned English-language documents, OCR is no longer considered a problem.

Contrary to, printed scanned documents, recognizing scene text images taken in the wild has many

additional challenges, for example:

1. Identifying texts in natural scenes . In natural scenes, numerous objects, such as buildings,

bikes, cars or parts of them have similar shape and appearances to text. For example corner of a

building can easily be recognized as I or wheels of vehicle as O. This challenges the text detection

techniques to discriminate text from non-text.
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(a) (b)

Figure 1.2 Typical challenges in char-

acter detection. (a) A window containing

parts of two o’s is falsely detected as x, (b)

a window containing a part of the charac-

ter B is recognized as E.

2. Binarization. Traditional OCR engines first binarize word image and then segment characters us-

ing connected component information. Binarization of scene texts are seldom perfect and contain

noise.

3. Inter and intra-class confusion. Scene text also pose challenge to a typical sliding window

based object detector due to inter-class and intra-class confusion. Often, part of a character class

has a similar appearance to some other character. Similarly, part of two character classes look

similar to some other character. A couple of such examples are shown in Figure 1.2.

4. Image specific challenges. Often scene text have fancy/stylish fonts usually to attract the atten-

tion of viewers. Recognizing such unseen characters become challenging for a classifier, which

is trained on normal fonts. Since it is unlikely to assume that images are captured in frontal view,

there can be high variability in view points of the images. Unlike scanned documents where text

is largely horizontal, scene text can have any orientations. Further, scene text images often come

with the challenges like low contrast, low resolutions (especially, in digital-born images), blur.

Few example images from two public datasets: the SVT and IIIT-5K are shown in Figure 1.3 to

illustrate these challenges in the context of scene text recognition.

5. No well defined layout. Unlike scanned books or magazines which have a clean layout and

contain text predominately, text regions and amount of text in scene images vary from image to

image. It makes text region localization and word/line segmentation harder than typical OCR

document images.

6. Multilingual texts. Most of the Latin languages have few character classes, non-European lan-

guages such as Chinese, Japanese and Korean and most of the Indian languages have hundreds or

thousands of character classes with a lot of inter-class similarities. In multilingual environments,

OCR on scanned documents remains a research problem [53], while text recognition in street
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Figure 1.3 Challenges in scene text recognition. A few sample images from the SVT [164] and IIIT

5K-word [107] datasets are shown to highlight the variation in view point, orientation, non-uniform

background, non-standard font styles and also issues such as occlusion, noise, and inconsistent lighting.

Standard OCRs perform poorly on these datasets.

scene is much more difficult. The problem of recognition of multilingual scene text is beyond the

scope of this thesis. Nevertheless, few of the techniques proposed in this thesis can be applied for

multiple languages in the future.

7. Lack of language context. Scene texts often appear as a word or group of few words. Hence, ap-

plying larger contexts, such as, at the level of sentence or paragraph is many a times not possible.

1.1.2 Applications

There are many applications of scene text understanding in real life. Few of them are listed here.

1. Multimedia indexing and retrieval. Most of the available video and image search in the mod-

ern search engines are meta tag based. The search results look impressive only when there are

appropriate meta-tags and the images are tagged correctly. However, often meta-tags are noisy,

unavailable (consider images/video collected from personal photography), incomplete, or do not

describe everything in the image or video. Recognizing the text within the image or video can

play an important role in indexing and retrieval of multimedia data.

2. Cross-lingual access. Recognizing text in sign boards can be very useful for cross-lingual access.

Consider following situation: a north Indian tourist who does not know Telugu (a south Indian

language) is roaming in the Telangana state, where most of the sign boards are in Telugu. Recog-

nizing these sign boards, and then translating it to the native language of tourists can prove very

useful for them.
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3. Auto navigation. For successful auto navigation systems, or driver-less cars, understanding text

or sign boards can be very crucial.

4. Apps for visually impaired. Reading scene images in streets can be very useful for building apps

which can assist visually impaired people while in markets andor other public places. Consider

an app which can assist visually impaired people by reading grocery item names while shopping

at a grocery store. Such apps can only be built when we have satisfactory progress in reading text

in scene images.

5. Industrial automation. Recognizing text on packages, containers, houses, and maps has broad

applications related to industrial automation. For example, recognition of addresses on envelopes

is used in mail sorting systems. Automatic identification of container numbers improves logistics

efficiency. Recognition of house numbers and text in maps can immensely benefit automatic

geocoding systems.

1.1.3 Prior art

Scene text understanding can be approached by tackling smaller tasks such as, (i) scene character

recognition, (i) text localization, and (iii) cropped word recognition. They have been tackled either

individually [31,36,40], or jointly [66,113,164,167]. We review the prior art on scene text understanding

area in this section.

• Scene character recognition. Isolated character recognition is one of the oldest problems in

pattern recognition. In the context of scanned fonts and handwritten digits (e.g., MNIST [92])

this problem is considered as solved with error rates as low as 0.1% having been reported [99].

On the other hand, recognizing scene characters poses lots of challenges due to high variation

in fonts, illumination, perspective distortion and background noise. To recognize characters of

a single clean font, naive features such as principle component analysis (PCA) on raw feature

with simple linear classifiers are sufficient, but these features are not effective in the case of scene

characters.

One of the earliest works on large-scale natural scene character recognition was presented in [36].

This work develops a multiple kernel learning (MKL) approach using a set of shape-based fea-

tures. Recent works [108, 164] have improved over this with histogram of gradient (HOG) fea-

5



tures [35]. Variations of HOG features have also been explored for scene character classifica-

tion [109, 175]. In [176] author present a sparse representation of HOG feature for character

classification. This method is inspired by Ren and Ramanan’s recent work [130] on sparsifying

histogram of gradient features. It achieves better performance than naive HOG features. She-

shadri et al. [141] applied an exemplar SVM to recognize distorted characters in scene images.

Shi et al. [142] proposed a method using deformable part based models and sliding window clas-

sification to localize and recognize characters in scene images. In [171], a learned representation,

namely, strokelets was proposed for character recognition. A histogram of these strokelets along

with random forest classifier is used for character recognition. More recently, deep features [66]

have been shown to outperform other methods on scene character classification.

• Scene text localization. The major techniques to solve text localization problem can be grouped

into four categories: (i) texture based, (ii) component based, (iii) mid-level feature based, and

(iv) unsupervised feature learning based. In texture-based methods, the scene image is scanned at

different scales using sliding windows, and text and non-text regions are classified. Some of the

recent works like [54,164,165] fall in this category. Often histogram-of-gradient (HOG) features

along with SVM or random forest classifiers are used in such settings. The major drawback

with such methods are high computational complexity and low precision character detection. In

component based methods, low-level cues are used to discard majority of the background pixels,

and then from the rest of the pixels, potential character candidates are formed using a set of

heuristic properties. Further, stroke width, color consistency, aspect ratio and some other simple

features are used to prune the false positives. The popular methods in this category are stroke

width transform [40], class specific extremal regions [114] and segmentation based methods [60,

103]. In recent years mid-level feature based techniques have gained interest. In these methods,

structural characteristics of characters at multiple scale are captured. The prominent methods

in this category are: strokelets [171] and part based method [142]. The fourth category of text

localization methods are unsupervised feature learning based techniques [33, 66, 166]. These

techniques learn the text vs non text features and classifiers in an unsupervised manner. These

methods achieve a noticeable success. In this thesis, our focus is more on enhancing recognition

performance while relaying on existing text localization methods.
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• Cropped word recognition. The core components of a typical cropped word recognition frame-

work are: localize the characters, recognize them, and use statistical language models to compose

the characters into words. In the following, we review the prior art. The reader is encouraged to

refer to [173] for a more comprehensive survey of scene text recognition methods.

A popular technique for localizing characters in an OCR system is to binarize the image and

determine the potential character locations based on connected components [55]. Such techniques

have also been adapted for scene text recognition [111], although with limited success. This is

mainly because obtaining a clean binary output for scene text images is often challenging. An

alternative approach is proposed in [143] using gradient information to find potential character

locations. More recently, Yao et al. [171] proposed a mid-level feature based technique to localize

characters in scene text.

A study on human reading psychology shows that our reading improves significantly with prior

knowledge of the language [129]. Motivated by such studies, OCR systems have used, often in

post-processing steps [55, 158], statistical language models like n-grams to improve their perfor-

mance. Bigrams or trigrams have also been used in the context of scene text recognition as a

post-processing step, e.g., [18]. A few other works [38, 39, 155] integrate character recognition

and linguistic knowledge to deal with recognition errors. For example, [155] computes n-gram

probabilities from more than 100 million characters and uses a Viterbi algorithm to find the correct

word. The method in [38], developed in the same year as our CVPR 2012 work [108], builds a

graph on potential character locations and uses n-gram scores to constrain the inference algorithm

to predict the word.

The word recognition problem has been looked at in two contexts— with [50, 108, 132, 164, 166]

and without [107, 168, 169] the use of an image-specific lexicon. In the case of image-specific

lexicon-driven word recognition, also known as the closed vocabulary setting, a list of words is

available for every scene text image. The task of recognizing the word now reduces to that of

finding the best match from this list. This is relevant in many applications, e.g., recognizing text

in a grocery store, where a list of grocery items can serve as a lexicon. Wang et al. [166] adapted

a multi-layer neural network for this scenario. In [164], each word in the lexicon is matched to the

detected set of character windows, and the one with the highest score is reported as the predicted

word. In one of our work [50] (Chapter 5), we compared features computed on the entire scene
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text image and those generated from synthetic font renderings of lexicon words with a novel

weighted dynamic time warping (wDTW) approach to recognize words. In [132], Rodriguez-

Serrano and Perronnin proposed to embed word labels and word images into a common Euclidean

space, wherein the text recognition task is posed as a retrieval problem to find the closest word

label for a given word image. While all these approaches are interesting, their success is largely

restricted to the closed vocabulary settings and they cannot be easily extended to the more general

cases, for instance, when image-specific lexicon is unavailable. Weinman et al. [169] proposed a

method to address this issue, although with a strong assumption of known character boundaries,

which are not trivial to obtain with high precision on the datasets we use. The work in [168] gen-

eralizes their previous approach by relaxing the character-boundary requirement. It is, however,

evaluated only on “roughly fronto-parallel” images of signs, which are less challenging than the

scene text images used in our work. More recently, deep convolutional network based methods

gained attention for scene text understanding problems (see [22, 59, 64, 66, 166] for example).

These approaches are very effective in general. We compare these related contemporary methods

with our approach in this thesis.

1.2 Goals of this thesis

This thesis addresses the problem of scene text understanding, and advances this area. In this space,

we propose solutions for various associated sub-problems, and show ways of addressing scene text

recognition problem. The major goals of this thesis are two fold, (i) designing robust text recognition

framework. The state of the art OCR systems lack robustness and show poor performance on scene text

recognition. Our thesis aims to improve scene text recognition performance, (ii) once text is recognized,

the next immediate need is to retrieve the relevant images or video frames containing query text from a

large database. There are large and fast-growing collections of videos and images in personal life and

world wide web. Often these images and videos are textually rich, e.g., sports, news and educational

videos, images captured in street scenes. Retrieving images or video content based on textual cues

can prove very useful in obtaining relevant information. Despite advancements in text localization and

recognition, text-to-image retrieval is not trivial due to weak performance of end to end systems for

text localization and recognition. Additionally, the retrieval system should also able to deal with large
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number of distractors, e.g., images or frames which do not contain any text. One of the goals of this

thesis is to demonstrate scalable and robust text-to-image retrieval.

To achieve these two primary goals we propose: robust and principled solution to text binarization

(Chapter 3), improve scene character classification (Chapter 4), seamless integration of multiple cues

in higher order CRF framework for scene text recognition (Chapter 4), holistic representation of word

images and matching scheme for synthetic and scene word images (Chapter 5), query driven search

technique for text-to-image retrieval (Chapter 6).

Moreover, many of the available datasets for the scene text understanding problem are either very

small or not very challenging for real scenario. Hence, as a part of this thesis, we also introduce and

benchmark many scene text recognition and retrieval datasets.

1.3 Contributions of this thesis

1. Robust text segmentation. We propose a principled framework for text binarization using color

and stroke width cues. Use of color and stroke width cues in an optimization framework for text

binarization is a major novelty here. We evaluate the performance using various measures, such

as pixel-level accuracy, atom-level accuracy as well as recognition results, and compare it with the

state of the art methods [57, 73, 76, 105, 115, 118, 137, 170]. To our knowledge, text binarization

methods have not been evaluated in such a rigorous setting in the past. Our method generalizes

well to multi-script scene texts, video texts as well as historical handwritten documents. In fact,

our binarization improves the recognition results of an open source OCR [1] by more than 10%

on various public scene text benchmarks. On a benchmark dataset of handwritten images, our

method achieves comparable performance to the H-DIBCO 2012 competition winner and the

state of the art method [57], which is specifically tuned for handwritten images.

2. Integrating top-down and bottom-up cues for better recognition. We propose a joint CRF

framework with seamless integration of multiple cues—individual character detections and their

spatial arrangements, pairwise lexicon priors, and higher-order priors which can be optimized ef-

fectively. The proposed method performs significantly better than other related energy minimiza-

tion based methods for scene text recognition, and advances the scene text recognition area. Addi-

tionally, we analyzed the effectiveness of individual components of the framework, the influence

of parameter settings, and the use of convolutional neural network (CNN) based features [66].
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3. Holistic approach to recognition. We show that holistic word recognition for scene text images

is possible with high accuracy, and achieve a significant improvement over prior art. We also

present a novel word descriptor which is used efficiently to represent a wide variety of scene text

images. The proposed method does not use any language-specific information, and can be easily

adapted to any language. This can especially be useful for Indian language scene text recognition

and retrieval where there hasn’t been significant progress.

4. Scalable text-to-image retrieval on image/video dataset. We propose a query-driven approach

for text-to-image retrieval from a large database without relying on an exact localization-recognition

pipeline. We demonstrate our results on web-scale video and image datasets. The proposed

method achieves significant performance gain in mAP over recent methods [113, 164].

5. Datasets. Most of the publicly available datasets in this area such as, ICDAR 2003/2011/2013

contain only few hundred images. We have introduced IIIT-5K word dataset containing 5000

images. The dataset is not only five time bigger than other related dataset but also more chal-

lenging [107]. Moreover, we also introduce datasets for problems like text-to-image retrieval

and character localization and recognition. All our datasets are publicly available on our project

page [2], and have been widely used by the community around the globe [66, 132, 171, 173].

In short, this thesis presents principled solutions to an important computer vision problem.

1.4 Publications

Part of the work described in this thesis has previously been presented as the following publications.

The total number of citations for these publications is 383 [source: Google scholar, December 10,

2016].2

Journal:

1. Anand Mishra, Karteek Alahari, C. V. Jawahar, Enhancing Energy Minimization Framework

for Scene Text Recognition with Top-Down Cues, Computer Vision and Image Understanding,

volume 145, pages 30–42, 2016 (Received: 4 April 2015, Revised: 22 August 2015, Accepted: 4

January 2016, Available online: 21 January 2016)

2
https://goo.gl/MO2gTq
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Manuscript under review:

2. Anand Mishra, Karteek Alahari, C. V. Jawahar, Unsupervised Refinement of Color and Stroke

Features for Robust Text Binarization, International Journal on Document Analysis and Recogni-

tion (Submitted: 4 December 2015, Revised: 11 September 2016)

Conference:

3. Anand Mishra, Karteek Alahari, C. V. Jawahar, Image Retrieval using Textual Cues, ICCV 2013,

[Citations: 21].

4. Vibhor Goel, Anand Mishra, Karteek Alahari and C. V. Jawahar, Whole is Greater than Sum of

Parts: Recognizing Scene Text Words, ICDAR 2013, [Citations: 41].

5. Anand Mishra, Karteek Alahari, C. V. Jawahar, Scene Text Recognition using Higher Order

Language Priors, BMVC 2012 (Oral), [Citations: 71].

6. Anand Mishra, Karteek Alahari, C. V. Jawahar, Top-down and Bottom-up cues for Scene Text

Recognition, CVPR 2012, [Citations: 160].

7. Anand Mishra, Karteek Alahari, C. V. Jawahar, An MRF Model for Binarization of Natural Scene

Texts, ICDAR 2011 (Oral), [Citations: 76].

Other conference/workshop publications during PhD which are not part of this thesis are as follows:

8. Ashutosh Mishra, Shyam N. Rai, Anand Mishra and C. V. Jawahar, IIIT-CFW: A Benchmark

database of Cartoon Faces in the Wild,, ECCV Workshop 2016.

9. Swetha Sirnam, Anand Mishra, G. M. Hegde and C. V. Jawahar, Efficient Object Annotation for

Surveillance and Automotive Applications, WACV Workshop 2016.

10. Ajeet K. Singh, Anand Mishra, Pranav Dabaral and C. V. Jawahar, A Simple and Effective

Method for Script Identification in the Wild, DAS 2016.

11. Udit Roy, Anand Mishra, Karteek Alahari and C. V. Jawahar, Scene Text Recognition and Re-

trieval for Large Lexicons, ACCV 2014.
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12. Vijay Kumar, Amit Bansal, Gautom Hari Tulsiyan, Anand Mishra, Anoop Namboodari and C.V.

Jawahar, Sparse Document Image Coding for Restoration, ICDAR 2013.

13. Deepan Gupta*, Vaidehi Chhajer*, Anand Mishra and C.V. Jawahar, A Non-local MRF model

for Heritage Architectural Image Completion, ICVGIP 2012 (*: equal contribution).

14. Anand Mishra, Naveen T.S., Viresh Ranjan and C.V. Jawahar, Automatic Localization and Cor-

rection of Line Segmentation Errors, DAR 2012 (Oral).

15. Dheeraj Mundhra, Anand Mishra, C. V. Jawahar, Automatic Localization of Page Segmentation

Errors, J-MOCR-AND 2011 (Oral).

1.5 Thesis outline

In Chapter 2, we provide the necessary background for the thesis and briefly summarize the aspects

of energy minimization directly relevant to the work that follows.

In Chapter 3, we address the problem of word recognition by first binarizing the text and then using

an open source OCR. For this, we propose a robust binarization technique for scene text using color and

strokes cues. We show results on word images from the challenging ICDAR 2003, ICDAR 2011, street

view text, and compare our performance with previously published methods.

Chapter 4 focuses on the energy minimization framework for scene text recognition. Here, we pro-

pose a CRF model that exploits both bottom-up and top-down cues for recognizing cropped words

extracted from street images. We evaluate our proposed method on street view text, ICDAR 2003, 2011

and 2013 datasets, and IIIT 5K-word, and show better performance than comparable methods. In this

chapter, we also perform a rigorous analysis of all the steps in our approach and analyze the results.

In Chapter 5, we describe a holistic approach to word recognition. In this chapter, we also validate

our recognition methods for specific cases of scene text recognition such as text on curved surfaces.

Finally, we compare the effectiveness of three recognition methods proposed by us towards the end of

this chapter.

Chapter 6 presents a query-driven approach for text-to-image retrieval. The retrieval performance is

evaluated on public scene text datasets as well as three large datasets, namely, IIIT scene text retrieval,

Sports-10K and TV series-AM, we introduce.
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Finally, Chapter 7 provides the summary of our work, comparisons with the related contemporary

methods and the impact of this thesis. Here, we also discuss the future directions of our thesis.
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Chapter 2

Background

In this chapter, we first discuss the evaluation of scene text understanding techniques, and then pro-

vide background material relevant to this thesis. Many of the methods proposed in this thesis, especially

Chapter 3 and Chapter 4, are inspired by the success of energy minimization techniques in solving com-

puter vision tasks. We discuss the motivation behind energy minimization techniques, introduce the

labeling problem, define MRF, and devise MAP-MRF equivalence. Towards the end of this chapter, we

provide a background on concepts related to word image matching (Chapter 5) such as dynamic time

warping (DTW), and image retrieval (Chapter 6) such as indexing and re-ranking.

2.1 Evolution of scene text understanding

Research on scene text understanding has evolved significantly from the early days. We group the

evolution of scene text understanding here.

• Classical methods (till 2002). Early scene text understanding methods were natural extension

of techniques used for reading scanned documents [162]. The low level image features such

as edges, connected components, pixel color, basic preprocessing techniques such as Gaussian

filtering and image processing tools were used to address the problem [17]. There was a lack of

standard benchmark datasets, and experiments were performed on a small set of images. Some

efforts on recognizing and retrieving overlay text in videos as well [67,70] were also made during

this time, however with limited success.

• Advanced image processing based methods (2002 – 2010). With the introduction of ICDAR

2003 robust reading competition [3], research on scene text localization and recognition has sig-
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nificantly increased. The major document image analysis conference (ICDAR) has started orga-

nizing dedicated workshop, namely, CBDAR and robust reading competition in its every edition.

Advance image processing techniques such as stroke width transform [40] and symmetrical block

patterns [31] were used for addressing text localization. Some basic machine learning techniques

such as AdaBoost and energy minimization techniques such as simulated annealing also used in

text understanding during this era [30, 31, 170].

• Modern computer vision based methods (2009 – 2013). Computer vision has made a significant

progress in the last decade in solving many challenging problems such as segmentation, localiza-

tion, and image classification. Inspired by these solutions, research on scene text started treating

words and characters as objects. The seminal works by Wang et al. [164, 165] significantly in-

creased the interest in the scene text understanding problems. Many works in this era have been

formulated in energy minimization frameworks [107, 108, 164, 169]. The release of challeng-

ing public datasets such as SVT [4], IIIT-5K word [107] gathered a lot of attention among the

computer vision community.

• Deep learning based methods (2014 to present). Deep learning has remarkably advanced the

computer vision area by improving the state of the art in many applications by a large margin. The

first noticeable work in this area is Coates et al. [33] where the authors propose an unsupervised

learning approach for character recognition and text localization. Later, Wang et al. [166] adapted

a multi-layer neural networks for end-to-end scene text localization and recognition. More re-

cently, Jaderberg et al. [66] proposed a deep convolutional neural network (CNN) for scene text

recognition. Their architecture is trained on synthetic data collection containing 8 million images.

This method significantly improved the state of the art of scene text recognition. Contemporary

to this method, Su and Lu [152] proposed a recurrent neural network (RNN) framework for rec-

ognizing scene text. Here, authors represent word images into a sequential histogram of gradient

features, and a RNN is used to classify these sequential features into one of the English words.

Most of our works falls in the category of modern computer vision based methods. Nevertheless, as we

show experimentally in this thesis, our methods can take advantage of deep learning based methods to

further improve scene text understanding.
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2.2 Energy minimization in computer vision

2.2.1 Motivation

Images can be imagined as a physical system molecules and atoms in a physical system corresponds

to edges, pixel colors and edge orientation in images [49]. Any physical system in nature is not com-

pletely random, rather follows some order. Similarly a natural image can not be a complete random, it

has some structure, pattern, and smoothness. Similar to the energy of a physical system, one can define

the energy for an image such that its minimum follows some prior.

Over the past two decades, energy minimization has emerged as an essential tool in computer vi-

sion [133, 153]. Energy minimization refers to the problem of finding the values at which a function

reaches its minimum. Many important and challenging vision tasks like foreground/background seg-

mentation [133], pose estimation [78] and word recognition [108, 169] can be formulated in energy

minimization framework. Although the problem of minimizing a general function is NP-hard, there exist

certain class of functions (popularly known as submodular functions in discrete optimization literature)

which can be minimized efficiently. In this section we provide required background and preliminaries

for the energy minimization framework.

2.2.2 The labeling problem

Many computer vision problems can be formulated as a labeling problem. Few examples are shown

in Figure 2.1. Labeling problem is specified in terms of sites and labels. A site often represents a point

or a region in an Euclidean space. It could be image pixels, image patches, line segments or corners.

We represent sites by a finite set S = {1, 2, . . . ,m} where each element represents an index of the site.

A label is an event that may happen to the site. Labels depend on the problem. Let us the denote set of

labels as L = {l1, l2, . . . , ln}.

Each mapping from site to label is known as a configuration. Let F be the set of all possible config-

urations. If the cardinality of site and label sets are m and n respectively, then the cardinality of F can

be computed as follows:

n× n× · · ·n× n (mtimes) = nm. (2.1)

For example, consider the foreground-background segmentation as labeling problem. For an image of

size 256×256, the cardinality of the configuration will be 2256×256, which is a huge number. Therefore,

any brute force algorithm to search optimal configuration will take exponential time, and is not feasible.
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(a) (b)

(c) (d)

Figure 2.1 Many vision problems can be posed as a labeling problem. (a) Problem of word

recognition can be formulated as a labeling problem where each window can take one of the label

L = {A, . . . , Z}. (b) The binarization problem can also be viewed as binary labeling problem with

label L = {0(text), 1(background)}. Similarly, (c) binary segmentation, and (d) semantic segmenta-

tion can also be formulated as a labeling problem. Image courtesy: (c) Rother et al. [133] (d) Blog by

Roman Shapovalov [5].

In general, labeling problem is an NP-hard problem. Fortunately only a small number of the solutions

are good and are of our interest, which leads to concepts like optimality criteria and the optimal solution.

Why optimization in vision? Every vision process is inherently uncertain. These uncertainties arise

from various sources like noise, degradation, appearance, pose, and visual interpretation. The optimiza-

tion techniques give powerful tools to deal with such uncertainty. Mostly, in an optimization framework

our aim is to minimize an objective function. The objective function is a function from the solution

space to the goodness of the solution. Often these objective functions are non-convex in nature. Thus
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they can not be trivially minimized. However, there are a class of functions which can be minimized

efficiently. We will discuss those functions as we move forward.

2.2.3 MAP estimation

Given an observation z, posterior probability of a configuration x can be defined as:

P (x|z) =
P (x)p(z|x)

p(z)
. (2.2)

Let x∗ be the optimal solution, then the risk of estimating this solution can be defined as follows:

R(x∗) =
∑

x∈F

C(x, x∗)P (x|z). (2.3)

Here C(·, ·) is a cost function. A typical cost function can be of one of the following forms:

C(x, x∗) = ||x∗ − x||2. (2.4)

C(x, x∗) =







0 |x∗ − x| ≤ δ,

1 otherwise.
(2.5)

We can write equation 2.3 as:

R(x∗) =
∑

|x∗−x|≤δ

C(x, x∗)P (x|z)dx +
∑

|x∗−x|>δ

C(x, x∗)P (x|z)dx, (2.6)

where δ is arbitrarily small positive number. For simplicity, let us assume we use a cost function 2.5.

Then the above equation can be written as.

R(x∗) = 1−
∑

|x∗−x|<δ

P (x|z)dx. (2.7)

If we take δ → 0, then risk can be rewritten as:

R(x∗) = 1− kP (x|z), (2.8)

where k is the volume of space containing all points for which |x∗ − x| < δ. We have to minimize this

risk, i.e., we have to maximize P (x|z), which leads to the conclusion that the optimum solution x∗ is

the one which maximizes posterior P (x|z); or from (2.2), we can write the optimal configuration as:

x∗ = argmax
x

p(z|x)P (x). (2.9)

Images are not completely random; in other words, pixels are mutually dependent. The question then

arise then is – how can such a dependency be modeled? We can treat the image as a Markov random

field (MRF) and model contextual constraints.
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2.2.4 Markov random field and conditional random field

Let S = {1, 2, . . . ,m} be a set of sites and L = {l1, l2, . . . , ln} be a set of levels. Further suppose

F = {F1, F2, . . . , Fm} are a family of random variables defined on a set S. F can take all possible

configuration defined over sites S and Labels L. We define term P (x) as probability of a random vector

F taking a particular configuration x.

Then F is said to be a Markov random field [94] on S with respect to the neighborhood N if and only

if the following two conditions are satisfied:

1. P (x) > 0,∀x ∈ F ,

2. P (xi|fs−{i}) = P (xi|fNi
).

A conditional random field (CRF) [88, 90] is an MRF globally conditioned on the data D. In other

words, the conditional distribution P (x|D) over the labellings of the CRF is a Gibbs distribution and

can be written as:

P (x|D) =
1

Z
exp(−

∑

c∈C

Vc(x)), (2.10)

where Z is a partition function, and Vc(x) is the clique potential defined on clique size c.

2.2.5 MAP-MRF equivalence

Let us revisit the MAP estimation equation of section 2.2.3. The optimal labeling is the same as

maximum-a-posterior probability, and is given by:

x∗ = argmax
x

p(z|x)P (x). (2.11)

Due to MRF-Gibbs equivalence, we can write:

P (x) = Z−1exp(
−1

T
U(x)), (2.12)

where U(x) is known as prior energy (or clique potential or MRF prior). One example of clique potential

is: U(x) =
∑

i

∑

j∈Ni

(xi − xj)
2. Note that this is not the only type of clique potential. Clique potentials

are modeled according to the problem. Sometimes, they can also be learned from the training data.

Let us assume there is identical independent Gaussian distribution N(µ, σ2) in our observation and

actual configuration, i.e.,
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p(z|x) =
m
∏

i=1

1
√

2πσ2i

e−U(z|x), (2.13)

where

U(z|x) =
m
∑

i=1

(xi − zi)
2

2σ2i
. (2.14)

Thus we can write:

x∗ = argmax
x
{
m
∏

i=1

1
√

2πσ2i

e−U(z|x) × Z−1e

−1

T
U(x)
}. (2.15)

Taking negative logarithm on both the side we can rewrite above equation as:

x∗ = argmin
x
{U(z|x) + U(x)}. (2.16)

Or,

x∗ = argmin
x
{
m
∑

i=1

(xi − zi)
2

2σ2i
+ U(x)}. (2.17)

The right hand side of the above equation is popularly known as posterior energy. Therefore, the

problem of finding the optimal configuration becomes equivalent to minimizing energy.

In this section, we have seen how MAP estimation in a MAP-MRF framework leads to energy

minimization. The two terms of the posterior energy are: (i)

m
∑

i=1

(xi − zi)
2, and (ii) U(x). These

terms are popularly known as data and smoothness term respectively.

2.3 Classes of energy functions

In this section, we will introduce classes of energy functions. Specifically, we will define a function

known as submodular set function [24, 138]. In some respect, these functions in discrete optimization

are similar to convex function in continuous optimization.

Definition 1 Let N = {1, 2, ..., n} be a set. Then a set function f : 2n → R is said to be submodular if

and only if for all subsets A,B ⊂ N it satisfies:

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B). (2.18)
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Figure 2.2 Class of energy functions: cate-

gorized based on complexity of minimization.

In general, minimizing Energy function is an

NP-hard problem. However, there exists cer-

tain class of functions which can be efficiently

minimized.

Every subset of a set can be written in terms of a binary random vector. The entry of this random vector

is 1 if corresponding element is present in the subset otherwise it is 0. For example, two sets A = {1}

and B = {2} can be equivalently written as X1 = {1, 0} and X2 = {0, 1} respectively. In other

words, we can re-write submodularity condition as follows: f(X1 ∪ X2) + f(X1 ∩ X2) ≤ f(X1) +

f(X2) or equivalently, f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0). Many discrete optimization problems are

equivalently posed as minimization of discrete functions. Minimizing a function, in general, is an NP-

hard problem. However, there exist a class of energy functions for which can be minimized efficiently.

One such class is submodular function.

Unfortunately, not all vision problems can be posed as problems of minimizing binary submodular

functions. To get a useful approximate solution in such scenarios a number of approximate minimization

algorithms have been proposed in literature. For example, move making algorithms such as α-expansion

and α − β-swap are two such which guarantees global solution with a constant approximation [27].

These two methods are widely used for solving multi-label optimization problems. Figure 2.2 shows

the class of energy functions categorized based on the complexity of their minimization. In general

minimizing an energy function is an NP-hard problem. However, if the interaction between random

variables can be modeled as a tree, the corresponding energy function can be minimized exactly and

in polynomial time. Similarly, a class of energy functions like submodular energy functions with the

additional constraints that only pairwise interactions are allowed, can also be minimized very efficiently.

2.4 Popular energy minimization techniques

Many problems in computer vision can be elegantly expressed as Markov random fields, yet the

resulting energy minimization problems have been widely viewed as intractable till the 90s. In last

decade, algorithms such as graph cuts and loopy belief propagation [174] have proven to be efficient
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for many computer vision tasks. For example, the top performing segmentation and stereo methods

are MRF based. There exists many energy minimization techniques in literature such as graph cuts,

iterated conditional mode ICM algorithm [19], loopy belief propagation L-BP [174], and tree-reweighed

message passing (TRW) [79]. In this section we briefly discuss graph cuts, L-BP, and TRW.

• Graph cut. In graph theory, a cut is a partition of the vertices of a flow graph into two disjoint

subsets. There are many cuts possible in a flow graph. The cost of min-cut is same as the max-

flow of the flow graph. There are many efficient algorithms for finding min-cut of a graph. The

reader is encouraged to refer [34] for more details. A submodular energy function can be repre-

sented as a flow graph, and every cut of this graph corresponds to an assignment to the energy

function [81]. For the pseudo binary submodular functions, global minima can be obtained using

graph cut algorithm. On the other hand, energy functions which can take multiple labels, can

not be exactly solved using graph cut. However, an approximate minima is obtained using move

making algorithms in such cases [27].

Minimizing submodular functions using graph cuts. Any pseudo Boolean submodular func-

tion can be represented using flow graphs. The min-cut of such graph divides the random variables

into two sets and assigns 0 or 1 to each variable depending on whether the corresponding node

belongs to S or T after the cut. Such assignment to the submodular function yields the global

minimum of the function [81].

• L-BP [174]. Loopy belief propagation (L-BP) is a message passing based inference algorithm. It

has two variants: (i) sum-product, and (ii) max-product. The sum-product algorithm computes the

marginal probability distribution of each node in the graph whereas the max-product is designed

to find the solution corresponding to the lowest energy. The belief-propagation (BP) algorithm

was originally designed for graphs without cycles. In such cases BP finds the global minima of

the energy function. However, many vision problems leads to inference in a cyclic graph and in

general, loopy BP does not guarantee convergence. However, it has been experimentally proven

that L-BP produces a strong local minima.

• TRW [79]. Tree-reweighed message passing is a variant of belief propagation. The only major

difference is in the order of message passing. The TRW has following two variants:
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1. TRW-T: It has three steps: (i) split the graph into trees, (ii) run BP on all the trees, and (iii)

average all the nodes. It is not guaranteed to converge.

2. TRW-S: It has four steps: (i) split the graph into trees, (ii) pick a node p randomly. (iii) run

BP on all the trees containing p. (iv) average node p and go to step – (ii) until convergence.

TRW-S significantly outperforms TRW-T both computation and performance wise.

2.4.1 Recent advances

Most energy minimization problem in computer vision literature assume that the energy can be rep-

resented as unary and pairwise terms. This assumption severely restricts the expressiveness of these

models making them poor for capturing the rich statistics of natural scenes. In the last decade, re-

searchers have shown huge interest in modeling vision problems using higher order clique poten-

tials [62, 77, 126, 135]. Higher order potentials have better expressiveness than pairwise potentials;

however the higher order introduction to energy functions is not a trivial extension of pair-wise because,

introducing higher order terms significantly reduces the efficiency of existing inference algorithms. Due

to the lack of efficient algorithms for minimizing the energy functions with higher order terms, their use

has been quite limited. In recent works [62,126,135], higher order clique potentials are reduced to unary

and pair-wise term, and then efficiently solved. However, there exist many useful higher order potential

functions for which the minimization problem does not have an efficient solution. This makes the area

of the higher order potentials exciting to work on. In this thesis, we model our problem of scene text

recognition in higher order framework, and decompose the higher order cost into unary and pairwise

terms to efficiently solve the corresponding inference problem using TRW-S (Chapter 4).

2.5 Dynamic time warping (DTW)

In Chapter 5, we present a word matching scheme that compares synthetic and scene text images

using dynamic time warping (DTW). DTW has been widely used for matching one-dimensional signals

in many area such as, speech analysis, bio-informatics, and handwriting word spotting [127].

The DTW is used to compute the distance between two series [139]. A naive approach to compute

the similarity between two time time series could be to uniformly sample equal number of points from

them, and then compute the Euclidean distance between these points. This method does not produce the

expected results, as it compares points that might not correspond well.
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The DTW distanceDTW (m,n) between the sequencesX = {x1, x2, . . . , xM} and Y = {y1, y2, . . . , yN}

can be recursively computed using dynamic programming as:

DTW (i, j) = min



















DTW (i− 1, j) +D(i, j)

DTW (i, j − 1) +D(i, j)

DTW (i− 1, j − 1) +D(i, j),

(2.19)

where D(i, j) is the distance between features xi and yj , and their choice varies from application to

application. The DTW distance computation has a time complexity of O(MN) to match two series of

length M and N respectively.

Warping path. In context of DTW distance computation between two signal of length M and N

respectively, a wrapping path is a sequence {p0, p1, · · · pK} with pi = (xi, yi) ∈ [1 :M ]× [1 : N ]∀i ∈

1, 2, · · · ,K satisfying the following three conditions.

1. Boundary condition: p0 = (1, 1) and pK = (M,N)

2. Monotonicity condition: x1 ≤ x2 ≤ · · · xK y1 ≤ y2 ≤ · · · yK

3. Step size condition: pi+1 − pi ∈ {(0, 1), (1, 1), (1, 0)} for i ∈ {1, 2, · · · ,K − 1}

2.6 Indexing and re-ranking

In the information retrieval community, indexing and re-ranking are two fundamental terms [101].

We provide a brief background of these two terms which are directly related to our Chapter 6 where we

demonstrate text-to-image retrieval.

Indexing. The objective of storing an index is to optimize speed and performance in retrieving relevant

images or video frames for a query text. An index is especially useful for demonstrating web-scale

image retrieval. However, it comes with the cost of additional space and time required for an update,

and often these are the traded off for the time saved during retrieval. In image search inverted index

containing query text and relevant image is created. In our work, we create inverted index for fast text-

to-image retrieval. This index contains a list of vocabulary words (potential queries) and their presence

score in all images.

Re-ranking. For image retrieval, simple operations are performed on features of all the images of

the dataset, and an initial retrieval results are obtained. Once initial results are obtained, more costly
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operations are performed on top-K images. In our work, we propose two types of re-ranking schemes

based on spatial positioning and ordering of characters of the query word.
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Chapter 3

Cropped Word Recognition: Robust Segmentation for Better Recognition

We propose a robust text segmentation (binarization) technique for addressing word recognition

problem. Color and strokes are the salient features of text regions in an image. In this chapter, we use

both these features as cues, and introduce a novel energy function to formulate the text binarization

problem. The minimum of this energy function corresponds to the optimal binarization. We minimize

the energy function using an iterative graph cut based algorithm. Our model is robust to variations in

foreground and background as we learn Gaussian mixture models for color as well as strokes in each

iteration of the graph cut. We show results on word images from the challenging ICDAR 2003, ICDAR

2011, and street view text datasets, and compare our performance with previously published methods.

Our approach shows significant improvements in performance with respect to various performance mea-

sures commonly used to assess text binarization schemes. In addition, our algorithm is computationally

efficient, and can adapt to a variety of document images such as video texts and handwritten images.

3.1 Introduction

Binarization is one of the key preprocessing steps in many document image analysis systems [151].

The performance of the subsequent steps like character segmentation and recognition is highly depen-

dent on the success of binarization. Document image binarization has been an active area of research

for many years [56, 57, 91, 105, 106, 151, 160]. Is binarization a solved problem? Certainly not, espe-

cially, in light of challenges posed by text in video sequences, born-digital (web and email) images, old

historic manuscripts and natural scenes where the state of the art recognition performance is still poor.

In this context of wide variety of imaging systems, designing a powerful text binarization algorithm can

be considered a major step towards robust text understanding. The recent interest of the community
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Figure 3.1 Few sample images we consider in work work. Due to large variations in foreground and

background colors, most of the popular binarization techniques in the literature tend to fail on such

images.

by organizing binarization contests like DIBCO [46], H-DIBCO [125] at major international document

image analysis conferences further highlights its importance.

In this chapter, we focus on binarization of natural scene text images. These images contain numer-

ous degradations which are not usually present in machine-printed ones such as, uneven lighting, blur,

complex background, and perspective distortion. A few sample images from the popular datasets we

use are shown in Fig. 3.1. Our proposed method also generalizes to historical handwritten document

images. In fact, our method achieves significantly high text binarization performance on H-DIBCO

2012 historical handwritten image dataset [6].

Our method is inspired by the success of interactive graph cut [25] and GrabCut [133] algorithms for

foreground-background segmentation of natural scenes. We formulate the binarization problem in an

energy minimization framework, where text is foreground and anything else is background, and define

a novel energy (cost) function such that the quality of the binarization is determined by the energy

value. We minimize this energy function to find the optimal binarization using an iterative graph cut

scheme. The graph cut method needs to be initialized with foreground and background seeds. To make

the binarization fully automatic, we initialize the seeds by obtaining character-like strokes. At each

iteration of graph cut, the seeds and the binarization are refined. This makes it more powerful than a

one-shot graph cut algorithm. Moreover, we use two cues to distinguish text regions from background:

(i) color, and (ii) stroke width.We model foreground and background colors as well as stroke widths in

a Gaussian mixture Markov random field framework [23], to make the binarization robust to variations

in foreground and background.

The contributions of this chapter are threefold: firstly, we proposed a principled framework for the

text binarization problem, which is automatically initialized with character-like strokes. Use of color
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and stroke width cues in an optimization framework for the text binarization problem is a major novelty

here.

Secondly, we present a comprehensive evaluation of the proposed binarization technique on multiple

text datasets. We evaluate the performance using various measures, such as pixel-level accuracy, atom-

level accuracy as well as recognition results, and compare it with the state of the art methods [57, 73,

76, 105, 115, 118, 137, 170]. To our knowledge, text binarization methods have not been evaluated in

such a rigorous setting in the past, and are restricted to only few hundred images or only one category

of document images (e.g., handwritten documents or scene text).

In contrast, we evaluate on more than 2000 images including scene text, video text, born-digital

and handwritten images. Additionally, we also perform qualitative analysis on 6000 images contain-

ing video text of several non-European scripts. Interestingly, the performance of existing binarization

methods varies widely across the datasets whereas our results are consistently compelling. In fact, our

binarization improves the recognition results of an open source OCR [1] by more than 10% on various

public benchmarks. Thirdly, we show the utility of our proposed method in binarizing degraded his-

torical documents. On a benchmark dataset of handwritten images, our method achieves comparable

performance to the H-DIBCO 2012 competition winner and a state of the art method [57], which is

specifically tuned for handwritten images.

The remainder of this chapter is organized as follows. We discuss the related literature in Section 3.2.

In Section 3.3, the binarization problem is formulated as a labeling problem, where we define an en-

ergy function such that its minimum corresponds to the target binary image. This section also briefly

introduces the graph cut method. Section 3.4 explains the proposed iterative graph cut based binariza-

tion scheme. In Section 3.5, we discuss our automatic GMM initialization strategy. Section 3.6 gives

details of the datasets, evaluation protocols, and performance measures used in this work. Experimen-

tal settings, results, discussions, and comparisons with various classical as well as modern binarization

techniques are provided in Section 3.7, followed by the summary of this chapter.

3.2 Related work

Binarization is a highly researched area in the document image analysis community. Early meth-

ods for text binarization were mostly designed for clean scanned documents. In the context of images

taken from street scenes, video sequences and historical handwritten documents, binarization poses
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many additional challenges. A few recent approaches aimed to address them for scene text binariza-

tion [75, 100, 105], handwritten text binarization [56, 57] and degraded printed text binarization [96].

In this section we review such literature as well as other works related to binarization (specifically text

binarization), and argue for the need for better techniques.

We group text binarization approaches into three major categories: (1) classical binarization, (2) en-

ergy minimization based methods, and (3) others.

Classical binarization methods. They can be further categorized into: global approches (e.g., Otsu [118],

Kittler [76]) and local (e.g., Sauvola [137], Niblack [115]). Global methods compute a binarization

threshold based on global statistics of the image such as intra-class variance of text and background

region, whereas local methods compute binarization threshold based on local statistics of the image

such as mean and variance of pixel intensity in patches. The reader is encouraged to refer [151] for

more details of these methods. Although most of these previous methods perform satisfactorily for

many cases, they suffer from problems like: (i) manual tuning of parameters, (ii) high sensitivity to

the choice of parameters, and (iii) failure in handling images with uneven lighting, noisy background,

similar foreground-background colors.

Energy minimization based methods. Recently, energy minimization based methods have been pro-

posed for text binarization problems [56, 57, 83, 105, 106, 120, 170]. In this framework, binarization

problem is posed as an optimization problem, typically modeled using Markov random fields (MRFs).

In [170], Wolf and Doermann posed binarization in an energy minimization framework, and applied

simulated annealing (SA) to minimize the cost function. In [83], authors first classified a document into

text region (TR), near text region (NTR) and background regions (BR), and then performed graph cut

to produce the final binary image. An MRF based binarization for camera-captured document images

was proposed in [120], where a thresholding based technique is used to produce an initial binary image

which is refined with a graph cut scheme. The energy function used in [120] also uses stroke width as

cues, and achieves good performance on printed document images. However, the method relies strongly

on its first step, i.e., thresholding based binarization. Furthermore, it needs an accurate estimation of

stroke width, which is not always trivial in the datasets we use (see Fig. 3.2). Unlike [120], our frame-

work does not require an exact estimation of stroke width and proceeds with stroke as well as color

initializations which are are refined over iterations.
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Howe [56] used the Laplacian of the image intensity in the energy term for document binarization

and improved it by devising methods for automatic tuning of parameters in [57]. These approaches were

especially designed for handwritten images, and showed good performance. However, they fail to cope

up with variations in scene text images, e.g., large changes in stroke width and foreground-background

colors within a single image. Adopting a similar framework, Milyaev et al. [105] have proposed a scene

text binarization technique, where they obtain an initial estimate of binarization with [115], and then

use Lapalcian of image intensity to compute unary term of the energy function. Authors have shown

applicability of this technique in end-to-end scene text understanding.

Other methods. Binarization has also been formulated as a text extraction problem [21, 40, 42, 47, 73].

Gatos et al. [47] presented a method with four steps: denoising with low-pass Wiener filter, rough es-

timation of text and background, using text and background estimate to compute local thresholds and

post-processing to eliminate noise and preserve strokes. Epshtein et al. [40] presented a novel operator

called the stroke width transform (SWT). The SWT operator computes the stroke width at every pixel

of the input image. Then a set of heuristics are applied for text extraction. Kasar et al. [73] proposed

a method which extracts text based on the candidate bounding boxes in a Canny edge image. Ezaki et

al. [42] applied [118] on different image channels, and then used morphological operators as post pro-

cessing. A few methods have also focused on color text binarization [75, 100]. However, they often

use multiple heuristics, and can not be easily generalized. Feild and Learned-Miller [43] proposed a

bilateral regression based binarization method. This method uses color clustering as a starting point

to fit a regression model, and generate multiple hypotheses of text region. Histogram of gradient fea-

tures [35] computed for English characters are then used to prune these hypotheses. More recently,

Tian et al. [156] proposed a binarization technique which computes MSER on different color channels

to obtain many connected components and then these connected components are pruned based on text

vs non-text classifier to produce the binarization output.

In contrast to the binarization techniques in literature, we propose a method which models color as

well as stroke width distributions of foreground (text) and background (non-text) using robust Gaussian

mixture models, and perform an inference using an iterative graph cut algorithm to obtain clean binary

images. We evaluate publicly available implementations of many of the existing methods on multiple

benchmarks, and compare with them in Section 3.7.

30



(a) (b)

Figure 3.2 (a) A scene text image from ICDAR

2003 dataset [7] (b) Part of a historical handwrit-

ten document image taken from HDIBCO 2012

dataset [6]. We observe that stroke width within text

is not always constant, but varies smoothly. This

motivates us to model stroke widths as GMMs.

3.3 The proposed formulation

We formulate the binarization problem in a labeling framework as follows. Binarization of an image

can be expressed as a vector of binary random variables X = {X1,X2, ...,Xn}, where each random

variable Xi takes a label xi ∈ {0, 1} based on whether it is text (foreground) or non-text (background).

Most of the heuristic based algorithms take the decision of assigning label 0 or 1 to xi based on the pixel

value at that location or local statistics computed in a neighborhood. Such algorithms are not effective

in our case because of the variations in foreground and background color distributions.

In this work, we formulate the problem in a more principled framework where we represent image

pixels as nodes in a conditional random field (CRF) and associate a unary and pairwise cost of labeling

pixels. We then solve the problem by minimizing a linear combination of two energy functions Ec and

Es given by:

Eall(x,θ, z) = w1Ec(x,θc,zc) + w2Es(x,θs,zs), (3.1)

such that its minimum corresponds to the target binary image. Here x = {x1, x2, ..., xn} is a set of

labels at each pixel. The model parameters θc and θs are learned from the foreground/background color

and stroke width distributions respectively. The vector zc contains the color values, whereas the vector

zs contains pixel intensity and stroke width at every pixel. The weights w1 and w2 are automatically

computed for the given image. To this end, we compute two image properties, namely edge density (ρ1)

and stroke width consistency (ρ2). Edge density is defined as the fraction of edge pixels in the given

image. We define stroke width consistency of the given image as standard deviation of stroke widths in

that image. We observe that stroke cues are more reliable, firstly, when we have sufficient edge pixels,

and secondly when standard deviation of stroke widths is low. Based on this intuition we compute the

relative weights (w1, w2) between color and stroke terms as follows: w1 = |1−
1

ρ1×ρ2
| w2 = |1− w1|.
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The idea here is to give more weight to the stroke width based term when the extracted strokes are more

reliable, and vice-versa.

For simplicity, we will denote θc and θs as θ and zc and zs as z from now. It should be noted that

the formulation of stroke width based term Es and color based term Ec are analogous. Hence, we will

only show formulation of color based energy term in the subsequent texts. The color based energy term

is expressed as follows:

E(x,θ, z) =
∑

i

Ei(xi,θ, zi) +
∑

(i,j)∈N

Eij(xi, xj , zi, zj), (3.2)

where, N denotes the neighborhood system defined in the CRF, and Ei and Eij correspond to data and

smoothness terms respectively. The data term Ei(·) measures the degree of agreement of the inferred

label xi to the observed image data zi. The smoothness term measures the cost of assigning labels xi,

xj to adjacent pixels, essentially imposing spatial smoothness. A typical unary term can be expressed

as:

Ei(xi,θ, zi) = −log p(xi|zi), (3.3)

where p(xi|zi) is the likelihood of pixel i taking label xi. The smoothness term is the standard Potts

model [25]:

Eij(xi, xj , zi, zj) = λ
[xi 6= xj ]

dist(i, j)
exp

(

β(zi − zj)
2
)

, (3.4)

where the scalar parameter λ controls the degree of smoothness, dist(i, j) is the Euclidean distance

between neighboring pixels i and j. Further, the smoothness term imposes the cost only for those adja-

cent pixels which have different labels, i.e., [xi 6= xj]. The constant β allows discontinuity-preserving

smoothing, and is given by: β = 1/2E[(zi − zj)
2], where E[a] is expected value of a.

The problem of binarization is now to find the global minima of the energy function, i.e.,

x∗ = argmin
x
Eall(x,θ, z). (3.5)

The global minima of this energy function can be efficiently computed by graph cut [26] if it satisfies

the criteria of submodularity [81]. To this end, a weighted graph G = (V,E) is formed where each

vertex corresponds to an image pixel, and edges link adjacent pixels. Two additional vertices source (s)

and sink (t) are added to the graph. All the other vertices are connected to them with weighted edges.

The weights of all the edges are defined in such a way that every cut of the graph is equivalent to some
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Algorithm 1 Overall procedure of the proposed binarization scheme.

procedure

Input: Color or gray image

Output: Binary image

Initialize:

1. Number of GMM components (2c1 and 2c2) for color and stroke GMMs.

2. maxIT : maximum number of iterations.

3. Seeds and GMMs (Section 3.5).

4. iteration← 1.

CRF optimization:

while iteration ≤ maxIT do

5. Learn color and stroke GMMs from seeds

6. Compute color (Ec) and stroke (Es) based terms (Section 3.3)

7. Construct s-t graph representing the weighted energy

8. Perform s-t mincut

9. Refine seeds (Section 3.5)

10. iteration← iteration+ 1.

label assignment to the nodes. Note that the cut of the graph G is a partition of set of vertices V into two

disjoint sets S and T and the cost of the cut is defined as the sum of the weights of edges going from

vertices belonging to set S to T [24, 81]. The minimum cut of such a graph corresponds to the global

minima of the energy function, which can be computed efficiently [26].

In [25], the set of model parameters θ describe image foreground and background histograms. The

histograms are constructed directly from the foreground and background seeds which are obtained with

user interaction. However, the foreground/background distribution in our case (see images in Fig. 3.1)

cannot be captured efficiently by a naive histogram distribution. Rather, we assume each pixel color

(similarly stroke width) is generated from a Gaussian mixture model (GMM). In this regard, we are

inspired by the success of the GrabCut [133] for object segmentation. The foreground and background

GMMs in GrabCut [133] are initialized by user interaction. We aim to avoid any user interaction to

make the binarization fully automatic. We achieve this by initializing GMMs with character-like strokes

obtained using a method described in Section 3.5.
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3.4 Iterative graph cut based binarization

Each pixel color is generated from one of the 2c1 Gaussian mixture models (GMMs) (c1 GMMs each

for foreground and background) with a mean µ and a covariance Σ.1 In other words, each foreground

color pixel is generated from the following distribution:

p(zi|xi,θ, ki) = N (z,θ;µ(xi, ki),Σ(xi, ki)), (3.6)

where N denotes a Gaussian distribution, xi ∈ {0, 1} and ki ∈ {1, ..., c1}. To model the foreground

color using this distribution, an additional vector k = {k1, k2, ..., kn} is introduced where each ki takes

one of the c1 GMM components. Similarly, background color is modeled from one of the c1 GMM

components. Further, the likelihood probabilities of observation can be assumed to be independent of

the pixel position, thus can be expressed as:

p(z|x,θ,k) =
∏

i

p(zi|xi,θ, ki), (3.7)

=
∏

i

1
√

|Σi|
πiexp

(

−z̃i
TΣ−1

i z̃i
2

)

, (3.8)

where πi = π(xi, ki), Σi = Σ(xi, ki) and z̃i = (zi − µ(xi, ki)). Further, πi is Gaussian mixture

weighting coefficient. Due to the introduction of GMMs the data term in (3.2) becomes dependent on

its assignment to GMM component, and it is given by:

Ei(xi, ki,θ, zi) = − log p(zi|xi,θ, ki). (3.9)

In order to make the energy function robust to low contrast color images we introduce introduce a novel

term into the smoothness function which measures the “edginess" of pixels as:

Eij(xi, xj , zi, zj) = λ1
∑

(i,j)∈N

Zij + λ2
∑

(i,j)∈N

Gij , (3.10)

where, Zij = [xi 6= xj ] exp(−βc||zi−zj||
2) and Gij = [xi 6= xj ] exp(−βg||gi−gj ||

2). Here gi denotes

the magnitude of gradient (edginess) at pixel i. Two neighboring pixels with similar edginess values are

more likely to belong to the same class according this constraint. The constants λ1 and λ2 determine the

1Similarly, for stroke-based term it assumed that stroke width and intensity of each pixel are generated from one of the 2c2
GMMs.
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Figure 3.3 Overview of the proposed method. Given an input image containing text, we first obtain

some character-like strokes using the method described in Section 3.5. GMMs for foreground (text) and

background (non-text) are learnt from these initial seeds. We learn two types of GMMs: one using RGB

color values and another using stroke width and intensity values. Unary costs and pairwise costs are

computed for every pixel, and are appropriately weighted (see Section 3.3). An s-t graph is constructed

with these. The min cut of this graph produces an initial binary image, which is used to refine the seeds,

and the GMMs. The GMM refinement and graph cut steps are repeated a few times to obtain a final

clean binary image. (Best viewed in color.)

relative strength of the color and edginess differences term with unary term respectively and are fixed to

25 empirically, and the parameters βc and βg are automatically computed from the image as follows.

βc =
1

ξ

∑

(i,j)∈N

(zi − zj)
2, (3.11)

βg =
1

ξ

∑

(i,j)∈N

(gi − gj)
2, (3.12)

where term ξ = 2(4wh− 3w− 3h+2) denotes total number of edges in the 8-neighborhood system N

with w and h denoting the width and the height of the image respectively.

To sum up the energy formulation, both color as well as stroke width of foreground and background

regions are modeled as GMMs. The GMMs for color and stroke width need to be initialized. To

initialize these GMMs we obtain character-like strokes for the given image as described in Section 3.5.

Once GMMs are initialized, we compute unary and pairwise terms from (3.3) and (3.10) for both color

and stroke based terms. Then, at each iteration, the initializations are refined, new GMMs are learned

from them, and the relative weights between color and stroke terms are recomputed. It makes the

algorithm robust as it adapts to variations in foreground and background. The overview of our proposed

method is illustrated in Fig. 3.3 and Algorithm 1.
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Figure 3.4 (a) Input image (b) character-like

strokes obtained using the method presented in

Section 3.5. The intensity values show stroke

width in this image. (a) (b)

3.5 GMM initialization

To perform automatic binarization we need to obtain foreground and background seeds for initializa-

tion of GMMs. This can play a crucial role as it may be hard to recover from the random initialization

of foreground and background seeds. In this work we propose to obtain initial seeds from character-like

strokes. The idea of obtaining character-like strokes is similar in spirit to the work of Epshtein et al. [40].

However, unlike [40], our method is robust to incorrect strokes as we iteratively refine the initializations

by learning new color and stroke GMMs in each iteration. Alternative techniques can also be used for

initialization, for example other any automatic binarization technique.

Obtaining character-like strokes. We begin by extracting an edge image using Canny edge opera-

tor, and then find the character-like strokes with two-step approach:

Step 1: We first automatically detect the polarity of the image from a simple method. If the aver-

age gray pixel value of the middle strip of an image is greater than average gray pixel value of boundary,

then we assign polarity of 1 (i.e., light text on dark background), otherwise we assign polarity of 0 (i.e.,

dark text on light background). If the polarity of the image is 1, i.e., it has light text on dark background,

then we subtract π from the original gradient orientation. It should be noted that the handwritten images

are always assumed as dark text on light background.

Step 2: Let u be a non-traversed edge pixel with gradient orientation θ. For every such edge pixel

u, we traverse the edge image in direction of θ until we hit an edge pixel v whose gradient orientation

is (π − θ)± π
36 , i.e., approximately the opposite gradient direction. We mark this line segment uv as a

character-like stroke. We repeat this process for all the non-traversed edge pixels, and mark all the line

segments as character-like strokes.
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Dataset No. of images Type Available annotations

ICDAR 2003 word [7] 1110 Scene text Pixel, text

ICDAR 2011 word [8] 1189 Scene text Pixel, text

Street view text [165] 647 Scene text Pixel, text

CVSI 2015 [9] 6000 Video text -

H-DIBCO 2012 [6] 14 Handwritten Pixel

Table 3.1 Datasets. We use three scene text, a video text and a handwritten image dataset in our

experiments.

We use these character-like strokes as initial foreground seeds, and pixel with no strokes are used

as background seeds. Fig. 3.4 shows an example image and the corresponding character-like strokes

obtained as described above. We initialize two types of GMMs: one with color values, and other with

stroke width and pixel intensity values, for both foreground and background, from these initial seeds.

Note that unlike our previous work [106], (i) we do not use any heuristics to discard few strokes, and

keep all of them, and refine over iterations, (ii) background seeds do not need to be explicitly computed,

rather, all the pixels with no strokes are initialized as probable background.

3.6 Datasets and performance measures

To conduct a comprehensive evaluation of the proposed binarization method, we use three scene text,

a video text and a handwritten image datasets. These are summarized in Table 3.1. In this section, we

briefly describe the datasets and provided annotations.

ICDAR cropped word datasets [7, 8]. ICDAR 2003 and 2011 robust reading dataset was originally

introduced for tasks like text localization, cropped word recognition, scene character recognition. We

use the cropped words these datasets for evaluating binarization performance. These datasets contain

1,110 and 1189 word images respectively. Pixel-level annotations for both these datasets are provided

by Kumar et al. [84]. It should be noted that for ICDAR 2011 pixel-level annotations are available only

for 716 images. We show pixel-level and atom-level results for only those images for this dataset, and

refer this subset dataset as ICDAR 2011 (S). However, we show recognition results on all 1189 images

of ICDAR 2011.

37



Street view text [165]. The street view text (SVT) dataset contains images harvested from Google

Street View. As noted in [165], most of the images come from business signage and exhibit a high de-

gree of variability in appearance and resolution. We show binarization results on the cropped words of

SVT-word, which contains 647 word images. Pixel-level annotations for SVT is publicly available [84].

Video script identification dataset [9]. The CVSI dataset is composed of images from news videos of

various Indian languages. It contains 6000 text images from 10 different scripts, namely English, Hindi,

Bengali, Oriya, Gujarati, Punjabi, Kannada, Tamil, Telugu and Arabic, commonly used in India. This

dataset was originally introduced for script identification [9], and does not include pixel level annota-

tions. We use it solely for qualitative evaluation of binarization methods.

H-DIBCO 2012 [125]. Although our binarization scheme is designed for scene text images, it can

also be applied for handwritten images. To demonstrate this we also test our method on H-DIBCO 2012

dataset. It contains 14 degraded handwritten images and their corresponding ground truth images with

pixel-level annotations.

3.6.1 Performance measures

Although binarization is a highly researched problem, performance evaluation of binarization meth-

ods remains an ill-defined area [32]. Due to the lack of well-defined performance measures or lack of

ground truth, many works in the past perform only a qualitative evaluation of binarization [71,95]. Some

other works measure binarization accuracy in term of OCR performance [86]. Although improving the

recognition (or OCR) performance is an end goal of binarization, unfortunately OCR systems often

rely on many factors (i.e., character classification, statistical language models), and not just the quality

of text binarization. Hence, OCR-level evaluation can only be considered as an indirect performance

measure for evaluating binarization methods [32].

A well-established practice in document image binarization competitions at ICDAR is to evaluate bi-

narization at pixel-level [46]. This evaluation does however have few drawbacks: (i) pixel-level ground

truth for large scale datasets is difficult to acquire, (ii) due to anti-aliasing and blur, defining pixel ac-

curate ground truth becomes subjective, (iii) a small error in ground truth can alter the ranking of bina-

rization performance significantly as studied in [149]. Considering these drawbacks, Clavelli et al. [32]

proposed a measure for text binarization by performing atom-level evaluation. An atom is defined as
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(a) (b) (c)

Figure 3.5 Illustration of criteria-(i) (mini-

mal coverage in atom-level evaluation): (a) a

ground truth image, (b) binary image where

minimal coverage criteria is satisfied, and (c)

binary image where minimal coverage crite-

ria is not satisfied. Here, a thin line across

the character ‘c’ is the skeleton of the ground

truth.

the minimum unit of text segmentation which can be recognized on its own. This performance mea-

sure does not require pixel accurate ground truths, and measures various characteristics of binarization

algorithms such as producing broken texts, merging characters.

In order to provide a complete analysis we evaluate binarization methods on all three measures,

namely pixel-level, atom-level and recognition (OCR) accuracy.

Pixel-level evaluation. For this evaluation given a ground truth image annotated at pixel-level and

the output image of a binarization method, each pixel in the output image is classified as one of the

following: (i) true positive if it is a text pixel in both the output and the ground truth image, (ii) false

positive if it is a background pixel in the output image but a text pixel in the ground truth, (3) false

negative if it is a text pixel in the output image but background pixel in the ground truth, or (4) true

negative if it is background pixel in both the output and the ground truth image. With these in hand we

compute precision, recall and f-score for every image, and we then report mean values of these measures

over all the images in the dataset to compare binarization methods.

Atom-level evaluation. In this evaluation each connected component in the binary output image is

classified as one of the six categories [32]. To determine this following two criteria are used: (i) the

connected component intersects with the skeleton of ground truth with at least θmin, (ii) if a connected

component comprises pixels that do not overlap with text-area in the ground truth, then the distance of

such component pixels are from the area edge should not exceed θmax. The thresholds θmin and θmax

are chosen as suggested by Clavelli et al. [32]. These two criteria are pictorially depicted in Figure 3.5
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Figure 3.6 Illustration of criteria-(ii) (max-

imal coverage in atom-level evaluation): (a) a

ground truth image, (b) binary image where

maximal coverage criteria is satisfied (c) bi-

nary image where maximal coverage criteria

is not satisfied. (a) (b) (c)

and Figure 3.6 respectively. Based on these two criteria each connected component in the output image

is classified as one of the following categories.

• whole (w). If the connected component overlaps with skeleton of the ground truth, and both

criteria are satisfied.

• background (b). If the connected component does not overlap with any of the skeleton of the

ground truth.

• fraction (f ). If the connected component overlaps with one skeleton of the ground truth, and only

criteria-(ii) is satisfied.

• multiple (m). If the connected component overlaps with many skeletons of the ground truth, and

only criteria-(i) is satisfied.

• fraction and multiple (fm). If the connected component overlaps with many skeletons of the

ground truth, and only criteria-(ii) is satisfied.

• mixed (mi). If the connected component overlaps with many skeletons of the ground truth, and

neither criteria-(i) nor criteria-(ii) is satisfied.

The number of connected components in the above categories is normalized by the number of ground

truth connected components for every image to obtain scores (denoted by w, b, f , m, fm, mi). Then

the mean values of these scores over the entire dataset can be used to compare binarization methods.

Higher values (maximum = 1) for w whereas lower values (minimum = 0) for all the other categories

are desired. We have shown examples of each of these categories in Figure 3.7. Further, to represent

atom-level performance with a single measure, we compute:

atom-score =
1

1
w
+ b+ f + fm+mi

. (3.13)
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(a)

(b)

Figure 3.7 Two ground truth and binary image examples with six different categories of connected

components with respect to atom-level evaluation. Categories are shown in following different color

codes– green: whole, red: background, blue: multiple, yellow: fraction, pink: fraction and multiple,

and cyan: mixed.

The atom-score is computed for every image, and the mean over all the images in the dataset is reported.

The desired mean atom-score for a binarization method is 1, denoting an ideal binarization output.

OCR-level evaluation. We use two well-known off-the-shelf OCRs: Tesseract [1] and ABBYY fine

Reader 8.0 [10] to evaluate binarization methods with OCR performance. Tesseract is an open source

OCR whereas ABBYY fine Reader 8.0 is a commercial OCR product. We report word recognition

accuracy which is defined as the number of correctly recognized words divided by the total number of

words in the dataset. Following the ICDAR competition protocols [140], we do not perform any edit

distance based correction with lexicons, and report case-sensitive word recognition accuracy.

3.7 Experimental analysis

Given a color or gray image containing text, our goal is to binarize it such that the pixels correspond-

ing to the text and non-text get label 0 and 1 respectively. In this section, we perform a comprehensive

evaluation of the proposed binarization scheme on the datasets introduced in Section 3.6. We compare
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Method ICDAR 2003 ICDAR 2011 (S) Street View Text

Prec. Rec. f-score Prec. Rec. f -score Prec. Rec. f-score

Otsu [118] 0.86 0.90 0.87 0.87 0.91 0.88 0.64 0.83 0.70

Kittler [76] 0.75 0.89 0.78 0.79 0.89 0.80 0.55 0.81 0.62

Niblack [115] 0.68 0.87 0.74 0.75 0.86 0.79 0.52 0.78 0.60

Sauvola [137] 0.65 0.83 0.67 0.73 0.81 0.71 0.52 0.76 0.57

Wolf [170] 0.81 0.91 0.84 0.83 0.90 0.85 0.58 0.81 0.66

Kasar [73] 0.72 0.64 0.65 0.65 0.47 0.52 0.70 0.71 0.69

Milyaev [105] 0.71 0.69 0.63 0.72 0.73 0.65 0.52 0.66 0.51

Howe [57] 0.76 0.84 0.76 0.76 0.87 0.78 0.62 0.77 0.64

Bilateral [43] 0.84 0.85 0.83 0.89 0.87 0.87 0.64 0.79 0.68

Ours (color) 0.82 0.90 0.85 0.86 0.90 0.87 0.62 0.84 0.70

Ours (color+stroke) 0.82 0.91 0.86 0.86 0.91 0.88 0.64 0.82 0.71

Ours (MI) 0.92 0.95 0.93 0.96 0.98 0.97 0.87 0.95 0.90

Table 3.2 Pixel-level binarization performance. We compare binarization techniques with respect to

mean precision, recall and f-score. Here “Ours (color)" and “Ours (color+stroke)" refer to the proposed

iterative graph cut, where only the color and the color+stroke term is used respectively. “Ours (MI)"

refers to proposed method with manual initialization, and denotes an upper bound

Figure 3.8 Qualitative illustration of binarization with different number of iterations. Here, we have

shown original image and results with four different iterations: 1, 3, 5 and 8 (from left to right). We

observe that iteration indeed helps in refining binarization output.

our method with classical as well as modern top performing text binarization techniques based on the

performance measures presented in Section 3.6.1.

3.7.1 Implementation details

The proposed method is implemented in C++ and it takes about 0.8s on a cropped word image of

size 60 × 180 to produce the final result on a system with 2 GB RAM and Intel® coreTM-2 Duo CPU
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Method ICDAR 2003 ICDAR 2011 (S) Street View Text
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Otsu [118] 0.69 2.97 0.06 0.24 0.02 0.59 0.73 1.94 0.04 0.21 0.03 0.63 0.42 0.75 0.08 0.10 0.06 0.34

Niblack [115] 0.50 14.70 0.17 0.74 0.02 0.23 0.57 14.77 0.12 0.85 0.02 0.31 0.35 6.19 0.15 0.20 0.03 0.16

Sauvola [137] 0.37 4.72 0.16 0.44 0.01 0.25 0.44 5.07 0.11 0.63 0.02 0.31 0.26 2.93 0.11 0.33 0.02 0.17

Kittler [76] 0.59 1.34 0.07 0.19 0.04 0.45 0.65 1.05 0.04 0.16 0.04 0.52 0.30 0.59 0.09 0.12 0.05 0.23

Wolf [170] 0.67 3.77 0.08 0.32 0.02 0.56 0.68 1.97 0.06 0.22 0.03 0.58 0.37 1.05 0.12 0.12 0.06 0.28

Kasar [73] 0.51 1.65 0.06 0.34 0.01 0.43 0.38 1.59 0.07 0.33 0.00 0.31 0.49 3.19 0.08 0.26 0.03 0.41

Milyaev [105] 0.36 2.44 0.11 0.37 0.02 0.30 0.37 1.04 0.11 0.30 0.03 0.30 0.27 4.87 0.09 0.18 0.03 0.24

Howe [57] 0.52 0.34 0.11 0.18 0.02 0.46 0.55 0.26 0.10 0.11 0.03 0.50 0.38 13.38 0.09 0.12 0.04 0.32

Bilateral [43] 0.62 2.21 0.08 0.38 0.02 0.52 0.69 2.40 0.04 0.34 0.02 0.60 0.40 5.35 0.09 0.21 0.04 0.31

Ours (color) 0.67 0.58 0.06 0.17 0.03 0.60 0.71 0.38 0.03 0.17 0.03 0.65 0.41 0.75 0.08 0.08 0.07 0.34

Ours (col+str) 0.68 0.49 0.06 0.15 0.03 0.62 0.74 0.50 0.04 0.13 0.03 0.67 0.40 0.33 0.08 0.07 0.07 0.34

Ours (MI) 0.77 0.20 0.02 0.13 0.03 0.72 0.86 0.26 0.01 0.09 0.02 0.80 0.64 0.17 0.03 0.09 0.07 0.60

Table 3.3 Atom-level evaluation. A connected component in the output image is classified into one

of six categories. We show the fractions of connected components classified as whole, background,

mixed, fraction, and multiple. Moreover, we also show the atom-score. Here “Ours (color)" and “Ours

(col+str)" refer to the proposed iterative graph cut, where only color based term and color+stroke based

term is used in the energy function. “Ours (MI)" refers to proposed method with manual initialization

of GMMs and indicates an upper bound.

Iteration 1 2 3 4 5 6 7 8 9 10

f-score 0.85 0.86 0.88 0.89 0.89 0.89 0.90 0.90 0.90 0.90

Table 3.4 f-score on ICDAR 2003-validation set with different iterations

with 2.93 GHz processor system. We will make our implementation publicly available on the project

website [2].

For our method we empirically chose number of GMMs as 5 (for both color and stroke based

GMMs), number of graph cut iterations as 8 and λ = 2 in (3.4) for all our experiments. We used the stan-

dard public implementations of well-known binarization techniques, namely Otsu [118], Kittler [76],

Niblack [115] and Sauvola [137] for comparison. Global binarization techniques Otsu [118] and Kit-
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tler [76] are parameter-independent. For local thresholding methods Niblack [115] and Sauvola [137],

we choose the parameters by cross-validating on a validation set of ICDAR 2003 dataset. For contempo-

rary methods like Kasar et al. [73], Bi-lateral regression [43], Howe et al. [57], Milyaev et al. [105] we

use the implementations provided by the authors. Among these methods, Kasar et al. [73] is parameter-

independent whereas for the others we use the parameter settings suggested by the corresponding au-

thors. Further, [73] is originally designed for full scene image, and uses some heuristics on candidate

character bounding box. Considering this we modify these heuristics (e.g., the maximum allowed height

for a character candidate bounding box is changed from 80% of image height to 99% of image size).

This modification makes the implementation suitable for cropped word images.

Polarity check. Most of the binarization methods in the literature produce white text on black back-

ground for images with light text on dark background. Since ground truth typically contains black text

on white ground, hence we perform following simple automatic polarity check before evaluating the

method. If the average gray pixel value of the middle strip of a given word image is greater than average

gray pixel value of boundary, then we assign reverse polarity, i.e., light text on dark background, to it,

and invert the corresponding output image before comparing it with the ground truth. Note that our

method produces black text on white background irrespective of the polarity of the word image, and

hence does not require this inversion.

We now provide empirical evidence for choice of various parameters, such as, number of iterations,

the GMM initialization method, number of GMMs and weights λ1 and λ2 in our method. For these

studies we use the validation set of ICDAR 2003 dataset for which the pixel level annotations are pro-

vided by [104].

Number of iterations. We refine the initial strokes and color obtained by our unsupervised automatic

initialization scheme (char-like strokes). This refinement is performed using iterative graph cuts. The

number of iterations is a key parameter here. To illustrate the refinement of color and stroke with iter-

ation, we conducted a study on the ICDAR 2003-validation set. We varied the iteration count from 1

to 10, and noted the pixel-level f-score on this dataset. This result is shown in Table 3.4. We observe

that the pixel-level f-score improves with iterations and saturates at seven iterations. We also show

qualitative examples of binarization with different number of iteration in Fig. 3.8. We observe that the

iterative refinement using graph cut improves the pixel-level f-score, and supports our claim that color
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and strokes get refined with iteration. Based on this study we fix number of iterations to 8 in all our

experiments.

GMM initialization. We initialize GMMs by character-like strokes (see Section 3.5). However, in our

method GMMs can be initialized using any binarization method. To study the impact of initialization,

we conduct following experiment. We initialize foreground and background GMMs from following

best performing binarization methods in literature: Otsu [118], Wolf [170] and Howe [57], and study

the word recognition performance on ICDAR 2003-validation set. We also studied the effect of user-

assisted initialization of foreground and background GMMs. We call this initialization technique as

manual initialization (MI). In Fig. 3.9 we show the word recognition performance of an open source

OCR (Tesseract) on ICDAR 2003-validation set on following two settings: (i) when the above bina-

rization techniques are as such used, and binarized images are fed to the OCR (blue bars), (ii) when

the above mentioned binarization techniques are used for GMM initialization followed by the proposed

iterative graph cut based scheme is used for binarization, and the output images are fed to the OCR

(red bars). We observe that although initialization is critical to our method, our proposed binarization

method improves the word recognition performance irrespective of the initialization method used. This

is primarily due to the fact that our method iteratively refines the initial seeds over iterations by using

color and stroke cues, and improves the binarization, and subsequently the recognition performance.

Further, our proposed scheme in interactive framework (i.e., using manual initialization) achieves a very

high recognition performance on this dataset. This shows that the proposed technique can also prove

handy for user-assisted binarization as in [97, 98].

Other parameters. We fix parameters, such as, number of color and stroke GMMs (c), and relative

weights between color and edginess terms (λ1 and λ2), using grid search strategy on ICDAR 2003-

validation set. We vary number of color and stroke GMMs from 5 to 20 in step of 5, and compute the

validation accuracy (pixel-level f-score). We observe only small change (± 0.02) in f-score for different

numbers of color and stroke GMM. Based on this study we fix number of color and stroke GMMs as

5 for all our experiments. Further, we use similar strategy for choosing λ1 and λ2, and vary these two

parameters from 5 to 50 in step of 5. We compute the pixel-level f-score on validation set for all these

pairs, and fix a value of λ1 and λ2 as 25 for all our experiments based on this empirical study.
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Figure 3.9 Effect of GMM initialization tech-

niques. We show the word recognition accuracy

of Tesseract for validation set of ICDAR 2003

dataset. Here, blue bars show recognition results

after applying binarization techniques [57, 118,

170], and red bar shows recognition results of

proposed iterative graph cut based method with

these techniques used as initialization. We also

show recognition results when initialization is

performed from character-like strokes and man-

ually (MI).
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3.7.2 Quantitative evaluation

Pixel-level evaluation. We show these results in Table 3.2 as pixel-level mean precision, recall and

f-score for all the images on three datasets. Values of these performance measures vary from 0 to 1, and

a high value is desired for a good binarization method. We observe that the proposed scheme with only

color and color+stroke based terms achieves reasonably high f-score on all the datasets. The classical

method [118] performs better at pixel-level than many of the recent works, and is comparable to ours

on ICDAR 2003 dataset and poorer on the other two datasets.

Atom-level evaluation. Recall that in this evaluation each connected component in the output im-

age is classified as one of the following categories: whole, background, fraction, multiple, mixed or

fraction-multiple (see Section 3.6.1). The fractions of these categories by various binarization methods

are shown in Table 3.3. We do not show fraction-multiple scores as they are insignificant for all the bina-

rization techniques. Further, we also evaluate binarization methods based on the atom-score. An ideal

binarization algorithm should achieve 1 for the atom-score and whole category whereas 0 for all the

categories. Note that these measures are considered more reliable than pixel-level measures [32, 105].

We observe that our method with color only and color+stroke based terms achieves reasonable atom-

score. On ICDAR 2003 and ICDAR 2011 our method achieves rank-1 based on atom-score and im-

proves by 3% and 4% respectively with respect to the next best method [118]. On SVT our method
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achieves rank-2. Other recent methods [43, 57, 105] although perform well on a few selected images,

but fall short in comparison, when tested on multiple datasets.

OCR-level evaluation. OCR results on ICDAR 2003 and ICDAR 2011 datasets are summarized in

Table 3.5. We observe that our method improves the performance of open source OCR by more than

10% on both these dataset. For example, on ICDAR 2003 dataset the open source OCR [1] (without any

binarization) achieves word recognition accuracy of 47.93% whereas when our binarization is applied

on these image prior to recognition we achieve 56.14%. Our binarization method with off-the-shelf OCR

improves the performance over Otsu by nearly 5%. Note that all these results are based on case-sensitive

evaluation, and we do not perform any edit distance based corrections. It should also be noted the aim of

this work is obtain clean binary images, and evaluate binarization methods on this performance measure.

Hence, we dropped recent word recognition methods which bypass binarization [66, 108, 116, 142], in

this comparison.

3.7.3 Qualitative evaluation

We compare our proposed approach with other binarization methods in Fig. 3.10. Sample of images

with uneven lighting, hardly distinguishable foreground/background colors, noisy foreground colors,

are shown in this figure. We observe that our approach produces clearly readable binary images with

lesser noise compared to [43, 105]. The global thresholding method [118] performs reasonably well

for some examples but unpredictably fails in cases of high variations in text intensities (e.g., rows 2-3,

7-10). Our method is successful even in such cases and produces clean binary images.

3.7.4 Video text and handwritten images

For video text images we qualitatively evaluate binarization methods on all the images in the CVSI

dataset [9]. A few selected examples of our results on this dataset are shown in Fig. 3.11. Despite very

low-resolution images, performance of our method is encouraging on this dataset. Since our method

uses general text cues like color and strokes, which are independent of languages, it easily generalizes

to multiple languages. It should be noted that this is an encouraging step for processing Indian language

scene or video text. We have also performed OCR evaluation on an Indian language Telugu. Specifically,

we run Tesseract OCR trained on Telugu language on word images prior to binarization as well as after

our binarization. These results are shown in Figure 3.12. The Telugu language OCR is more sensitive to
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Image Otsu [118] Wolf [170] Kasar [73] Mily. [105] BL [43] Howe [57] Ours

Figure 3.10 Comparison of binarization results. From left to right: input image, Otsu [118], Wolf

and Doerman [170], Kasar et al. [73], Milyaev et al. [105], bilateral regression [43], Howe [57] and

our method which uses color and stroke cues. Other classical techniques [76, 115, 137] are not very

successful on these images.
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Method ICDAR 2003 ICDAR 2011

Tesseract ABBYY Tesseract ABBYY

No Binarization* 47.93 46.51 47.94 46.00

Otsu [118] 51.71 49.10 55.92 53.99

Kittler [76] 44.55 43.25 48.84 48.61

Sauvola [137] 19.73 17.60 26.24 26.32

Niblack [115] 15.59 14.45 22.20 21.27

Kasar [73] 33.78 32.75 12.95 12.11

Wolf [170] 46.52 44.90 50.04 48.78

Milyaev [105] 22.70 21.87 22.07 22.54

Howe [57] 42.88 41.50 43.99 41.04

Bilateral [43] 50.99 47.35 45.16 43.06

Ours (color) 52.25 49.81 59.97 55.00

Ours (col+str) 56.14 52.97 62.57 58.11

Table 3.5 Word recognition accuracy (in %): open vocabulary setting. Results shown here are case

sensitive, and without minimum edit distance based correction. * No binarization implies that color

images are used directly to respective OCR systems.

small errors in binarization due to many similar characters and matras. We observe that our binarization

generally has positive impact on the OCR result. However, this is a preliminary experiment towards

Indian language OCR. A more comprehensive study on multiple Indian languages is an exciting future

direction of our work.

We also evaluated on handwritten images of HDIBCO 2012 [6], and compare it with other methods

for this task. Quantitative results on HDIBCO 2012 dataset are summarized in Table 3.6. We observe

that our proposed method outperforms modern and classical binarization methods, and is comparable to

the H-DIBCO 2012 competition winner [57]. Moreover, we achieve noticeable improvement by using

stroke based term on this dataset, which shows the importance of stroke based terms on handwritten

images. We show qualitative results for couple of examples in Fig. 3.13. We observe that despite ink

bleed and high variations in pixel intensities and strokes our method produces clean binary result. The

significance of stroke based terms is also clear on these examples.
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Figure 3.11 A few results on the CVSI dataset.

We show results on images (left to right) with De-

vanagari, Telugu, Oriya and Gujarati scripts. Since

our method does not use any language specific in-

formation, it is applicable to this dataset containing

10 different scripts used in India.

Figure 3.12 We run Tesseract OCR trained on

Telugu language on word images prior to binariza-

tion as well as after our binarization. The OCR out-

put is shown on the top-right corner of each image.

The red color text indicates incorrect output. In-

dian languages are more senstive to small error in

binarization due to similar looking characters and

matras.

3.8 Summary

In this work we proposed a novel binarization technique, and compared it with the state of the

art. Many existing methods have restricted their focus to small datasets containing only few im-

ages [43,57,105,106]. They show impressive performance on these selective datasets, but this does not

necessarily generalize to the larger and wide variety of datasets we consider in this work. Our method

consistently performs well on all the datasets on various performance measures as we do not make any

assumptions specific to images. We also compare recognition results on two public benchmarks ICDAR

2003 and ICDAR 2011, where the utility of our work is more evident. The proposed method integrated

with an open source OCR [1] clearly outperforms other binarization techniques (see Table 3.5). On a

dataset of video text images of multiple scripts, our results are promising, and on a benchmark dataset

50



Method f-score

Otsu [118] 0.75

Kittler [76] 0.71

Sauvola [137] 0.14

Niblack [115] 0.19

Kasar [73] 0.74

Wolf [170] 0.78

Milyaev [105] 0.84

Howe [57] 0.89

Ours (Color) 0.84

Ours (Color+Stroke) 0.90

Table 3.6 Results on handwritten images from H-DIBCO 2012.

(a) Input image (b) Our result: only color (c) Our result: col+str

(d) Input image (e) Our result: only color (f) Our result: col+str

Figure 3.13 Sample images from HDIBCO 2012 dataset. (a) Input image, and results of our binariza-

tion technique: (b) with only color based term, (c) with color and stroke based terms. We observe that

the color+stroke based term shows significant improvement over color only term.

of handwritten images we achieve pixel-level precision/recall/f-score of 0.85/0.95/0.90 which is com-

parable to the state of the art [57].

Comparison with other energy minimization based methods. A few binarization techniques in the

literature are based on an energy minimization framework [56,57,105,120,170]. Our method also falls
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Figure 3.14 A few example where

the binarization result is over-

smoothed. (a) Input images (b) Output images

in this category, but differs significantly in the energy formulation and minimization technique used. We

compare our method experimentally with [57, 105, 170] in Tables 3.2, 3.3 and 3.5. Two other energy

minimization based methods [83, 120] were dropped for experimental comparison due to unavailability

of their implementation. Our method consistently outperforms these approaches on all the datasets. The

robustness of our method can be attributed to the proposed iterative graph cut based algorithm which

minimizes an energy function composed of color and stroke based terms.

Further improvements. Oversmoothing, one of the limitations of our method is pronounced in the

case of low resolution images where inter-character gaps and holes within characters like ‘e’, ‘a’ are

only a few pixels (say 3-4 pixels). In such cases our method smooths these regions. A few such exam-

ple images, where our method suffers from oversmoothing, are shown in Figure 3.14. Such limitations

are not new to the optimization community, and advance techniques like cooperative graph cuts [68]

can be explored in this context in the future. Moreover, a noisy automatic initialization is sometime

hard to recover from. A better initialization or image enhancement technique can further improve our

performance.

To sum up, we have proposed a general and principled framework for the text binarization problem.

Our method can be applied to a wide variety of text images (including handwritten documents), and is

computationally efficient. However, the success of this method is restricted to high contrast, roughly

frontal, nearly uniform background scene text images. In the upcoming chapters, we propose more

effective recognition methods which are applicable to challenging scene text images captured in the

wild.
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Chapter 4

Cropped Word Recognition: Integrating Top-Down and Bottom-Up Cues

Recognizing scene text is a challenging problem, even more so than the recognition of scanned

documents. This problem has gained significant attention from the computer vision community in

recent years, and several methods based on energy minimization frameworks and deep learning ap-

proaches have been proposed. In this chapter, we present the energy minimization framework for scene

text recognition and propose a model that exploits both bottom-up and top-down cues for recognizing

cropped words extracted from street images. The bottom-up cues are derived from individual character

detections from an image. We build a conditional random field model on these detections to jointly

model the strength of the detections and the interactions between them. These interactions are top-down

cues obtained from a lexicon-based prior, i.e., language statistics. The optimal word represented by the

text image is obtained by minimizing the energy function corresponding to the random field model. We

evaluate our proposed algorithm extensively on a number of cropped scene text benchmark datasets,

namely street view text, ICDAR 2003, 2011 and 2013 datasets, and IIIT 5K-word, and show better

performance than comparable methods. We perform a rigorous analysis of all the steps in our approach

and analyze the results. We also show that state of the art convolutional neural network features can be

integrated in our framework to further improve the recognition performance.

4.1 Introduction

The problem of understanding scenes semantically has been one of the challenging goals in computer

vision for many decades. It has gained considerable attention over the past few years, in particular, in

the context of street scenes [28, 48, 89]. This problem has manifested itself in various forms, namely

object detection [37,45], object recognition and segmentation [93,145]. There have also been significant
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Figure 4.1 A typical street scene image taken from Google Street View. It contains very prominent

sign boards with text on the building and its windows. It also contains objects such as car, person,

tree, and regions such as road, sky. Many scene understanding methods recognize these objects and

regions in the image successfully, but overlook the text on the sign board, which contains rich, useful

information. The goal of this work is to address this gap in understanding scenes.

attempts at addressing all these tasks jointly [52, 89, 172]. Although these approaches interpret most of

the scene successfully, regions containing text are overlooked. As an example, consider an image of a

typical street scene taken from Google Street View in Fig. 4.1. One of the first things we notice in this

scene is the sign board and the text it contains. However, popular recognition methods ignore the text,

and identify other objects such as car, person, tree, and regions such as road, sky. The importance of text

in images is also highlighted in the experimental study conducted by Judd et al. [69]. They found that

viewers fixate on text when shown images containing text and other objects. This is further evidence

that text recognition forms a useful component in understanding scenes.
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In addition to being an important component of scene understanding, scene text recognition has many

potential applications, such as image retrieval, auto navigation, scene text to speech systems, developing

apps for visually impaired people [109, 112]. Our method for solving this task is inspired by the many

advancements made in the object detection and recognition problems [35, 37, 45, 145]. We present a

framework for recognizing text that exploits bottom-up and top-down cues. The bottom-up cues are

derived from individual character detections from an image. Naturally, these windows contain true as

well as false positive detections of characters. We build a conditional random field (CRF) model [90]

on these detections to determine not only the true positive detections, but also the word they represent

jointly. We impose top-down cues obtained from a lexicon-based prior, i.e., language statistics, on the

model. In addition to disambiguating between characters, this prior also helps us in recognizing words.

The first contribution of this work is a joint framework with seamless integration of multiple cues—

individual character detections and their spatial arrangements, pairwise lexicon priors, and higher-order

priors—into a CRF framework which can be optimized effectively. The proposed method performs sig-

nificantly better than other related energy minimization based methods for scene text recognition. Our

second contribution is devising a recognition framework which is applicable not only to closed vocab-

ulary text recognition (where a small lexicon containing the ground truth word is provided with each

image), but also to a more general setting of the problem, i.e., open vocabulary scene text recognition

(where the ground truth word may or may not belong to a generic large lexicon or the English dic-

tionary). The third contribution is comprehensive experimental evaluation, in contrast to many recent

works, which either consider a subset of benchmark datasets or are limited to the closed vocabulary

setting. We evaluate on a number of datasets (ICDAR 2003, 2011 and 2013 [3], SVT [4], and IIIT

5K-word [107]) and show results in closed and open vocabulary settings. Additionally, we analyzed the

effectiveness of individual components of the framework, the influence of parameter settings, and the

use of convolutional neural network (CNN) based features [66].

The remainder of this chapter is organized as follows. Section 4.2 describes our scene text recog-

nition model and its components. We then present the evaluation protocols and the datasets used in

experimental analysis in Section 4.3. Comparison with related approaches is shown in Section 5.3,

along with implementation details. We then make concluding remarks in Section 4.6.
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4.2 The recognition model

We propose a conditional random field (CRF) model for recognizing words. The CRF is defined

over a set of N random variables x = {xi|i ∈ V}, where V = {1, 2, . . . , N}. Each random variable xi

denotes a potential character in the word, and can take a label from the label set L = {l1, l2, . . . , lk}∪ ǫ,

which is the set of English characters, digits and a null label ǫ to discard false character detections. The

most likely word represented by the set of characters x is found by minimizing the energy function,

E : Ln → R, corresponding to the random field. The energy function E can be written as sum of

potential functions:

E(x) =
∑

c∈C

ψc(xc), (4.1)

where C ⊂ P(V), with P(V) denoting the powerset of V . Each xc defines a set of random variables

included in subset c, referred to as a clique. The function ψc defines a constraint (potential) on the

corresponding clique c. We use unary, pairwise and higher order potentials in this work, and define them

in Section 4.2.2. The set of potential characters is obtained by the character detection step discussed in

Section 4.2.1. The neighbourhood relations among characters, modelled as pairwise and higher order

potentials, are based on the spatial arrangement of characters in the word image.

4.2.1 Character detection

The first step in our approach is to detect potential locations of characters in a word image. In this

work we use a sliding window based approach for detecting characters, but other methods, e.g., [171],

can also be used instead.

Sliding window detection. This technique has been very successful for tasks such as, face [163] and

pedestrian [35] detection, and also for recognizing handwritten words using HMM based methods [20].

Although character detection in scene images is similar to such problems, it has its unique challenges.

Firstly, there is the issue of dealing with many categories (63 in all) jointly. Secondly, there is a large

amount of inter-character and intra-character confusion, as illustrated in Fig. 1.2. When a window

contains parts of two characters next to each other, it may have a very similar appearance to another

character. In Fig. 1.2(a), the window containing parts of the characters ‘o’ can be confused with ‘x’.

Furthermore, a part of one character can have the same appearance as that of another. In Fig. 1.2(b), a

part of the character ‘B’ can be confused with ‘E’. We build a robust character classifier and adopt an

additional pruning stage to overcome these issues.
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Figure 4.2 Distribution of aspect ratios of few digits and characters: (a) 0 (b) 2 (c) B (d) Y. The aspect

ratios are computed on character from the IIIT-5K word training set.

The problem of classifying natural scene characters typically suffers from the lack of training data,

e.g., [36] uses only 15 samples per class. It is not trivial to model the large variations in characters

using only a few examples. To address this, we add more examples to the training set by applying small

affine transformations [110, 146] to the original character images. We further enrich the training set by

adding many non-character negative examples, i.e., from the background. With this strategy, we achieve

a significant boost in character classification accuracy (see Table 4.2).

We consider windows at multiple scales and spatial locations. The location of the ith window, di,

is given by its center and size. The set K = {c1, c2, . . . , ck}, denotes label set. Note that k = 63

for the set of English characters, digits and a background class (null label) in our work. Let φi denote

the features extracted from a window location di. Given the window di, we compute the likelihood,

p(cj |φi), of it taking a label cj for all the classes in K. In our implementation, we used explicit feature

representation [161] of histogram of gradient (HOG) features [35] for φi, and the likelihoods p are

(normalized) scores from a one vs rest multi-class support vector machine (SVM). Implementation

details of the training procedure are provided in Section 4.4.1.

This basic sliding window detection approach produces many potential character windows, but not

all of them are useful for recognizing words. We discard some of the weak detection windows using the

following pruning method.

Pruning windows. For every potential character window, we compute a score based on: (i) SVM

classifier confidence, and (ii) a measure of the aspect ratio of the character detected and the aspect ratio

learnt for that character from training data. The intuition behind this score is that, a strong character

window candidate should have a high classifier confidence score, and must fall within some range of

the sizes observed in the training data. In order to define the aspect ratio measure, we observed the
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Figure 4.3 The proposed model illustrated as a graph. Given a word image (shown on the left), we

evaluate character detectors and obtain potential character windows, which are then represented in a

graph. These nodes are connected with edges based on their spatial positioning. Each node can take a

label from the label set containing English characters, digits, and a null label (to suppress false detec-

tions). To integrate language models, i.e., n-grams, into the graph, we add auxiliary nodes (shown in

red), which constrain several character windows together (sets of 4 characters in this example). Auxil-

iary nodes take labels from a label set containing all valid English n-grams and an additional label to

enforce high cost for an invalid n-gram.

distribution of aspect ratios of characters from the IIIT-5K word training set. A few examples of these

distributions are shown in Fig. 4.2. Since they follow a Gaussian distribution, we chose this score

accordingly. For a window di with an aspect ratio ai, let cj denote the character with the best classifier

confidence value given by Sij . The mean aspect ratio for the character cj computed from training data

is denoted by µaj . We define a goodness score (GS) for the window di as:

GS(di) = Sij exp

(

−
(µaj − ai)

2

2σ2aj

)

, (4.2)

where σaj is the variance of the aspect ratio for character cj in the training data. A low goodness score

indicates a weak detection, which is then removed from the set of candidate character windows.

We then apply character-specific non-maximum suppression (NMS), similar to other sliding window

detection methods [45], to address the issue of multiple overlapping detections for each instance of a

character. In other words, for every character class, we select detections which have a high confidence

score, and do not overlap significantly with any of the other stronger detections of the same character

class. We perform NMS after aspect ratio pruning to avoid wide windows with many characters sup-

pressing weaker single character windows they overlap with. The pruning and NMS steps are performed
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conservatively, to discard only the obvious false detections. The remaining false positives are modelled

in an energy minimization framework with language priors and other cues, as discussed below.

4.2.2 Graph construction and energy formulation

We solve the problem of minimizing the energy function (4.1) on a corresponding graph, where each

random variable is represented as a node in the graph. We begin by ordering the character windows

based on their horizontal location in the image, and add one node each for every window sequentially

from left to right. The nodes are then connected by edges. Since it is not natural for a window on

the extreme left to be strongly related to another window on the extreme right, we only connect win-

dows which are close to each other. The intuition behind close-proximity windows is that they could

represent detections of two separate characters. As we will see later, the edges are used to encode the

language model as top-down cues. Such pairwise language priors alone may not be sufficient in some

cases, for example, when an image-specific lexicon is unavailable. Thus, we also integrate higher order

language priors in the form of n-grams computed from the English dictionary by adding an auxiliary

node connecting a set of n character detection nodes.

Each (non-auxiliary) node in the graph takes one label from the label set L = {l1, l2, . . . , lk} ∪ ǫ.

Recall that each lu is an English character or digit, and the null label ǫ is used to discard false windows

that represent background or parts of characters. The cost associated with this label assignment is known

as the unary cost. The cost for two neighbouring nodes taking labels lu and lv is known as the pairwise

cost. This cost is computed from bigram scores of character pairs in the English dictionary or an image-

specific lexicon. The auxiliary nodes in the graph take labels from the extended label set Le. Each

element of Le represents one of the n-grams present in the dictionary and an additional label to assign

a constant (high) cost to all n-grams that are not in the dictionary. The proposed model is illustrated in

Fig. 4.3, where we show a CRF of order four as an example. Once the graph is constructed, we compute

its corresponding cost functions as follows.

4.2.2.1 Unary cost

The unary cost of a node taking a character label is determined by the SVM confidence scores. The

unary term ψ1, which denotes the cost of a node xi taking label lu, is defined as:

ψ1(xi = lu) = 1− p(lu|xi), (4.3)
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where p(lu|xi) is the SVM score of character class lu for node xi, normalized with Platt’s method [123].

The cost of xi taking the null label ǫ is given by:

ψ1(xi = ǫ) = max
u

p(lu|xi) exp

(

−
(µau − ai)

2

σ2au

)

, (4.4)

where ai is the aspect ratio of the window corresponding to node xi, µau and σau are the mean and

variance of the aspect ratio respectively of the character lu, computed from the training data. The

intuition behind this cost function is that, for taking a character label, the detected window should have

a high classifier confidence and its aspect ratio should agree with that of the corresponding character in

the training data.

4.2.2.2 Pairwise cost

The pairwise cost of two neighbouring nodes xi and xj taking a pair of labels lu and lv respectively

is determined by the cost of their joint occurrence in the dictionary. This cost ψ2 is given by:

ψ2(xi = lu, xj = lv) = λl exp(−βp(lu, lv)), (4.5)

where p(lu, lv) is the score determining the likelihood of the pair lu and lv occurring together in the

dictionary. The parameters λl and β are set empirically as λl = 2 and β = 50 in all our experiments.

The score p(lu, lv) is commonly computed from joint occurrences of characters in the lexicon [38, 39,

150, 155]. This prior is effective when the lexicon size is small, but it is less so as the lexicon increases

in size. Furthermore, it fails to capture the location-specific information of pairs of characters. As a

toy example, consider a lexicon with only two words CVPR and ICPR. Here, the character pair (P,R) is

more likely to occur at the end of the word, but a standard bigram prior model does not incorporate this

location-specific information.

To overcome the lack of location-specific information, we devise a node-specific pairwise cost by

adapting [131] to the scene text recognition problem. We divide each lexicon word into T parts, where

T is computed as word image width divided by average character window width. We then use only the

first 1/T th of the word for computing the pairwise cost between the initial nodes, similarly the next

1/T th for computing the cost between the next few nodes, and so on. In other words, we do a region

of interest (ROI) based search in the lexicon. The ROI is determined based on the spatial position of a

detected window in the word, e.g., if two windows are on the left most side then only the first couple of

characters of lexicons are considered for calculating the pairwise term between windows. This pairwise
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cost using the node-specific prior is given by:

ψ2(xi = lu, xj = lv) =







0 if (lu, lv) ∈ ROI,

λl otherwise.
(4.6)

We evaluated our approach with both the pairwise terms (4.5) and (4.6), and found that the node-specific

prior (4.6) achieves better performance. The cost of nodes xi and xj taking label lu and ǫ respectively

is defined as:

ψ2(xi = lu, xj = ǫ) = λo exp(−β(1−O(xi, xj))
2), (4.7)

where O(xi, xj) is the overlap fraction between windows corresponding to the nodes xi and xj . The

pairwise cost ψ2(xi = ǫ, xj = lu) is defined similarly. The parameters are set empirically as λo = 2 and

β = 50 in our experiments. This cost ensures that when two character windows overlap significantly,

only of one them is assigned a character/digit label, in order to avoid parts of characters being labelled.

4.2.2.3 Higher order cost

Let us consider a CRF of order n = 3 as an example to understand this cost. An auxiliary node

corresponding to every clique of size 3 is added to represent this third order cost in the graph. The higher

order cost is then decomposed into unary and pairwise terms with respect to this node, similar to [135].

Each auxiliary node in the graph takes one of the labels from the extended label set {L1, L2, . . . , LM}∪

LM+1, where labels L1 . . . LM represent all the trigrams in the dictionary. The additional label LM+1

denotes all those trigrams which are absent in the dictionary. The unary cost ψa1 for an auxiliary variable

yi taking label Lm is:

ψa1(yi = Lm) = λa exp(−βP (Lm)), (4.8)

where λa is a constant. We set λa = 5 empirically, in all our experiments, unless stated otherwise. The

parameter β controls penalty between dictionary and non-dictionary n-grams, and is empirically set to

50. The score P (Lm) denotes the likelihood of trigram Lm in the English, and is further described in

Section 4.2.2.4. The pairwise cost between the auxiliary node yi taking a label Lm = lulvlw and the

left-most non-auxiliary node in the clique, xi, taking a label lr is given by:

ψa2 (yi = Lm, xi = lr) =



















0 if r = u

0 if lr = ǫ

λb otherwise,

(4.9)
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where λb penalizes a disagreement between the auxiliary and non-auxiliary nodes, and is empirically set

to 1. The other two pairwise terms for the second and third nodes are defined similarly. Note that when

one or more xi’s take null label, the corresponding pairwise term(s) between xi(s) and the auxiliary

node are set to 0.

Example. For a word to be recognized as “OPEN” the following energy function should be the mini-

mum.

ψ(O,P,E,N) = ψ1(O) + ψ1(P ) + ψ1(E) + ψ1(N) + ψ2(O,P ) + ψ2(P,E) + ψ2(E,N)+

ψ3(O,P,E) + ψ3(P,E,N).

(4.10)

The third order terms ψ3(O,P,E) and ψ3(P,E,N) are decomposed as follows.

ψ3(O,P,E) = ψa1(OPE) + ψa2(OPE,O) + ψa2(OPE,P ) + ψa2(OPE,E). (4.11)

ψ3(P,E,N) = ψa1(PEN) + ψa2 (PEN,P ) + ψa2(PEN,E) + ψa2(PEN,N). (4.12)

4.2.2.4 Computing language priors

We compute n-gram based priors from the lexicon (or dictionary) and then adapt standard techniques

for smoothing these scores [51, 74, 155] to the open and closed vocabulary cases.

Our method uses the score denoting the likelihood of joint occurrence of pair of labels lu and lv

represented as P (lu, lv), triplets of labels lu, lv and lw denoted by P (lu, lv , lw) and even higher order

(e.g., fourth order). Let C(lu) denote the number of occurrences of lu, C(lu, lv) be the number of joint

occurrences of lu and lv next to each other, and similarly C(lu, lv , lw) is the number of joint occurrences

of all three labels lu, lv , lw next to each other. The smoothed scores [74] P (lu, lv) and P (lu, lv , lw) are

now:

P (lu, lv) =



















0.4 if lu, lv are digits,

C(lu,lv)
C(lv)

if C(lu, lv) > 0,

αluP (lv) otherwise,

(4.13)

P (lu, lv, lw) =































0.4 if lu, lv, lw are digits,

C(lu,lv,lw)
C(lv ,lw) if C(lu, lv, lw) > 0,

αluP (lv, lw) else if C(lu, lv) > 0,

αlu,lvP (lw) otherwise,

(4.14)
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Training Set Test Set

#words #characters ABBYY9.0(%) #words #characters ABBYY9.0(%)

Easy 658 - 44.98 734 - 44.96

Hard 1342 - 16.57 2266 - 5.00

Total 2000 9658 20.25 3000 15269 14.60

Table 4.1 Our IIIT 5K-word dataset contains a few less challenging (Easy) and many very challenging

(Hard) images. To present analysis of the dataset, we manually divided the words in the training and

test sets into easy and hard categories based on their visual appearance. The recognition accuracy of a

state of the art commercial OCR – ABBYY9.0 – for this dataset is shown in the last column. Here we

also show the total number of characters, whose annotations are also provided, in the dataset.

Image-specific lexicons (small or medium) are used in the closed vocabulary setting, while in the open

vocabulary case we use a lexicon containing half a million words (henceforth referred to as large lexicon)

provided by [169] to compute these scores. The parameters αlu and αlu,lv are learnt on the large lexicon

using SRILM toolbox.1 They determine the low score values for n-grams not present in the lexicon. We

assign a constant value (0.4) when the labels are digits, which do not occur in the large lexicon.

4.2.2.5 Inference

Having computed the unary, pairwise and higher order terms, we use the sequential tree-reweighted

message passing (TRW-S) algorithm [79] to minimize the energy function. The TRW-S algorithm

maximizes a concave lower bound of the energy. It begins by considering a set of trees from the random

field, and computes probability distributions over each tree. These distributions are then used to reweight

the messages being passed during loopy belief propagation [119] on each tree. The algorithm terminates

when the lower bound cannot be increased further, or the maximum number of iterations has been

reached.

In summary, given an image containing a word, we: (i) locate the potential characters in it with a

character detection scheme, (ii) define a random field over all these potential characters, (iii) compute

the language priors and integrate them into the random field model, and then (iv) infer the most likely

word by minimizing the energy function corresponding to the random field.

1Available at: http://www.speech.sri.com/projects/srilm/
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4.3 Datasets and evaluation protocols

Several public benchmark datasets for scene text understanding have been released in recent years.

ICDAR [3] and street view text (SVT) [4] datasets are two of the initial datasets for this problem. They

both contain data for text localization, cropped word recognition and isolated character recognition

tasks. In this chapter we use the cropped word recognition part from these datasets. Although these

datasets have served well in building interest in the scene text understanding problem, they are limited by

their size of a few hundred images. To address this issue, we introduced the IIIT 5K-word dataset [107],

containing a diverse set of 5000 words. Here, we provide details of all these datasets and the evaluation

protocol.

SVT. The street view text (SVT) dataset contains images taken from Google Street View. As noted

in [165], most of the images come from business signage and exhibit a high degree of variability in

appearance and resolution. The dataset is divided into SVT-spot and SVT-word, meant for the tasks of

locating and recognizing words respectively. We use the SVT-word dataset, which contains 647 word

images.

Our basic unit of recognition is a character, which needs to be localized before classification. Failing

to detect characters will result in poorer word recognition, making it a critical component of our frame-

work. To quantitatively measure the accuracy of the character detection module, we created ground truth

data for characters in the SVT-word dataset. This ground truth dataset contains around 4000 characters

of 52 classes, and is referred to as as SVT-char, which is available for download [2].

ICDAR 2003 dataset. The ICDAR 2003 dataset was originally created for text detection, cropped char-

acter classification, cropped and full image word recognition, and other tasks in document analysis [3].

We used the part corresponding to the cropped word recognition called robust word recognition. Fol-

lowing the protocol of [164], we ignore words with less than two characters or with non-alphanumeric

characters, which results in 859 words overall. For subsequent discussion we refer to this dataset as

ICDAR(50) for the image-specific lexicon-driven case (closed vocabulary), and ICDAR 2003 when this

lexicon is unavailable (open vocabulary case).

ICDAR 2011/2013 datasets. These datasets were introduced as part of the ICDAR robust reading

competitions [72, 140]. They contain 1189 and 1095 word images respectively. We show case-sensitive

open vocabulary results on both these datasets. Also, following the ICDAR competition evaluation
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protocol, we do not exclude words containing special characters (such as &, :), and report results on the

entire dataset.

IIIT 5K-word dataset. The IIIT 5K-word dataset [2, 107] contains both scene text and born-digital

images. Born-digital images—category of images which has gained interest in ICDAR 2011 compe-

titions [140]—are inherently low-resolution, made for online transmission, and have a variety of font

sizes and styles. This dataset is not only much larger than SVT and the ICDAR datasets, but also more

challenging. All the images were harvested through Google image search. Query words like billboard,

signboard, house number, house name plate, movie poster were used to collect images. The text in the

images was manually annotated with bounding boxes and their corresponding ground truth words. The

IIIT 5K-word dataset contains in all 1120 scene images and 5000 word images. We split it into a train-

ing set of 380 scene images and 2000 word images, and a test set of 740 scene images and 3000 word

images. To analyze the difficulty of the IIIT 5K-word dataset, we manually divided the words in the

training and test sets into easy and hard categories based on their visual appearance. Table 4.1 shows

these splits in detail. We observe that a commercial OCR performs poorly on both the train and test

splits. Furthermore, to evaluate components like character detection and recognition, we also provide

annotated character bounding boxes. It should be noted that around 22% of the words in this dataset are

not in the English dictionary, e.g., proper nouns, house numbers, alphanumeric words. This makes this

dataset suitable for open vocabulary cropped word recognition. We show an analysis of dictionary and

non-dictionary words in Table 4.6.

Evaluation protocol. We evaluate the word recognition accuracy in two settings: closed and open

vocabulary. Following previous work [107, 142, 164], we evaluate case-insensitive word recognition on

SVT, ICDAR 2003, IIIT 5K-word, and case-sensitive word recognition on ICDAR 2011 and ICDAR

2013. For the closed vocabulary recognition case, we perform a minimum edit distance correction,

since the ground truth word belongs to the image-specific lexicon. On the other hand, in the case of

open vocabulary recognition, where the ground truth word may or may not belong to the large lexicon,

we do not perform edit distance based correction. We perform many of our analyses on the IIIT 5K-

word dataset, unless otherwise stated, since it is the largest dataset for this task, and also comes with

character bounding box annotations.
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Method SVT ICDAR c74K IIIT 5K Time

Exempler SVM [141] - 71 - - -

Elagouni et al. [38] - 70 - - -

Coates et al. [33] - 82 - - -

FERNS [164] - 52 47 - -

RBF [108] 62 62 64 61 3ms

MKL+RBF [36] - - 57 - 11ms

H-36+AT+Linear 69 73 68 66 2ms

H-31+AT+Linear 64 73 67 63 1.8ms

H-13+AT+Linear 65 72 66 64 0.8ms

H-36+AT+Linear (CI) 75 77 79 75 0.8ms

CNN feat+classifier [66] (CI) 83 86 ∗ 85 1ms

Table 4.2 Character classification accuracy (in %). A smart choice of features, training examples and

classifier is key to improving character classification. We enrich the training set by including many affine

transformed (AT) versions of the original training data from ICDAR and Chars74K (c74k). The three

variants of our approach (H-13, H-31 and H-36) show noticeable improvement over several methods.

The character classification results shown here are case sensitive (all rows except the last two). It is to be

noted that [36] only uses 15 training samples per class. The last two rows show a case insensitive (CI)

evaluation. ∗We do not evaluate the convolutional neural network classifier in [66] (CNN feat+classifier)

on the c74K dataset, since the entire dataset was used to train the network.

4.4 Experiments

Given an image region containing text, cropped from a street scene, our task is to recognize the word

it contains. In the process, we develop several components (such as a character recognizer) and also

evaluate them to justify our choices. The proposed method is evaluated in two settings, namely, closed

vocabulary (with an image-specific lexicon) and open vocabulary (using an English dictionary for the

language model). We compare our results with the best-performing recent methods for these two cases.
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4.4.1 Character classifier

We use the training sets of ICDAR 2003 character [3] and Chars74K [36] datasets to train the char-

acter classifiers. This training set is augmented with 48× 48 patches harvested from scene images, with

buildings, sky, road and cars, which do not contain text, as additional negative training examples. We

then apply affine transformations to all the character images, resize them to 48× 48, and compute HOG

features. Three variations (13, 31 and 36-dimensional) of HOG were analyzed (see Table 4.2). We then

use an explicit feature map [161] and the χ2 kernel to learn the SVM classifier. The SVM parameters

are estimated by cross-validating on a validation set. The explicit feature map not only allows a signifi-

cant reduction in classification time, compared to non-linear kernels like RBF, but also achieves a good

performance.

The two main differences from our previous work [108] in the design of the character classifier

are: (i) enriching the training set, and (ii) using an explicit feature map and a linear kernel (instead of

RBF). Table 4.2 compares our character classification performance with [33, 36, 38, 108, 141, 164] on

several test sets. Note that we achieve at least 4% improvement over our previous work (RBF [108]) on

all the datasets, and also perform better than [36, 164]. We are also comparable to a few other recent

methods [38,141], which show a limited evaluation on the ICDAR 2003 dataset. Following an evaluation

insensitive to case (as done in a few benchmarks, e.g., [66, 142], we obtain 77% on ICDAR 2003, 75%

on SVT-char, 79% on Chars74K, and 75% on IIIT 5K-word. It should be noted that feature learning

methods based on convolutional neural networks, e.g., [33, 66], show an excellent performance. This

inspired us to integrate them into our framework. We used publicly available features [66]. This will be

further discussed in Section 4.4.3. We could not compare with other related recent methods [22, 167]

since they did not report isolated character classification accuracy.

In terms of computation time, linear SVMs trained with HOG-13 features outperform others, but

since our main focus is on word recognition performance, we use the most accurate combination, i.e.,

linear SVMs with HOG-36. We observed that this smart selection of training data and features not only

improves character recognition accuracy but also improves the second and third best predictions for

characters.
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4.4.2 Character detection

Sliding window based character detection is an important component of our framework, since our

random field model is defined on these detections. At every possible location of the sliding window,

we evaluate a character classifier. This provides the likelihood of the window containing the respective

character. We pruned some of the windows based on their aspect ratio, and then used the goodness

measure (4.2) to discard the windows with a score less than 0.1 (refer Section 4.2.1). Character-specific

NMS is done on the remaining windows with an overlap threshold of 40%, i.e., if two detections have

more than 40% overlap and represent the same character class, we suppress the weaker detection. We

evaluated the character detection results with the intersection over union measure and a threshold of

50%, following ICDAR 2003 [3] and PASCAL-VOC [41] evaluation protocol. Our sliding window ap-

proach achieves recall of 80% on the IIIT 5K-word dataset, significantly better than using a binarization

scheme for detecting characters (see Table 4.7 and Section 4.4.4).

4.4.3 Word Recognition

Closed vocabulary recognition The results of the proposed CRF model in closed vocabulary setting

are presented in Table 4.3. We compare our method with many recent works for this task. To com-

pute the language priors we use lexicons provided by authors of [164] for SVT and ICDAR(50). The

image-specific lexicon for every word in the IIIT 5K-word dataset was developed following the method

described in [164]. These lexicons contain the ground truth word and a set of distractors obtained from

randomly chosen words (from all the ground truth words in the dataset). We used a CRF with higher

order term (n=4), and similar to other approaches, applied edit distance based correction after inference.

The constant λa in (4.8) to 1, given the small size of the lexicon.

The gain in accuracy over our previous work [108], seen in Table 4.3, can be attributed to the higher

order CRF and an improved character classifier. The character classifier uses: (i) enriched training

data, and (ii) an explicit feature map, to achieve about 5% gain (see Section 4.4.1 for details). Other

methods, in particular, our previous work on holistic word recognition [50], label embedding [132]

achieve a reasonably good performance, but are restricted to the closed vocabulary setting, and their

extension to more general settings, such as the open vocabulary case, is unclear. Methods published

since our original work [108], such as [142, 167], also perform well. Very recently, methods based on

convolutional neural networks [22, 66] have shown very impressive results for this problem. It should
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Method ICDAR 2003 (50) SVT IIIT-5K (small)

Baselines

ABBYY 56.04 35.00 24.50

(CSER+tesseract) [60] 57.27 37.71 33.07

Novikova et al. [116] 82.80 72.90 -

Our Holistic recognition [50] 89.69 77.28 75.00

Rodriguez & Perronnin [132] - - 76.10

Deep learning approaches

Wang et al. [166] 90.00 70.00 -

Deep features [66] 96.20 86.10 -

PhotoOCR [22] - 90.39 -

Other energy min. approaches

PLEX [164] 72.00 57.00 -

Shi et al. [142] 87.04 73.51 -

Weinman et al. [167] - 78.05 -

Our variants:

Pairwise CRF [108] 81.74 73.26 66.13

Higher order [This work, HOG] 84.07 75.27 71.80

Higher order [This work, CNN] 88.02 78.21 78.07

Table 4.3 Word recognition accuracy (in %): closed vocabulary setting. We present results of our

proposed higher order model (“This work”) with HOG as well as CNN features. See text for details.

be noted that such methods are typically trained on much larger datasets, for example, 10M compared

to 0.1M typically used in state of the art methods, which are not publicly available [22]. Inspired by

these successes, we use a CNN classifier [66] to recognize characters, instead of our SVM classifier

based on HOG features (see Sec. 4.2.1). We show results with this CNN classifier on SVT, ICDAR

2003 and IIIT-5K word datasets in Table 4.3 and observe significant improvement in accuracy, showing

its complementary nature to our energy based method.

Open vocabulary recognition. In this setting we use a lexicon of 0.5 million words from [169] instead

of image-specific lexicons to compute the language priors. Many character pairs are equally likely in
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such a large lexicon, thereby rendering pairwise priors is less effective than in the case of a small lexi-

con. We use priors of order four to address this (see also analysis on the CRF order in Section 4.4.4).

Results on various datasets in this setting are shown in Table 4.4. We compare our method with recent

work by Feild and Miller [44] on the ICDAR 2003 dataset, where our method with HOG features shows

a comparable performance. Note that [44] additionally uses web-based corrections, unlike our method,

where the results are obtained directly by performing inference on the higher order CRF model. On the

ICDAR 2011 and 2013 datasets we compare our method with the top performers from the respective

competitions. Our method outperforms the ICDAR 2011 robust reading competition winner (TH-OCR

method) method by 17%. This performance is also better than a recently published work from 2014 by

Weinman et al. [167]. On the ICDAR 2013 dataset, the proposed higher order model is significantly

better than the baseline and is in the top-5 performers among the competition entries. The winner of this

competition (PhotoOCR) uses a large proprietary training dataset, which is unavailable publicly, making

it infeasible to do a fair comparison. Other methods (NESP [86], MAPS [85], PLT [87]) use many pre-

processing techniques, followed by off-the-self OCR. Such preprocessing techniques are highly dataset

dependent and may not generalize easily to all the challenging datasets we use. Despite the lack of these

preprocessing steps, our method shows a comparable performance. On the IIIT 5K-word dataset, which

is large (three times the size of ICDAR 2013 dataset) and challenging, the only published result to our

knowledge is Strokelets [171] from CVPR 2014. Our method performs 7% better than Strokelets. Using

CNN features instead of HOG further improves our word recognition accuracy, as shown in Table 4.4.

To sum up, our proposed method performs well consistently on several popular scene text datasets.

Fig. 4.5 shows the qualitative performance of the proposed method on a few sample images. The higher

order CRF outperforms the unary and pairwise CRFs. This is intuitive due to the better expressiveness

of the higher order potentials. One of the failure cases is shown in the last row in Fig. 4.5, where the

higher order potential is computed from a lexicon which does not have sufficient examples to handle

alphanumeric words.

4.4.4 Further analysis

Lexicon size. The size of the lexicon plays an important role in the word recognition performance.

With a small-size lexicon, we obtain strong language priors which help overcome inaccurate character

detection and recognition in the closed vocabulary setting. A small lexicon provides much stronger

priors than the large lexicon in this case, as the performance degrades with increase in the lexicon size.
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Method ICDAR 2003 ICDAR 2011 IIIT-5K (large)

Baselines

ABBYY 46.51 46.00 14.60

(CSER+tesseract) [60] 50.99 51.98 25.00

Feild and Miller [44] 62.76 48.86 -

Weinman et al. [167] - 57.70 -

ICDAR’11 competition [140]

TH-OCR System - 41.20 -

KAIST AIPR System - 35.60 -

Neumann’s Method - 33.11 -

Stroklets [171] - - 38.30

Our variants

Pairwise [108] 50.99 48.11 32.00

Higher order [This work, HOG] 63.02 58.03 44.50

Higher order [This work, CNN] 67.67 - 46.73

Table 4.4 Word recognition accuracy (in %): open vocabulary setting. The results of our proposed higher

order model (“This work”) with HOG as well as CNN features are presented here. Since the network used here

to compute CNN features, i.e. [66], is learnt on data from several sources (e.g., ICDAR 2011), we evaluated with

CNN features only on ICDAR 2003 and IIIT-5K word datasets, as recommended by the authors. Note that we also

compare with top performers (as given in [72, 140]) in the ICDAR 2011 and 2013 robust reading competitions.

We follow standard protocols for evaluation – case sensitive on ICDAR 2011 and 2013 and case insensitive on

ICDAR 2003 and IIIT 5K-Word.

We show this behaviour on the IIIT 5K-word dataset in Table 4.5 with small (50), medium (1000) and

large (0.5 million) lexicons. We also compare our results with a state of the art methods [132, 171]. We

observe that [132,171] shows better recognition performance with the small lexicon, when we use HOG

features, but as the size of the lexicon increases, our method outperforms [132].

Binarization based methods. We investigated alternatives to sliding window character detection. To

this end, we replaced our detection module with a binarization based character extraction scheme, in

particular, a traditional binarization technique [118] and a more recent random field based approach

presented in Chapter 3. A connected component analysis was performed on the binarized images to
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Method S M L

Rodriguez & Perronnin [132] 76.10 57.50 -

Strokelets [171] 80.20 69.30 38.30

Higher order [This work, HOG] 71.80 62.17 44.50

Higher order [This work, CNN] 78.07 70.13 46.73

Table 4.5 Studying the influence of the lexicon size – small (S), medium (M), large (L) – on the IIIT

5K-word dataset in the closed vocabulary setting.

obtain a set of potential character locations. We then defined the CRF on these characters and performed

inference to get the text contained in the image. These results are summarized in Table 4.7. We observe

that binarization based methods perform poorly compared to our model using a sliding window detector,

both in terms of character-level recall and word recognition. They fail in extracting characters in the

presence of noise, blur or large foreground-background variations. These results further justify our

choice of sliding window based character detection.

CRF order. We varied the order of the CRF from two to six and obtained accuracy of 32%, 43%, 45%,

43%, 42% respectively on the IIIT 5K-word dataset in the open vocabulary setting. Increasing the CRF

order beyond four forces a recognized word to be one from the dictionary, which leads to poor recogni-

tion performance for non-dictionary words, and thus deteriorates the overall accuracy. Empirically, the

fourth order prior shows the best performance.

Effect of pruning. We propose a pruning step to discard candidates based on a combination of character-

specific aspect ratio and classification scores (4.2), instead of simply using extreme aspect ratio to

discard character candidates. This pruning helps in removing many false positive windows, and thus

improves recognition performance. We conducted an experiment to study the effect of pruning on the

IIIT-5K dataset in the open vocabulary setting, and observed a gain of 4.23% (46.73% vs 42.50%) due

to pruning.

Limits of statistical language models. Statistical language models have been very useful in improv-

ing traditional OCR performance, but they are indeed limited [82, 150]. For instance, using a large

weight for language prior potentials may bias the recognition towards the closest dictionary word. This

is especially true when the character recognition part of the pipeline is weak. We study such impact
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Figure 4.4 A few challenging character examples we missed in the sliding window stage. These

examples are very difficult even for a human. We observed that all these potential character windows

were missed due to poor SVM scores.

of language models in this experiment. Our analysis on the IIIT 5K-word dataset suggests that many

of the non-dictionary words are composed of valid English n-grams (see Table 4.6). However, there

are few exceptions, e.g., words like 35KM, 21P, which are composed of digits and characters; see last

row of Fig. 4.5. Using language models has an adverse effect on the recognition performance in such

cases. This results in inferior recognition performance on non-dictionary words as compared to dictio-

nary words, e.g. on IIIT-5K dataset our method achieves 51% and 24% word recognition accuracy on

dictionary and non-dictionary words respectively.

Limits of sliding window technique. The sliding window based character detection is successful in

dealing with many challenging cases. However, it has certain limitations, e.g., localizing characters in

extremely low contrast images or characters with arbitrary orientations, where sliding window based

detection gives very small detection scores. Few such examples where our method fails to localize the

characters are shown in Figure 4.4.

4.5 Scalability, advantages and limitations of CRF

In our higher order CRF framework, we compute the pairwise and higher order joint probabilities

with external data (i.e., the English dictionary containing 0.5 million words) and perform Katz smooth-

ing [74] on these joint probabilities to obtain pair wise and higher order potentials. This smoothing

helps us to estimate the probability distribution of n-grams in the English dictionary. For inference, we

use TRW-S [80] which is an efficient variant of BP, and more importantly it has convergence guarantees.

The computation complexity of this inference technique depends on number of nodes in the CRF graph
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IIIT 5K train IIIT 5K test

Non-dict. words 23.65 22.03

Digits 11.05 7.97

Dict. 3-grams 90.27 88.05

Dict. 4-grams 81.40 79.27

Dict. 5-grams 68.92 62.48

Table 4.6 Analysis of the IIIT 5K-word dataset. We show the percentage of non-dictionary words

(Non-dict.), including digits, and the percentage of words containing only digits (Digits) in the first two

rows. We also show the percentage of words that are composed from valid English trigrams (Dict. 3-

grams), four-grams (Dict. 4-grams) and five-grams (Dict. 5-grams) in the last three rows. These statistics

are computed using the large lexicon.

Char. method C. recall Unary Pairwise H. order

Otsu [118] 56 17.07 20.20 24.87

MRF model (Chapter 3) 62 20.10 22.97 28.03

Sliding window 80 25.83 32.00 44.50

Table 4.7 Character recall (C. recall) and recognition accuracy, with unary only (Unary), unary and

pairwise (Pairwise) and the full higher order (H. order) models, (all in %), on the IIIT 5K-word dataset

with various character extraction schemes (Char. method). See text for details.

(potential characters in our case) and number of labels (valid English n-grams in our case), and it does

not change with the vocabulary size. Reader is encouraged to refer [80] for theoretical details regarding

computational complexity and convergence proof of TRW-S method. The average time required for our

word recognition method is 6 second on a system with 8 GB RAM and Core-2 duo processor.

Advantages and deep connection. Conditional random fields (CRFs) [90] offer statistical advantages

over generative models and have already proven superior to HMMs in sequence labeling tasks [124].

Moreover, it also has several advantages for structure prediction tasks [154], such as learning from

external data and learning the structure of the problem. The CRFs also mingle well with the deep

learning frameworks. Deep learning based methods have improved state of the art in many computer

vision tasks in last few years. The CRFs are a way of combining the advantages of discriminative
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Test Image Unary Pairwise Higher order(=4)

TWI1IOHT TWILIOHT TWILIGHT

SRISNTI SRISNTI SRISHTI

LIIIIPUT LIIIIPUT LILLIPUT

EUMMER EUMMER SUMMER

IDTERNAL IDTERNAL INTERNAL

364203903105S 3642039031055 3642039031055

REGHT REGHT RIGHT

83KM BOKM BOOM

Figure 4.5 Results of our higher order model on a few sample images. Characters in red represent

incorrect recognition. The unary term alone, based on the SVM classifier, yields poor accuracy, and

adding pairwise terms to it improves this. Due to their limited expressiveness, they do not correct all the

errors. Higher order potentials capture larger context from the English language, and help address this

issue. Note that our method also deals with non-dictionary words (e.g., second row) and non-horizontal

text (sixth row). A typical failure case containing alphanumeric words is shown in the last row. (Best

viewed in colour).

classification and graphical models. In our CRF framework, we have used CNN for obtaining character

classification, and obtain a significant gain in word recognition accuracy. There are few recent works,

such as [177], where authors proposed an approach which combines the strengths of both CNN and CRF

based graphical model in a unified framework. We believe such unified framework can be explored for

further enhancement of our proposed method in the future.

Limitations. Despite many advantages, CRFs also have some limitations, e.g., (i) high computation

complexity of inference techniques, (ii) priors used in CRF framework often show strong influence in

the final outcome. In our case, these influence causes a bias towards English dictionary words which

results in lower success rates in recognizing non-dictionary words using our higher order CRF method.
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4.6 Summary

This chapter proposes an effective method to recognize scene text. Our model combines bottom-up

cues from character detections and top-down cues from lexicon. We jointly infer the location of true

characters and the word they represent as a whole. We evaluated our method extensively on several chal-

lenging street scene text datasets, namely SVT, ICDAR 2003/2011/2013, and IIIT 5K-word and showed

that our approach significantly advances the energy minimization based approach for scene text recogni-

tion. In addition to presenting the word recognition results, we analyzed the different components of our

pipeline, presenting their pros and cons. Finally, we showed that the energy minimization framework

is complementary to the resurgence of convolutional neural network based techniques, which can help

build better scene understanding systems.
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Chapter 5

Cropped Word Recognition: Holistic View

This chapter presents a holistic view of recognizing scene text. Previous methods addressed this

problem by first detecting individual characters, and then forming them into words. Such approaches

often suffer from weak character detections, due to large intra-class variations, even more so than char-

acters from scanned documents. We take a different view of the problem and present a holistic word

recognition framework in this chapter. In this, we first represent the scene text image and synthetic

images generated from lexicon words using gradient-based features. We then recognize the text in the

image by matching the scene and synthetic image features with our novel weighted dynamic time warp-

ing (wDTW) approach. The proposed holistic word recognition approach can be applied for recognition

of non-European scene texts where the literature has not progressed much so far. However, we restrict

to English languages for our experimental analysis in this chapter.

5.1 Introduction

The document image analysis community has shown a huge interest in the problem of scene text

understanding in recent years [33, 121, 166]. This problem involves various sub-tasks, such as text

detection, isolated character recognition, word recognition. Due to recent works [31, 40, 113], text

detection accuracies have significantly improved. However, the success of methods for recognizing

words still leaves a lot to be desired. We aim to address this issue in this chapter.

The problem of recognizing words has been looked at in two broads contexts – with and without

the use of a lexicon [107, 108, 164, 169]. In the case of lexicon-driven word recognition, a list of words

is available for every scene text image. The problem of recognizing the word now reduces to that of

finding the best match from the list. This is relevant in many applications, such as: (1) recognizing
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certain text in a grocery store, where a list of grocery items can serve as a lexicon, (2) robotic vision in

an indoor/outdoor environment.

Lexicon-driven scene text recognition may appear to be an easy task, but the best methods up until

now have only achieved accuracies in the low 70s on this problem. Some of these recent methods can

be summarized as follows. In [164], each word in the lexicon is matched to the detected set of character

windows, and the one with the highest score is reported as the predicted word. This strongly top-down

approach is prone to errors when characters are missed or detected with low confidence. In our work

(Chapter 4), we improved upon on this model by introducing a framework, which uses top-down as well

as bottom-up cues. Rather than pre-selecting a set of character detections, we defined a global model

that incorporates language priors (top-down) and all potential characters (bottom-up). In [166], Wang et

al. combined unsupervised feature learning and multi-layer neural networks for scene text detection and

recognition. While both these recent methods improved the previous art significantly, they suffer from

the following drawbacks: (i) The need for language-specific character training data. (ii) Do not use the

entire visual appearance of the word. (iii) Prone to errors due to false or weak character detections.

In this chapter, we present an alternative path and propose a holistic word recognition method for

scene text images. We address the problem in a recognition by retrieval framework. This is achieved

by transforming the lexicon into a collection of synthetic word images, and then posing the recognition

task as the problem of retrieving the best match from the lexicon image set. The retrieval framework

introduced in our approach is similar in spirit to the influential work of [127] in the area of handwritten

and printed word spotting. We, however, differ from their approach as follows. (1) Our matching score

is based on a novel feature set, which shows better performance than the profile features in [127]. (2)

We formulate the problem of finding the best word match in a maximum likelihood framework and

maximize the probability of two features sequences originating from same word class. (3) We propose

a robust way to find the match for a word, where k in k-NN is not hand picked, rather dynamically

decided based on the randomness of the top retrievals.

Motivation and overview. The problem of recognizing text (including printed and handwritten text)

has been addressed in many ways. Detecting characters and combining them to form a word is a popular

approach as mentioned above [108,164]. Often these methods suffer from weak character detections as

shown in Fig. 5.1(a). An alternative scheme is to learn a model for words [15]. There are also approaches

that recognize a word by first binarizing the image, and then finding each connected component [85].

These methods inherently rely on finding a model to represent each character or word. In the context of
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Figure 5.1 Overview of the proposed system. We recognize the word in the test image by matching it

with synthetic images corresponding to the lexicon words. A novel gradient based feature set is used to

represent words. Matching is done with a weighted DTW scores computed with these features. We use

the top k matches to determine the most likely word in the the scene text image.

scene text recognition, this creates the need for a large amount of training data to cover the variations in

scene text. Examples of such variations are shown in Fig. 5.1(b). Our method is designed to overcome

these issues.

We begin by generating synthetic images for the words from the lexicon with various fonts and styles.

Then, we compute gradient-based features for all these images as well as the scene text (test) image. We

then recognize the text in the image by matching the scene and synthetic image features with our novel

weighted dynamic time warping (DTW). The weights in the DTW matching scores are learned from

the synthetic images, and determine the discriminativeness of the features. We use the top k retrieved

synthetic images to determine the word most likely to represent the scene text image (see Section 5.2).

An overview of our method is shown in Fig. 5.1.

We present results on two challenging public datasets, namely street view text (SVT) and ICDAR

2003 (see Section 5.3). We experimentally show that popular features like profile features are not robust

enough to deal with challenging scene text images. Our experiments also suggest that the proposed

gradient at edges based features outperform profile features for the word matching task. In addition to

being simple, the proposed method improves the accuracy by more than 5% over recent works [108,

164, 166].
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Figure 5.2 (a) Character detection is a chal-

lenging problem in the context of scene text im-

ages. (b) Large intra-class variations in scene text

images makes it challenging to learn models to

represent words.

(a)

(b)

The main contributions of this chapter are two fold: (i) We show that holistic word recognition for

scene text images is possible with high accuracy, and achieve a significant improvement over prior art.

(ii) The proposed method does not use any language-specific information, and thus can be easily adapted

to any language. Additionally, the robust synthetic word retrieval for scene text queries also shows that

our framework can be easily extended for text-to-image retrieval. However, this is beyond the scope of

the chapter.

5.2 Word representation and matching

We propose a novel method to recognize the word contained in an image as a whole. We extract

features from the image, and match them with those computed for each word in the lexicon. To this

end, we present a gradient based feature set, and then a weighted dynamic time warping scheme in the

remainder of this section.

Gradient based features. Some of the previous approaches binarize a word image into character vs

non-character regions before computing features [85]. While such pre-processing steps can be effective

to reduce the dimensionality of the feature space, it comes with its disadvantages. The results of bina-

rization are seldom perfect, contain noise, and this continues to be an unsolved problem in the context

of scene text images. Thus, we look for other effective features, which do not rely on binarized images.

Inspired by the success of Histogram of Oriented Gradient (HOG) features [35] in many vision tasks,

we adapted them to the word recognition problem.

To compute the adapted HOG features, we begin by applying the Canny edge operator on the image.

Note that we do not expect a clean edge map from this result. We then compute the orientation of

gradient at each edge pixel. The gradient orientations are accumulated into histograms over vertical

(overlapping) strips extracted from the image. The histograms are weighted by the magnitude of the

80



Figure 5.3 An illustration of feature

computation. We divide the word image

into vertical strips. In each strip we com-

pute histogram of gradient orientation at

edges. These features are computed for

overlapping vertical strips.

gradient. An illustration of the feature computation process in shown in Fig. 5.3. At the end of this step,

we have a representation of the image in terms of a set of histograms. In the experimental section we

will show that these easy to compute features are robust for the word matching problem.

Matching words. Once words are represented using a set of features, we need a mechanism to match

them. The problem is how to match the scene text and synthetic lexicon based images1. We formulate

the problem of matching scene text and synthetic words in a maximum likelihood framework.

Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , ym} be the feature sequences from a given word

and its candidate match respectively. Each vector xi and yi is a histogram of gradient features extracted

from a vertical strip. Let ω = {ω1, ω2, . . . , ωK} represent a set of word images where K is the total

number of lexicon words. Since we assume features at each vertical strips are independent, the joint

probability that the feature sequences X and Y originate from the same word ωk, i.e. P (X,Y |ωk) can

be written as the multiplication of joint probabilities of features originating from the same strip, i.e.,

P (X,Y |ωk) =
∏

i

P (xi, yi|ωk). (5.1)

In a maximum likelihood framework, the problem of finding an optimal feature sequence Y for a given

feature sequence X is equivalent to maximize
∏

i P (xi, yi|ωk) over all possible Y s. This can be written

as minimization of an objective function f , i.e., minY
∑

i f(xi, yi|ωk). Where f is the weighted squared

l2-distance between feature sequences X and Y i.e.,f(xi, yi) = (xi − yj)wi(xi − yj). Here wi is the

weight to feature xi. These weights are learned from the synthetic images, and are proportional to

the discriminitiveness of features. In other words, given a feature sequence X and a set of candidate

sequences Y s, the problem of finding the optimal matching sequence becomes as minimizing f over all

candidate sequences Y . This leads to the problem of alignment of sequences. We propose a weighted

dynamic programming based solution to solve this problem. Dynamic time warping [136] is used to

1Details for generating the synthetic lexicon-based images are given in Section 5.3.
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compute a distance between two time series. The weighted DTW distance DTW (m,n) between the

sequences X and Y can be recursively computed using dynamic programming as:

DTW (i, j) = min



















DTW (i− 1, j) +D(i, j)

DTW (i, j − 1) +D(i, j)

DTW (i− 1, j − 1) +D(i, j),

(5.2)

where D(i, j) is the distance between features xi and yj , and the local distance matrix D is written as:

D = (X−Y )TW (X−Y ). The diagonal matrix W is learnt from synthetic images. For this we cluster

all the feature vectors computed over vertical strips of synthetic images and entropy of each cluster as

follows.

H(clusterp) = −
K
∑

k=1

Pr(yj ∈ ωk, yj ∈ clusterp)× logK(Pr(yj ∈ ωk, yj ∈ clusterp)), (5.3)

where Pr is the joint probability of feature yj originating from class ωk and falling in clusterp. High

entropy of a cluster indicates that the features corresponding to that cluster are almost equally distributed

in all the word classes. In other words, such features are less informative, and thus are assigned a low

weight during matching. The weight wj associated with a feature vector yj is computed as: wj =

1−H(clusterp), if yj ∈ clusterp.

Warping path deviation based penalty. To give high penalty to those warping paths (ref. Chapter 2)

which deviate from the near diagonal paths we multiply them with a penalty function log10(wp−wpo),

where wp and wpo are warping path of DTW matching and diagonal warping path respectively. This

penalizes warping paths where a small portion in one word is matched with a large portion in another

word.

Dynamic k-NN. Given a scene text and a ranked list of matched synthetic words (each corresponding to

one of the lexicon words), our goal is to find the text label. To do so, we apply k-nearest neighbor. One

of the issues with a nearest neighbor approach is finding a good k. This parameter is often set manually.

To avoid this, we use dynamic k-NN. We start with an initial value of k and measure the randomness of

the top k retrievals. Randomness is maximum when all the top k retrievals are different words, and is

minimum (i.e. zero) when all the top k retrieval are same. We increment k by 1 until this randomness

decreases. At this point we assign the label of the most frequently occurring synthetic word to a given

scene text.

In summary, given a scene text word and a set of lexicon words, we transform each lexicon into

a collection of synthetic images, and then represent each image as a sequence of features. We then
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Method SVT-WORD ICDAR(50)

Profile features + DTW [127] 38.02 55.39

Gradient based features + wDTW 75.43 87.25

NL + Gradient based features + wDTW 77.28 89.69

Table 5.1 Feature comparison: We observe that gradient based features outperform profile features for

the holistic word recognition task. This is primarily due to the robustness of gradient features in dealing

with blur, noise, large intra-class variations. Non-local (NL) means filtering of scene text images further

improves recognition performance.

pose the problem of finding candidate optimal matches for a scene text image in a maximum likelihood

framework and solve it using weighted DTW. The weighted DTW scheme provides a set of candidate

optimal matches. We then use dynamic k-NN to find the optimal word in a given scene text image.

5.3 Experiments and results

In this section we present implementation details of our approach, and its detailed evaluation, and

compare it with the best performing methods for this task, namely [108, 117, 164, 166].

5.3.1 Datasets

For the experimental analysis we used two datasets, namely street view text (SVT) [4] and ICDAR

2003 robust word recognition [11]. The SVT dataset contains images taken from Google Street View.

We used the SVT-word dataset, which contains 647 images, relevant for the recognition task. A lex-

icon of 50 words is also provided with each image. The lexicon for the ICDAR dataset was obtained

from [164]. Following the protocol of [164], we ignore words with less than two characters or with non-

alphanumeric characters, which results in 863 words overall. Note that we could not use the ICDAR

2011 dataset since it has no associated lexicon.

5.3.2 Implementation details

Synthetic Word Generation. For every lexicon word we generated synthetic words with 20 different

styles and fonts using ImageMagic.2 We chose some of the most commonly occurring fonts, such as

2
www.imagemagick.org/
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Figure 5.4 Few sample results. Top-5 synthetic word retrieval results for scene text query. First

column shows the test image. Top-5 retrieval for the test image are shown from left to right in each

row. The icon in the right most column shows whether a word is correctly recognized or not. We

observe that the proposed word matching method is robust to variations in fonts and character size. In

the fourth row, despite the unseen style of word image “liquid" the top two retrievals are correct. (Note

that following the experimental protocol of [164], we do case-insensitive recognition). The last two

rows are failure cases of our method, mainly due to near edit distance words (like center and centers) or

high degradations in the word image.

84



Method SVT-WORD ICDAR(50)

ABBYY [10] 35 56

Wang et al. [164] 56 72

Wang et al. [166] 70 90

Novikova et al. [117] 72 82

Pairwise CRF (Chapter 4) 73 82

This work 77.28 89.69

Table 5.2 Cropped word recognition accuracy (in %): We show a comparison of the proposed method

to the popular commercial OCR system ABBYY and many recent methods. We achieve a significant

improvement over previous works on SVT and ICDAR.

Arial, Times, Georgia. Our observations suggest that font selection is not a very crucial step for overall

performance of our method. A five pixel-width padding was done for all the images. We noted that all

the lexicon words were in uppercase, and that the scene text may contain lowercase letters. To account

for these variations, we also generated word images where, (i) only the first character is in upper case;

and (ii) all characters are in lower case. This results in 3 × lexicon size × 20 images in the synthetic

database. For the SVT dataset, the synthetic dataset contains around 3000 images.

Preprocessing. Prior to feature computation, we resized all the word images to a width of 300 pixels,

with the respective aspect ratio. We then applied the popular non-local means filter smoothing on scene

text images. We also remove the stray edges pixels less than 20 in number. Empirically, we did not find

this filtering step to be very critical in our approach.

Features. We used vertical strips of width 4 pixels and a 2-pixel horizontal shift to extract the histogram

of gradient orientation features. We computed signed gradient orientation in this step. Each vertical strip

was represented with a histogram of 9 bins. We evaluated the performance of these features in Table 5.1,

in comparison with that of profile features used in [127]. Profile features consist of: (1) projection

profile, which counts the number of black pixels in each column. (2) upper and lower profile, which

measures the number of background pixels between the word and the word-boundary (3) transition

profile, is calculated as the number of text-background transitions per column. We used the binarization

method in Chapter 3 prior to computing the profile features. Profile features have shown noteworthy

performance on tasks such as handwritten and printed word spotting, but fail to cope with the additional

complexities in scene text (e.g., low contrast, noise, blur, large intra-class variations). Infact, our results

show that gradient features substantially outperform profile based features for scene text recognition.
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Figure 5.5 Few images from ICDAR 2003

dataset where our method fails. This may be ad-

dressed with inclusion of more variations in our

synthetic image database.

Weighted dynamic time warping. In our experiments we used 30 clusters to compute the weights. Our

analysis comparing various methods are shown in Table 5.1. We observe that with wDTW, we achieve

a high recognition accuracy on both the datasets.

Dynamic k-nearest neighbor. Given a scene text image to recognize, we retrieve word images from

database of synthetic words. The retrieval is ranked based on similarity score. In other words, synthetic

words more similar to the scene text word get a higher rank. We use dynamic k-NN with an initial value

of k = 3 for all the experiments.

5.3.3 Comparison with previous work

We retrieve synthetic word images corresponding to lexicon words and use dynamic k-NN to assign

text label to a given scene text image. We compared our method with the most recent previous works

related to this task, and also the commercial OCR ABBYY in Table 5.2. From the results, we see that

the proposed holistic word matching based scheme outperforms not only our earlier work (Chapter 4),

but also many recent works as [117, 164, 166] on the SVT dataset. On the ICDAR dataset, we perform

better than almost all the methods, except [166]. This marginally inferior performance (of about 0.3%)

is mainly because our synthetic database fails to model few of the fonts in ICDAR dataset (Fig. 5.3.3).

These type of fonts are rare in the street view images. A specific preprocessing or more variations in the

synthetic dataset may be needed to deal with such fonts. Fig. 5.4 shows the qualitative performance of

the proposed method on sample images. We observe that the proposed method is robust to noise, blur,

low contrast and background variations.

In addition to being simple, our method significantly improves the prior art. This gain in accuracy

can be attributed to the robustness of our method, which (i) does not rely on character segmentation

rather do holistic word recognition; and (ii) learns discriminitiveness of features in a principled way and

use this information for robust matching using wDTW.
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Figure 5.6 A few sample images with text in non-planner surface, e.g., text on cloth banner and curved

surfaces. We collected a small subset of such images from NEOCR [12] and our own collection, and

evaluated our recognition methods on it.

5.4 Extension to specific cases

We have tested our methods on public benchmark datasets. These datasets contain images from street

scenes with different view angle, variable illumination, different contrast and occlusion. However, we

have not verified our methods on specific cases such as text on curved surface and cloth banner. This is

mainly due to the unavailability of sufficient training data for these specific cases of scene text images.

We conducted a small experiment to demonstrate the generality and extensibility of our recognition

methods. To this end, we collected a dataset of 20 images where text is written on non-planer surfaces.

These images are manually collected from NEOCR dataset [12] and our personal collection. We have

created a lexicon of size 50 corresponding for each word. Few of the images of this dataset are shown

in Figure 5.6. We observe that these images have non-linear distortions.

We have tested our two recognition methods on this small test set, namely higher order CRF method

(Chapter 4) and holistic recognition method (this chapter). Our methods as such have limited success on

recognizing these images. We achieve 50% and 65% word recognition accuracies with these methods

respectively. This inferior performance is mainly due to fact that the character and word distortions

present in these images are not seen by these methods.

In order to extend our methods to these categories of scene texts, we enriched our dataset with

examples of images subjected to non-linear transformations. For this we created synthetic images with

ten popular fonts and two different plane to cylinder transformations. We have shown few examples

of these synthetic images in Figure 5.5. We added these images to our synthetic database, and the
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Attributes OCR based Higher order CRF Holistic recognition

Cursive font × ×

Uniform background × ×

Complex background × ×

Low contrast × ×

Occlusion × ×

High Illumination change × ×

Digital-born images × ×

Table 5.3 Which method is effective where? Here tick mark under any attribute a and the method

m shows that the method m is more effective as compared to others in recognizing scene text having

attribute a.

extracted characters of these synthetic words to our character training set. We re-trained our character

classifier with this enrichment to the training data. We, then re-evaluated our recognition methods, i.e.,

higher order CRF method and holistic recognition method. These methods achieved 60% and 80%

word recognition accuracy on this set respectively, which is significantly better as compared to original

implementation. This shows the robustness and generalization of our methods on scene text with variety

of real world challenges. Although our experiment is preliminary with a small number of images, we

believe with some more engineering efforts our performance on recognizing specific cases of scene text

can be further enhanced.

5.5 Comparison with our other recognition methods

We proposed three effective ways for scene text recognition problem in our thesis: (i) our first ap-

proach was the off-the-shelf OCR with our binarization (Chapter 3), (ii) in our second approach of word

recognition, we proposed a method where character detection scores and languages priors are integrated

in a higher order CRF (Chapter 4), and (iii) finally, in this chapter we proposed a holistic recognition

method which bypasses the need of character localization and binarization. We will refer these methods

as OCR based method, higher order CRF method and holistic recognition method respectively from

here onwards.
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Figure 5.7 We added few text images with

non-linear transformation, e.g., plane to cylin-

der transformation to our synthetic text image

database.

For a deeper analysis of the results, we categorized the images from subsets of the datasets we

use, based on presence of following attributes : (i) cursive fonts, (ii) uniform background, (iii) complex

background, (iii) low contrast, (iv) occlusion, (v) high illumination change, and (vi) digital-born images.

We evaluated all our methods separately on images with above categories of attributes. We found that

our proposed methods are complementary in nature, and each method is superior to others in addressing

a specific challenge, e.g., our OCR based method performs better than others if background is uniform,

our holistic recognition methods works better as compared to others in case of occlusion, and so on.

Table 5.3 summarizes various attributes present in scene text images, and which of our method is more

effective as compared to others in recognition of scene text with specific attributes. In Figure 5.8, we

show few example scene text images and the method which is more effective in recognizing them.

We performed another simple experiment on IIIT-5K dataset with small lexicon to validate the com-

plementary nature of our proposed recognition methods. On this dataset our OCR based, higher order

CRF and holistic recognition methods achieve 68%, 78%, and 75% respectively. When we further ana-

lyze these results and found that 84% of the words are recognized correctly by one of the methods. This

implies that a simple combinations of these methods can be used for applications like text-to-image

retrieval or suggesting multiple recognition outputs (three in our case) with one being correct with a

high rate. Smart ways of combining these recognition methods can also be explored in the future, for

example, lexicon reduction methods purposed in [134] on top of our higher order CRF method can be

used to reduce the lexicon size with preserving the ground truth in the reduced lexicon. Once lexicon

size is reduced our holistic recognition method can be more effectively used to recognize the words.

5.6 Summary

In this chapter, we proposed an holistic method to recognize scene text. Our method neither requires

character segmentation nor relies on binarization, but instead performs holistic word recognition. We

show a significantly improved performance over the most recent works from 2011 and 2012. The
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(a) (b) (c)

Figure 5.8 Images categorized according to the challenges they represent. We observe that for cleaner

images, as shown in (a), OCR based method is most effective. Our higher order CRF method have a bias

towards a dictionary word, e.g. it recognizes 20p as 200. Moreover, since our higher order CRF method

is not trained on special characters, it does mistakes on recognizing words with special characters. On

the other hand our holistic recognition method makes mistakes in case of its matching with similar

appearance words, e.g., RIDE gets confused with BIKE, GLASS with CLASS. For images with low

contrast, complex background images, fancy fonts, as shown in (b), our higher order CRF method

performs better than others. For the cursive fonts, missing or fancy characters our holistic recognition

method shows better performance. Few such examples are shown in (c).

robustness of our word matching approach shows that the natural extension of this work can be in

direction of “text to scene image" retrieval.

We have also compared our holistic method with two other effective recognition methods proposed

in Chapter 3 and Chapter 4 respectively. All these recognition methods are complementary in nature,

and can be combined effectively in future for higher scene text recognition rates.
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Chapter 6

Text2Image Retrieval

In this chapter, we present an approach for the text-to-image retrieval problem based on textual

content present in images. Given the recent developments in understanding text in images, an appealing

approach to address this problem is to localize and recognize the text, and then query the database,

as in a text retrieval problem. We show that such an approach, despite being based on state of the

art methods, is insufficient, and propose a method, where we do not rely on an exact localization and

recognition pipeline. We take a query-driven search approach, where we find approximate locations of

characters in the text query, and then impose spatial constraints to generate a ranked list of images in

the database. The retrieval performance is evaluated on public scene text datasets as well as three large

datasets, namely IIIT scene text retrieval, Sports-10K and TV series-1M, we introduce. We further boost

our performance by using deep character classifier.

6.1 Introduction

In the context of ever-growing large data collections, there are many challenging problems like

searching for, and retrieving relevant content. One approach to retrieval uses text as a query, with

applications such as Google image search, which relies on cues from meta tags or text available in the

context of the image. The success of this approach is rather limited by the quality of the meta tags and

the contextual text. An alternate approach like Video Google [148] enables image search using image

as a query, by finding visually similar regions in the database. Although this method exploits the visual

content, it may not necessarily be sufficient. For instance, consider four photos of restaurants shown in

Figure 6.1. There is very little visual information to suggest that these four images are of restaurants,

and thus are unlikely to be retrieved together by such methods. However, the fact that all these images
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Figure 6.1 Consider an example query for restaurants. Here we show four images of restaurants,

which have insufficient visual cues (such as building style) to group them into a single restaurant cate-

gory. On the other hand, the text “restaurant" appearing on the banner/awning is an indispensable cue

for retrieval. We present a text-to-image retrieval method based on the textual content present in images.

contain the word restaurant is a very useful cue in grouping them. In this work, we aim to fill this gap in

image retrieval with text as a query, and develop an image-search based on the textual content present

in it.

The problem of recognizing text in images or videos has gained a huge attention in the computer

vision community in recent years [29, 40, 108, 142, 144, 164, 165]. Although exact localization and

recognition of text in the wild is far from being a solved problem, there have been notable successes. We

take this problem one step further and ask the question: Can we search for query text in a large collection

of images and videos, and retrieve all occurrences of the query text? Note that, unlike approaches

such as Video Google [148], which retrieve only similar instances of the queried content, our goal is

to retrieve instances (text appearing in different places or view points), as well as categories (text in

different font styles).

Plausible approaches. One approach for addressing the text-to-image retrieval problem is based on

text localization, followed by text recognition. Once the text is recognized, the retrieval task becomes

equivalent to that of text retrieval. Many methods have been proposed to solve the text localization

and recognition problems [31, 40, 107, 108, 113]. We adapted two of these methods for our analysis

with the implementation from [13, 14]. We transformed the visual text content in the image into text,

either with [113] directly, or by localizing with [40], and then recognizing with [108]. In summary, we

recognize the text contained in all images in the database, search for the query text, and then rank the

images based on minimum edit distance between the query and the recognized text.
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Method mAP

Neumann and Matas [113] 23.32

SWT [40]+ Mishra et al. [108] 19.25

Wang et al. [164] 21.25

Table 6.1 Baseline results for text-to-image retrieval on the street view text dataset [164] are shown

as mean average precision (mAP) scores. All the unique ground truth words in the dataset are used as

queries. The first two methods, based on the state of the art text localization and recognition schemes,

perform poorly. Wang et al. [164] is a word spotting method, which detects and recognizes the lexicon

words in an image. In comparison, our approach, which does not rely on an exact localization and

recognition pipeline, achieves an mAP of 56.24 (see Table 6.3).

Table 6.1 shows the results of these two approaches on the street view text (SVT) dataset. Note

that both of them fail to achieve a good performance. This poor show is likely due to the following:

(i) The loss of information during localization/recognition is almost irreversible. (ii) The recognition

methods are not query-driven, and do not take advantage of the second or the third best predictions of

the classifier. (iii) The variation in view point, illumination, font style, and size lead to incorrect word

localization and recognition. In other words, these approaches heavily rely on the localization and the

recognition performance, making them susceptible to failures in both these phases.

In terms of not relying on an explicit localization, the closest to our work is [164]. Although it is

a method for spotting (detecting and recognizing) one of the few (∼50) lexicon words in one image.

In contrast, we aim to spot query words in millions of images, and efficiently retrieve all occurrences

of query. Thus our goals are different. Furthermore, the success of [164] is largely restricted by the

size of the lexicon. We have performed two tests to show that adapting it to our problem is inferior to

our proposed approach. (i) Using all the query words as lexicon, it gives a mean AP of 21.25% on the

SVT dataset (see Table 6.1). (ii) Using their character detection, and then applying our indexing and

re-ranking schemes, we obtain an mAP of 52.12%, about 4% lower than our approach.

Another plausible approach is based on advancements in retrieving similar visual content, e.g. bag

of words based image retrieval [148]. Such methods are intended for instance retrieval with image as

a query. It is not clear how well text queries can be used in combination with such methods to retrieve

scene text appearing in a variety of styles.
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Proposed method. We take an alternate approach, and do not rely on an accurate text localization and

recognition pipeline. Rather, we do a query-driven search on images and spot the characters of the

words of a vocabulary1 in the image database (Section 6.2.1). We then compute a score characterizing

the presence of characters of a vocabulary word in every image. The images are then ranked based

on these scores (Section 6.2.2). The retrieval performance is further improved by imposing spatial

positioning and ordering constraints (Section 6.2.3). We demonstrate the performance of our approach

on publicly available scene text datasets. For a more comprehensive study, we not only need a large

dataset with diversity, but also a dataset containing multiple occurrences of text in different fonts, view

points and illumination conditions. To this end, we introduce two video datasets, namely Sports-10K

and TV series-1M, with more than 1 million frames, and an image dataset, IIIT scene text retrieval (STR).

To our knowledge, the problem of text-to-image retrieval has not been looked at in such a challenging

setting yet.

Another possible way to solve the retrieval performance is to obtain text proposals, recognize them

and do a simple text based search. Object proposals are the recent trend in object detection commu-

nity [178]. Inspired by their success text proposal methods are also devised [61]. These methods

provide a ranked list of candidate text regions. These regions with recognition pipeline can significantly

boost the retrieval performance of the method. The retrieval results obtained using text proposal based

methods can also be ensembled with ours in future.

6.2 Scene text indexing and retrieval

Our retrieval scheme works as follows: we begin by detecting characters in all the images in the

database. After detecting characters, we have their potential locations. We assume that a set of vocabu-

lary words, is given to us a priori. We then spot characters of the vocabulary words in the images and

compute a score based on the presence of these characters. Given our goal of retrieving images from a

large dataset, we need an efficient method for retrieval. To achieve this, we create an inverted index file

containing image id and a score indicating the presence of characters of the vocabulary words in the im-

age. Initial retrievals are obtained using the inverted index. We then re-rank the top-n initial retrievals

by imposing constraints on the order and the location of characters from the query text. Figure 6.2

summarizes our indexing and retrieval scheme.

1We define vocabulary as a set of possible query words.
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(a) (b)

Figure 6.2 Summary of our indexing and retrieval scheme. (a) In the offline phase, we first detect the

characters. We then compute a score indicating the presence of characters from the vocabulary words

(vocabulary presence score), and create an inverted index file with this score and image id. In the online

phase, user provides a query, which is searched on the indexed database to retrieve images based on

the vocabulary presence score. The top-n retrievals are then re-ranked using our re-ranking schemes.

(b) After character detection, an image Im is represented as a graph Gm, where nodes correspond to

potential character detections and edges model the spatial relation between two detections. The nodes

are characterized by their character likelihood vector U , and the edges by their character pair priors V .

This graph is used to prune false positive detections, and also to impose order and position constraints

on the characters during the re-ranking phase. See Section 6.2 for details.

6.2.1 Potential character localization

Given a large collection of images or video frames, the first step of our retrieval pipeline is to detect

potential locations of characters. We do not expect ideal character detection from this stage, but instead

obtain many potential character windows, which are likely to include false positives. To achieve this,

we train a linear SVM classifier with HOG features [35]. We then use a sliding window based detection

to obtain character locations and their likelihoods. The character localization process is illustrated in

Figure 6.3. Note that this is an offline step in our retrieval pipeline.

For a robust localization of characters using sliding windows, we need a strong character classifier.

The problem of classifying natural scene characters typically suffers from the lack of training data,

e.g. [36] uses only 15 samples per class. It is not trivial to model the large variations in characters using

only a few examples. Also, elements in a scene may interfere with the classifier, and produce many

false positives. For example, the corner of a door can be detected as the character ‘L’. To deal with these
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issues, we add more examples to the training set by applying small affine transformations to the original

character images.2 We further enrich the training set by adding many negative examples (non-characters,

i.e. background). With this strategy, we achieve a significant boost in character classification.

We use a multi-scale sliding window based detector, which is popular in many applications [35,163,

164]. Each window is represented by its top-left (x, y) position, width and height in the original scale.

LetK be the set of all character classes, i.e. English characters (A-Z, a-z), digits (0-9) and a background

class. Given a window i, we compute the likelihood, P (li|hogi), i ∈ K, using Platt’s method [123].

Here hogi denotes the HOG features extracted from the window i. This results in a 63-dimensional

vector for every window, which indicates the presence of a character or background in that window. We

then perform character-specific non maximal suppression (NMS) to prune out weak windows. Further,

since for a given query word, we wish to retrieve all the images where the query word appears either in

upper or lower case, we transform the 63-dimensional vector to a 36-dimensional vector by taking the

maximum between the upper and lower case likelihoods for every character and dropping the likelihood

for background.

6.2.2 Indexing

Once the characters are detected, we index the database for a set of vocabulary words. Consider a

set of vocabulary words {ω1, · · · , ωk}, which are given to us a priori. In a general setting, k can be as

large as the number of words in English or all the words that we are interested in querying.

We first remove a few spurious character windows. To do so, we construct a graph, where each

character detection is represented as a node. These nodes are connected via edges based on their spa-

tial proximity. We then use contextual information, window width, size and spatial distance to remove

some of the edges. In other words, edges between two neighboring characters are removed if: (i) The

width ratio of two neighboring character windows exceeds θwidth, or (ii) The spatial distance between

two character windows is more than θdist, or (iii) The height ratio of two neighbouring character win-

dows exceeds θheight. The thresholds θwidth, θdist and θheight are estimated from the training set. This

may result in isolated nodes, which are discarded. This step essentially removes many false character

windows scattered in the image.

Each node of this graph is described by a 36-dimensional vector Ui. Further, assuming these like-

lihoods are independent, we compute the joint probabilities of character pairs for every edge. In other

2Note that the use of affine transformations in training examples is shown to improve classification accuracy [110, 146].
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words, we associate a 36 × 36 dimensional matrix Vij containing joint probabilities of character pairs

to the edge connecting nodes i and j (see Figure 6.2(b)).

Now, consider a word from the vocabulary ωk = ωk1ωk2 · · ·ωkp, represented by its characters ωkl,1 ≤

l ≤ p, where p is the length of the word. To index an image Im for this word, we divide the image Im

into horizontal strips, each of height H . We then compute a score denoting the presence of characters

from the query in these horizontal strips. This score for an image Im and a word ωk, S(Im, ωk), is

computed as the maximum over all the horizontal strips of the image. In other words, score S(Im, ωk)

is given by:

max
h

p
∑

l=1

max
j
Uj(ωkl) = max

h

p
∑

l=1

max
j
P (ωkl|hogj), (6.1)

where j varies over all the bounding boxes representing potential characters whose top-left coordinate

falls in the horizontal strip and h varies over all the horizontal strips in the image. To avoid the domi-

nance of a single character, we modify the score in (6.1) as:

S(Im, ωk) = max
h

p
∑

l=1

min(max
j
P (ωkl|hogj), τ), (6.2)

where τ is a truncation constant.

Once these scores are computed for all the words in the vocabulary and all the images in the database,

we create an inverted index file [101] containing image id, the vocabulary word and its score. We also

store the image and its corresponding graph (representing character detections) in the indexed database.

These graphs and the associated probabilities are used in our re-ranking schemes, which we will describe

in the following section.

6.2.3 Retrieval and re-ranking

We use the inverted index file to retrieve the images and rank them based on the score computed

in (6.2). This ensures that images containing characters from the query text have a high likelihood in

a relatively small area (the horizontal strip of height H) get a higher rank. However, not all relevant

images may be ranked well in this step, as it does not ensure the correct ordering and positioning of

characters. To address this, we propose two methods to re-rank the results as follows.

Spatial ordering. Character spotting does not ensure that characters are spotted in the same order as in

the query word. We address this by proposing a re-ranking scheme based on spatial ordering (RSO). Let

ψtotal = {⊔ωk1, ωk1ωk2, · · · , ωkp⊔} be the set of all the bi-grams present in the query word ωk, where
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Figure 6.3 Potential character localization. We compute HOG features at various scales for all the

images. These features are then represented using the χ2 kernel. A linear SVM trained on affine

transformed (AT) training samples is used to obtain potential character windows. This results in a 63-

dimensional vector for every window, which denotes the likelihood of every character/background class

in that window.

⊔ denotes whitespace. We also construct a set ψpresent containing the pairs of spatially neighbouring

spotted characters. We now define the score of spatial ordering as Sso(Im, ωk) =
|ψpresent∩ψtotal|

|ψtotal|
, where

| · | is the cardinality. The score Sso(Im, ωk) = 1, when all the characters in the query word are present

in the image, and have the same spatial order as the query word. We use this score to re-rank retrieval

results.

Spatial positioning. The re-ranking scheme based on spatial ordering does not account for spotted

characters being in the correct spatial position. In other words, these characters may not have uniform

inter-character gap. To address this, we use the graphs representing the character detections in the

images, the associated U vectors, and the matrix V to compute a new score. We define a new score

characterizing the spatial positioning of characters of the query word in the image as Ssp(Im, ωk) =

p
∑

l=1

min(max
i
Ui(ωkl), τ) +

p−1
∑

l=1

max
ij

Vij(ωkl, ωkl+1). (6.3)
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This new score is high when all the characters and bi-grams are present in the graph in the same order

as in the query word and with a high likelihood. Additionally, higher value of new score ensures the

correct spatial positioning of the characters. This is because the graph is constructed such that nodes

representing characters spatially close to each other are connected. The retrieval results are then re-

ranked based on the summation of this score and the score Sso obtained from spatial ordering. We refer

to this scheme as re-ranking based on spatial positioning (RSP).

6.2.4 Implementation details

Character detection. We use an overlap threshold of 40% to discard weak detection windows in the

non maximal suppression stage. The character classifiers are trained on the train sets of ICDAR 2003

character [3] and Chars74K [36] datasets. We harvest 48×48 patches from scene images, with buildings,

sky, road and cars, which do not contain text, for additional negative training examples. We then apply

affine transformations to all the character images, resize them to 48 × 48, and compute HOG features.

We analyzed three different variations [45] (13, 31 and 36-dimensional) of HOG. To efficiently train the

classifier with a large set of training examples, we use an explicit feature map [161] and the χ2 kernel.

This feature map allows a significant reduction in classification time as compared to non-linear kernels

like RBF. The performance of this classifier is evaluated in Chapter 4. Additionally, we also evaluate

our retrieval performance by using state of the art CNN character classifier [66].

Score computation. We divide the images into horizontal strips of height 30 pixels and spot characters

from a set of character bounding boxes, as described in Section 6.2.2. The idea here is to find images

where the characters of the vocabulary word have a high likelihood in a relatively small area. We set the

truncation parameter τ = 0.2 in (6.2) empirically, and retrieve an initial set of top-100 results with this

score and re-rank them by introducing spatial ordering and positioning constraints.

6.3 Datasets

We evaluate our approach on three scene text (SVT, ICDAR 2011 and IIIT scene text retrieval) and

two video (Sports-10K and TV series-1M) datasets. The number of images and queries used for these

datasets are shown in Table 6.2.

Street view text [4] and ICDAR 2011 [140]. These two datasets were originally introduced for scene

text localization and recognition. They contain 249 and 255 images respectively. We use all the unique
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Datasets # queries # images/frames

SVT [140] 427 249

ICDAR [140] 538 255

IIIT STR 50 10K

Sports-10K 10 10K

TV series-1M 20 1M

Table 6.2 Scene text datasets (SVT and ICDAR) contain only a few hundred images. We introduce

an image (IIIT scene text retrieval) and two video (Sports-10K and TV series-1M) datasets to test the

scalability of our proposed approach.

ground truth words of these datasets as queries and perform text-to-image retrieval.

IIIT scene text retrieval dataset. The SVT and ICDAR 2011 datasets, in addition to being rela-

tively small, contain many scene text words occurring only once. To analyze our text-to-image retrieval

method in a more challenging setting, we introduce IIIT scene text retrieval (STR) dataset. For this, we

collected data using Google image search with 50 query words such as Microsoft building, department,

motel, police. We also added a large number of distractor images, i.e. images without any text, down-

loaded from Flickr into the dataset. Each image is then annotated manually to say if it contains a query

text or not. This dataset contains 10K images in all, with 10-50 occurrences of each query word. It is

intended for category retrieval (text appearing in different fonts or styles), instance retrieval (text im-

aged from a different view point), and retrieval in the presence of distractors (images without any text).

Video datasets. To analyze the scalability of our retrieval approach, we need a large dataset, where

query words appear in many locations. In this context, we introduce two video datasets. The first one is

from sports video clips, containing many advertisement signboards, and the second is from four popular

TV series: Friends, Buffy, Mr. Bean, and Open All Hours. We refer to these two datasets as Sports-10K

and TV series-1M respectively. The TV series-1M contains more than 1 million frames. Words such

as central, perk, pickles, news, SLW27R (a car number) frequently appear in the TV series-1M dataset.

All the image frames extracted from this dataset are manually annotated with the query text they may

contain.

Annotations are done by a team of three people for about 150 man-hours. We use 10 and 20 query

words to demonstrate the retrieval performance on the Sports-10K and the TV series-1M datasets re-

spectively. All our datasets are available on the project website.
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Dataset Char. spot. RSO RSP

With HOG character classifier

SVT 17.31 46.12 56.24

ICDAR11 24.26 58.20 65.25

IIIT STR 22.11 36.34 42.69

With deep character classifier

SVT 25.50 50.25 62.15

ICDAR11 30.00 64.73 69.55

IIIT STR 24.44 39.00 44.50

Table 6.3 Quantitative evaluation of text-to-image retrieval. We achieve a notable improvement in

mAP with the proposed re-ranking schemes over baseline methods shown in Table 6.1. Another baseline

we compare with uses character detections from [164] in combination with our spatial positioning re-

ranking scheme, which achieves 52.12% mAP on SVT, over 10% lower than our result.

6.4 Experimental analysis

Given a text query our goal is to retrieve all images where it appears. We aim instance, i.e., text

appearing in different view points, as well as category retrieval, i.e., text in different fonts and styles. In

this section, we evaluate all the components of the proposed method to justify our choices.

6.4.1 Retrieval results

We first evaluate our retrieval scheme on image datasets. The retrieval performance is quantita-

tively evaluated using the well-known mean average precision (mAP) measure, which is the mean of

the average precision for all the queries. The results are summarized in Table 6.3. We observe that the

performance of our initial naive character spotting method is comparable to the baselines in Table 6.1.

The re-ranking scheme improves the performance, and we achieve an mAP of 56.24% on SVT and

65.25% on ICDAR. Recall from Table 6.1 that the state of the art localization and recognition based

method only achieves an mAP of 23.32% on SVT. Reasonably high performance on IIIT STR, which

contains instances (text in different viewpoints), categories (text in different fonts), and distractors (im-

ages without any text) shows that the proposed method is not only applicable to retrieve instances and

categories of scene texts, but also robust to distractors. Additional gain in mAP due to change of a better

performing CNN classifier is also clearly noticed in all the datasets.
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Dataset Char. Spot. RSO RSP

P@10 P@20 P@10 P@20 P@10 P@20

With HOG character classifier

Sports 26.21 24.26 39.11 38.32 44.82 43.42

TV series 40.22 39.20 58.15 57.21 59.28 59.02

With deep character classifier

Sports 29.12 26.25 42.24 41.50 47.20 46.25

TV series 44.25 44.00 62.12 61.85 64.15 63.88

Table 6.4 Quantitative analysis of retrieval results on video datasets. We choose 10 and 20 query

words for Sports-10K and TV series-1M respectively. We use top-n retrieval to compute precision at n

(denoted by P@n).

We then evaluate the scalability of our proposed scheme on two large video datasets. We use preci-

sion computed using the top-n retrievals (denoted by P@n) as the performance measure. These results

on video datasets are summarized in Table 6.4. The proposed re-ranking scheme achieves P@20 of

43.42% and 59.02% on Sports-10K and TV series-1M datasets respectively. Low resolution videos and

fancy fonts appearing in advertisement boards make the Sports-10K dataset challenging, and thus the

precision values are relatively low for this dataset.

Our indexing scheme allows us to retrieve images from a large dataset containing 1M images in

about 3 seconds. The sliding window based character detection step and computation of index file are

performed offline. They take around 9 seconds and 7 seconds per image.

Qualitative results of the proposed method are shown in Figure 6.4 for the query words restaurant

on SVT, motel and department on IIIT STR. We retrieve all the occurrences of the query restaurant

from SVT. The IIIT STR dataset contains 39 different occurrences of the word motel, with notable

variations in font style, view point and illumination. Our top retrievals for this query are quite significant,

for instance, the tenth retrieval, where the query word appears in a very different font. The query

word department has 20 occurrences in the dataset. Few of these occurrences are on the same building.

We observe that, overcoming the changes in the visual content, the relevant images are ranked high.

Figure 6.5(a) shows precision-recall curves for two text queries: department and motel on IIIT STR.

Our method achieves AP = 74.00 and 48.69 for these two queries respectively. The method tends to fail

in cases where almost all the characters in the word are not detected correctly or when the query text

appears vertically. A few such cases are shown in Figure 6.5(b).
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(a) Text query: restaurant

(b) Text query: motel

Figure 6.4 Text query example: Top-10 retrievals of our method on SVT and IIIT STR are shown. (a)

Text query: “restaurant". There are in all 8 occurrences of this query in the SVT dataset. The proposed

scheme retrieves them all. The ninth and the tenth results contain many characters from the query like R,

E, S, T, A, N. (b) Text query: “motel". There are in all 39 occurrences of query in the IIIT STR dataset,

with large variations in fonts, e.g. the first and the tenth retrievals. A failure case of our approach is when

a highly similar word (hotel in this case) is well-ranked. These results support our claim of instance as

well as category retrieval.

We also show result of our method on Sports-10K video dataset. These results are shown in Fig-

ure 6.6. We observe that our method successfully able to retrieve text appearing in wide variety of

styles.
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Figure 6.5 (a) Precision-Recall curves for two queries on the IIIT scene text retrieval dataset. The blue

(solid) and green (dotted) curves correspond to queries “department" and “motel" respectively. (b) A

few failure cases are shown as cropped images, where our approach fails to retrieve these images for the

text queries: Galaxy, India and Dairy. The main reasons for failure are: the violation of near horizontal

assumption for scene texts (in case of Galaxy and India), or a stylish font (Dairy).

6.5 Summary

We have demonstrated text-to-image retrieval based on the textual content present in images and

videos. The query-driven approach we propose outperforms localization and recognition pipeline based

methods [40,113]. The benefits of this work over methods based on a localization-recognition pipeline [40,

113] are: (i) It does not require explicit localization of the word boundary in an image. (ii) It is query-

driven, thus even in cases where the second or the third best predictions for a character bounding box

are correct, it can retrieve the correct result. We also showed that ensembelling the recent methods such

as deep character classifier instead of hand crafted feature based character classifier improves the mAP.

The holistic recognition method presented in Chapter 5 can also be explored for text to image re-

trieval. However, there are two limitations with such an approach, (i) the DTW matching used in holis-

tic recognition are computationally expensive and ill-suited for our large scale image retrieval system,

and (ii) the holistic recognition requires accurate word bounding boxes. The method presented in this

chapter works without explicit word localization.

There are few recent works where exact localization of objects (texts) is avoided [61, 122], rather

a set of text proposals are obtained. We also adopted [61] for our datasets, and fed to modern scene

104



(a) Text query: PAKISTAN

(b) Text query: SONY

Figure 6.6 We show top-5 retrieval results of our method from the sports 10K video dataset for two

queries (a) PAKISTAN (b) SONY.

text recognition engines (including our higher order CRF method). After obtaining the recognized texts

we perform simple text based search. This simple method when tested on one of our datasets namely,

Sports-10K achieves significantly high P@10 and P@20 (we obtain 65% and 60% of P@10 and P@20

from this method). Such method can also integrated with our query driven approach for even better

retrieval performance in future.

To sum up, we have proposed a robust and scalable solution for text to image retrieval problem. Our

method is effective in retrieving both category as well as instance of scene text. We have demonstrated

our retrieval results on large-scale image and video datasets.
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Chapter 7

Conclusion and Future Work

In this chapter we conclude this thesis by discussing the contributions, impact and comparisons of

our proposed approaches with contemporary methods. Finally, we also provide the future directions of

this dissertation.

7.1 Discussion

This thesis targets the problem of recognizing text in scene images and retrieving images or frames

from a large database using textual cues.

We have presented three effective ways of scene text recognition. First, we presented recognition

using robust segmentation (binarization). To this end, we have proposed a principled energy minimiza-

tion based framework for scene text binarization. The proposed energy formulation uses the color and

stroke features of text, and produces clean binary output. The proposed method in combination with

the off-the-shelf open source OCR significantly improves the recognition performance on public bench-

mark datasets. Next, we presented a framework where we bypass hard segmentation and build a CRF

model on potential character locations. We seamlessly integrated language model in terms of higher or-

der priors, and efficiently minimize the corresponding energy function to recognize the words. We then

presented a holistic framework for word spotting. In this, lexicon words are transformed into synthetic

images and the problem of word spotting is posed as matching of scene text words and synthetic words.

The proposed method achieves reasonably high performance on challenging benchmark datasets.

Going ahead, we have proposed a novel scheme for text-to-image retrieval. The benefit of our ap-

proach are two: (i) it does not require explicit localization of the word boundary in an image. (ii) It is

query-driven, thus even in cases where the second or the third best predictions for a character bounding
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box are correct, it can retrieve the correct result. We have demonstrated our results on public scene text

datasets as well as three large datasets, namely, IIIT scene text retrieval, Sports-10K and TV series-1M

which we introduce.

Comparisons with contemporary methods. Our work proposed in Chapter 4 belongs to the class

of word recognition methods which build on individual character localization, similar to methods such

as [58, 111]. In this framework, the potential characters are localized, then a graph is constructed from

these locations, and then the problem of recognizing the word is formulated as finding an optimal path

in this graph [114] or inferring from an ensemble of HMMs [58]. Our approach shows a seamless

integration of higher order language priors into the graph (in the form of a CRF model), and uses more

effective modern computer vision features, thus making it clearly different from previous works.

Since the publication of our original work in CVPR 2012 [108] and BMVC 2012 [107] papers,

several approaches for scene text understanding (e.g., text localization [59, 64, 103, 113], word recogni-

tion [22,64,66,142,167,171] and text-to-image retrieval [16,64,109,134]) have been proposed. Notably,

there has been an increasing interest in exploring deep convolutional network based methods for scene

text tasks (see [22, 59, 64, 66, 166] for example). These approaches are very effective in general, but the

deep convolutional network, which is at the core of these approaches, lacks the capability to elegantly

handle structured output data. To understand this with the help of an example, let us consider the prob-

lem of estimating human pose [157,159], where the task is to predict the locations of human body joints

such as head, shoulders, elbows and wrists. These locations are constrained by human body kinemat-

ics and in essence, form a structured output. To deal with such structured output data, state of the art

deep learning algorithms include an additional regression step [159] or a graphical model [157], thus

showing that these techniques are complementary to the deep learning philosophy. Similar to human

pose, text is structured output data [63]. To better handle this structured data, we develop our energy

minimization framework [107, 108] with the motivation of building a complementary approach, which

can further benefit methods built on the deep learning paradigm. Indeed, we saw that combining the two

frameworks further improves text recognition results (Chapter 4).

Further, our retrieval scheme outperforms localization and recognition pipeline based methods [40,

113]. We have also shown that mAP of our retrieval performance can further be improved with the

integration of deep character classification [66] and recent technique of text proposal [61] followed by

our recognition.
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Impact of this thesis. This thesis advances the field of scene text understanding significantly. The

proposed methods achieve noticeable improvements on word and isolated character recognition accura-

cies, and text binarization performance on multiple benchmark datasets. Many of the methods proposed

in this thesis are based on principled frameworks with very minimal assumptions. This allows for the

possibility of (i) improving the recognition performance further, and (ii) developing solutions for other

languages such as Indian languages scene text recognition where research has not progressed much.

The existing datasets related to scene text understanding were either too small or simple, as a part of

this work we have introduced multiple scene text benchmark datasets. These datasets are being used by

various groups across the globe [66, 132, 171, 173], and are driving research in this area.

7.2 Future directions

This thesis opens many promising avenues for future research as listed below:

• Exploring CRF framework. Our proposed higher order CRF framework (Chapter 4) seamlessly

integrates multiple cues for word recognition. Some interesting techniques such as automatically

learning the appropriate energy functions and the structure of the graph for the word image, are

not explored in this thesis. These can be fascinating directions of research in the future.

• Deep binarization. There have been recent works on addressing the segmentation in the natural

images in deep learning framework. Deep mask [122] is one of the most successful methods

among those works. It has shown state of the art results on some image segmentation benchmarks.

For a given image, deep mask produces, (i) class-agnostic segmentation mask, and (ii) likelihood

of the patch being centered on a full object. We believe such likelihood scores can be integrated

with our energy minimization framework for the problem of scene text binarization to further

enhance the performance in the future.

• Integrating deep bigrams and higher order grams classifier scores. With the availability of

immense data for training [65], it is now possible to train deep classifiers for bigrams, trigrams and

higher order grams. Such classifier scores can be integrated into our higher order CRF framework

(Chapter 4). Such integration will take advantage of both language models as well as appearance

of n-grams in a real or synthetic data.
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• Improving efficiency of holistic recognition. The holistic recognition method which we present

in Chapter 5 shows promising performance in recognizing scene text. This method with some

modifications can show big gain in recognition accuracy by taking advantage of availability of

large synthetic word dataset [65]. One of the limitations of this method is the computational

complexity of matching. Improving computation time of this method is one of the potential

directions of research.

• Extension to video. The techniques proposed in this thesis are designed for recognition in images.

Although we show retrieval performance on video datasets in Chapter 6, but treating each frame

independently as image. It should be noted that videos have dependency among frames, for

example, if a frame contain a word, the next frame is more likely to contain the same word in

almost same location. Modeling such dependencies and using inherent spatio-temporal cues in an

energy minimization framework is another possible way to develop the proposals of this thesis.

• Multi-script scene text understanding. In many countries like India, multiple scripts are used

in various regions of the country. Robustly recognizing many of these scripts is still an open

ended problem for printed text domain [53,102,128], whereas scene text recognition is even more

challenging. The reader is encouraged to refer to one of our initial works [147] on this direction

where we propose an end-to-end framework for script identification in scene images. Once scripts

are identified, some of the techniques in this thesis as such or with some minor modifications can

be applied for recognizing scene texts in multiple scripts.

• Generating image annotations. Text present in images gives an indispensable cue about the

content of the images. Text understanding combined with the object understanding can tell a

lot about the content of the image and can significantly improve image annotations. Moreover,

questions such as “can text understanding improve object understanding?", and vice versa, are

exciting to investigate and answer in future.

• Integrating textual and visual cues for image retrieval. In our work we have demonstrated

image retrieval using textual cues, and have not explored the use of visual cues. Consider an

example where we wish to retrieve all the ambulance images from a large image database. The

use of text ambulance written on the vehicle along with visual features of the vehicle is likely to
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help retrieval system be more effective. Moreover, use of textual and visual features can also be

useful in effectively retrieving movie posters, CD covers, etc.
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