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Abstract

Vision Transformers (ViTs) have become a dominant
paradigm for visual representation learning with self-
attention operators. Although these operators provide flex-
ibility to the model with their adjustable attention kernels,
they suffer from inherent limitations: (1) the attention kernel
is not discriminative enough, resulting in high redundancy
of the ViT layers, and (2) the complexity in computation and
memory is quadratic in the sequence length. In this paper,
we propose a novel attention operator, called lightweight
structure-aware attention (LiSA), which has a better repre-
sentation power with log-linear complexity. Our operator
learns structural patterns by using a set of relative position
embeddings (RPEs). To achieve log-linear complexity, the
RPEs are approximated with fast Fourier transforms. Our ex-
periments and ablation studies demonstrate that ViTs based
on the proposed operator outperform self-attention and other
existing operators, achieving state-of-the-art results on Ima-
geNet, and competitive results on other visual understanding
benchmarks such as COCO and Something-Something-V2.
The source code of our approach will be released online.

1. Introduction

Since the emergence of the vision transformer (ViT) [12],
transformers have become the dominant neural architecture
for visual understanding, outperforming convolutional neural
networks (CNNs). Self-attention, a core operator of ViT,
has relative merits compared to convolution because of the
adjustable attention kernel and its ability to capture long-
range dependencies. However, self-attention has inherent
limitations for visual recognition. First, the attention kernel
has difficulty learning discriminative features due to the lack
of desirable inductive biases, resulting in high redundancy
of the ViT layers [27, 56]. Thus, it usually requires a large
amount of data [12] and aggressive augmentations [45] to
obtain good performance. Second, the complexity of self-
attention is quadratic in the length of its input sequence,

Figure 1. Self-attention vs. LiSA. (a) Feature visualization of
self-attention & LiSA: compared to self-attention, LiSA learns
better discriminative features by capturing geometric structural
patterns. (b) Computation (FLOPs) & memory cost: LiSA is
significantly more efficient than self-attention when the sequence
length increases, due to its log-linear complexity.

making the operator impractical for high-resolution images
and difficult to be adopted for hierarchical models.

Recent approaches have proposed new types of opera-
tors to address the limitations of self-attention. Some of
them have attempted to learn better discriminative features
with self-attention by including relative position embed-
dings (RPEs) [2,10,30,37] or capturing geometric structures
(e.g., image gradients, video motion) [23, 61]. However,
these operators have high computational complexity, and
thus it is hard to capture long-range dependencies on high
resolutions [2, 10, 23, 30, 61]. Some other methods have pro-
posed efficient attention operators to handle the complexity
of self-attention [5, 7, 31, 33, 35, 50]. Although these opera-
tors have linear complexity with factorized softmax attention
kernel, they often underperform on visual understanding,
compared to the original attention-based models [33, 35].

In this paper, we propose an effective yet efficient op-
erator, lightweight structure-aware attention (LiSA), which
learns effective discriminative features while requiring only
log-linear complexity. To improve the expressivity, we ex-
ploit a set of RPEs for learning both convolutional inductive
biases (e.g., translation invariance) and geometric structural
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patterns in the query-key correlation. Fig. 1a illustrates a
few sample feature activations from the early layers of the
same-scale models (DeiT-T [45] vs. LiSA-I-T). LiSA ef-
fectively captures geometric structures in the image, while
self-attention feature activations are relatively weak and un-
informative in the early layers due to the lack of desirable
inductive biases. Although the use of the RPEs is effective
for LiSA, it is infeasible to cover long-range dependencies
due to their computation cost. Thus, we leverage them effi-
ciently with fast Fourier transforms (FFTs), achieving log-
linear complexity. We demonstrate this efficiency in Fig. 1b.
While the complexity of self-attention increases exponen-
tially with respect to the number of tokens, that of LiSA
increases gracefully due to log-linear complexity.

Our main contributions are as follows: (1) to overcome
the limitations of self-attention, we propose a new attention
operator called LiSA, which learns both convolutional priors
and structural patterns with log-linear complexity, and, (2)
LiSANets, the models based on our LiSA operator, outper-
form other counterparts, achieving competitive results on vi-
sual understanding benchmarks, ImageNet [11], COCO [29],
and Something-Something-V2 [15], respectively.

2. Related Work
ViTs for visual understanding. After the success

of ViT [12], transformer architectures have been widely
adopted in a variety of visual understanding tasks [1, 3,
43, 46, 54, 56]. Several approaches have proposed im-
provements to the original ViT [12], e.g., using a teacher-
student scheme [45], a better tokenization scheme [56],
or using small splits of the tokens to obtain richer lo-
cal information [16]. Recently, several approaches try
to combine transformers and CNNs to leverage the best
of each world. Some of these incorporate convolutions
into the attention block [13, 14, 27, 53] to increase the ex-
pressivity of self-attention. Others employ the hierarchi-
cal structure of CNNs to learn better discriminative fea-
tures [10, 14, 27, 28, 30, 51, 53, 60]. To handle the com-
plexity of hierarchical ViTs, these approaches use con-
volutions instead of self-attention operators in the early
stages [10, 27], adopt local attention [30, 60], or downsam-
pled attention [14, 28, 51, 53]. While these methods heavily
depend on handcrafted designs, our proposed model purely
based on LiSA achieves notable performance without such
designs due to the high expressivity and efficiency of LiSA.

Highly-expressive operators. The new types of opera-
tors proposed recently, increase the representation power by
developing self-attention [2, 10, 23, 30, 37, 61] or convolu-
tion [6,21,26,34]. Attention-based operators have achieving
this by adding convolutional priors [10, 30, 37] or capturing
relational structures [2, 23, 61]. Convolution-based opera-
tors have dynamically adapted convolution kernels based
on the input features [6, 21, 26, 34]. However, these highly-

expressive operators come with high computational complex-
ity and are typically limited to local interactions [2,23,26,61].
One example is the relational self-attention (RSA) [23],
which is related to our work. RSA is one of the most expres-
sive operators that captures structural patterns with relational
components, but it is also limited to local interactions due to
its high computational complexity. In contrast, our proposed
LiSA shows the highest level of expressivity by capturing
global structural patterns with log-linear complexity.

Lightweight operators. Some of the existing lightweight
attention operators factorize the softmax attention kernel
[7, 22, 41, 50]. While they have linear complexity, they usu-
ally perform worse than the original attention in terms of
accuracy [33, 35]. Other approaches have attempted to lin-
earize RPE-added attention operators [5, 31, 33], but they
still underperform on visual recognition. Recently, a few ap-
proaches adopt FFTs for efficiently covering global receptive
fields [25, 33, 39]. The Global Filter (GF) layer [39] is one
such operator, which implements an efficient global circular
convolution with FFTs. However, the expressivity of the GF
layer is constrained due to static convolution kernels. Our
LiSA also adopts this technique for efficiency but focuses
on learning structural patterns with its dynamic attention
kernels, leading to better performance.

3. Background

Self-attention. The self-attention operator [47] is a core
component in transformer architectures that generates the
query-key attention for updating the value. Let N denote the
sequence length (the number of tokens) and C the number
of input channels. Given an input feature X ∈ RN×C ,
query, key, value, Q,K,V ∈ RN×C , are firstly produced
by independent linear projections, and each element of the
output Y ∈ RN×C of self-attention is expressed as

Yi,k =

N∑
j

σ(Ai,j)Vj,k, Ai,j =
1√
C

C∑
k

Qi,kKj,k. (1)

Note that σ is the softmax function along j-axis. Two main
characteristics of self-attention are that: (1) the operator
represents a global interaction where the size of the attention
kernel for each query is equal to N , and (2) the attention
kernel dynamically changes according to the input feature.
However, it is unable to encode the relative order of tokens
due to the lack of convolutional inductive biases, resulting
in performance degradation on visual recognition.

Relative position embedding (RPE). One of the popular
schemes to handle the lack of convolutional inductive biases
is adopting an RPE for the self-attention operator [10,30,37].
A common RPE has the shape of a Toeplitz matrix, and it
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Figure 2. Computational graph of Structure-aware Attention (SA) for each query. After obtaining the query-key dot-product correlation
(Ā), structural patterns in Ā are encoded by Ra, and utilized in two ways: 1) the patterns are used for generating a structure-aware attention
kernel with Rb, and 2) directly projected as a structural feature with Bb. Note that N = H ×W,C = 1 in this figure.

consists of learnable weights which can be expressed as

T (e) =


eN eN+1 eN+2 · · · e2N−1

eN−1 eN eN+1 · · · e2N−2

...
...

...
. . .

...
e1 e2 e3 · · · eN

 ,

(2)

where e = {e1, e2, · · · e2N−1}. When RPE is added, the
attention operator is formulated as

Yi,k =

N∑
j

σ(Ai,j +Ri,j)Vj,k, R = T (e) ∈ RN×N . (3)

By introducing relative positional information into atten-
tion, the self-attention operator obtains the ability to learn
convolutional inductive biases.

Limitations of self-attention with RPE. Despite sev-
eral approaches showing the effectiveness of RPE, the self-
attention operator has inherent limitations. First, the expres-
sivity of the operator is still insufficient; it is difficult to
capture geometric structures (e.g., image gradients, video
motion) since the softmax attention kernel may not be ef-
fective for encoding gradient information due to its non-
negativity [23,38]. Additionally, although the query-key cor-
relation A suppresses photometric variations and reveals ge-
ometric structures [24, 40], the kernel is aggregated with the
value V without considering structural patterns in A. Sec-
ond, the operator suffers from quadratic complexity (O(N2))
since the non-linear softmax function and RPE are hard to
be linearized. Although a few approaches [7, 33, 50] have
attempted to approximate the softmax function with kernel-
ized methods to make the operator more efficient, they do
not improve over the original transformer in accuracy due to
its training instability [33] or approximation errors [35].

4. Structure-aware Attention

4.1. Basic Form of Structure-aware Attention (SA)

Learning convolutional inductive biases. To handle
the limitations of self-attention, we devise a new attention
operator that leverages the advantages of convolution. Unlike
the conventional usage of an RPE (Eq. 3), we employ it as
multiplicative weights for learning convolutional priors as
follows:

Yi,k =

N∑
j

Āi,jRi,jVj,k, Āi,j =

C∑
k

Q̄i,kK̄j,k. (4)

Note that Q̄, K̄ are L2-normalized query and key, respec-
tively. In Eq. 4, the RPE R not only learns relative token
orders, but also actively adjusts the dot-product attention
values with its learnable weights. We remove the softmax
function to allow the attention kernel to include negative
values, which may be effective for encoding structural in-
formation. The query and key are L2-normalized to obtain
the normalization effect of a softmax, which is helpful for
stabilizing the training procedure [33]. Since matrix multi-
plication between the Toeplitz matrix R and the value V is
equivalent to a global convolution [42] that applies the con-
volution kernel e ∈ R2N−1 for the value V , the operator can
also be considered as a global dynamic convolution where
the dynamic component of the convolution kernel is based
on the query-key correlation. Thus, the proposed operator
merges the characteristics of self-attention and convolution.

Learning structural patterns. Nevertheless, the above
operator is (Eq. 4) still limited for capturing rich structural
patterns in the dot-product attention Ā since the N -size at-
tention kernel for each query is aggregated with the value
V before the patterns are encoded. To effectively capture
the structural patterns, we aggregate and recompose the at-
tention values with multiple RPEs. The updated operator is
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formulated as:

Yi,k =

N∑
j

D∑
d

N∑
n

(Āi,nR
a
i,n,d)(R

b
i,j,dVj,k +Bb

k,d)

=

C∑
c

Q̄i,c

D∑
d

N∑
j,n

(K̄n,cR
a
i,n,d)(R

b
i,j,dVj,k +Bb

k,d),

(5)

where Ra = {T (ea1), T (ea2), · · · , T (eaD)},Rb =
{T (eb1), T (eb2), · · · , T (ebD)} ∈ RN×N×D are RPE tensors
composed of sets of Toeplitz matrices and Bb ∈ RC×D is
a learnable projection matrix, respectively. Note that D is
the number of hidden channels. The computational graph
of Eq. 5 is illustrated in Fig. 2. For each query, the learn-
able RPE tensor Ra captures structural patterns by encoding
attention values as a D-size vector. We utilize this vector
in two ways: first, for generating a new structure-aware at-
tention kernel along the j-axis with the RPE tensor Rb, and
then also directly projected as a feature representation with
the learnable matrix Bb. The generated attention kernel
with Rb updates V in a structure-aware manner like the re-
lational kernel of RSA [23]. The feature representation with
Bb directly encodes structural patterns, which is related to
correlation-based representations [24, 48]. While these prior
methods have focused on capturing local structures by con-
volutions, our operator captures global geometric structures
through RPEs.

4.2. Improving the Expressivity of SA

We can further improve its expressivity by exploiting se-
mantic information of the input channels. Here we describe
the advanced form of structure-aware attention.

Capturing channel-wise structural patterns. To exploit
the semantics of the input channels, we employ a different
type of query-key correlation, the Hadamard-product corre-
lation. A few approaches [23, 61] have demonstrated that
Hadamard-product correlation is more effective than the dot-
product one due to the use of richer query-key semantics.
Considering the Hadamard correlation is a 3-dimensional
tensor Āi,n,c = Q̄i,cK̄n,c ∈ RN×N×C , we expand the RPE
tensor Ra by C channels for encoding the Hadamard corre-
lation. The modified operator is formulated as follows:

Yi,k =

C∑
c

Q̄i,c

D∑
d

N∑
j,n

(K̄n,cR̃
a
i,n,c,d)(R

b
i,j,dVj,k +Bb

k,d),

(6)

where R̃a ∈ RN×N×C×D is the expanded RPE ten-
sor, and learnable weights in the tensor increase from
Ea = {ea1 , ea2 , · · · , eaD} ∈ R(2N−1)×D to Ẽa =
{ea1 , ea2 , · · · , eaCD} ∈ R(2N−1)×C×D. In Eq. 6, for each

operator computation memory

self-attention [47] O(N2C) O(N2 +NC)

structure-aware attention (Eq. 4) O(N2C) O(N2 +NC)
structure-aware attention (Eq. 5) O(N2CD) O(NCD)

LiSA (FFT approximation) O(NCD log2 N) O(NCD)

Table 1. Comparison of complexity of the operators. N,C,D
denote the sequence length, the number of channels, and the number
of latent channels respectively. Our operator has log-linear and
linear complexity in computation and memory respectively.

query, the expanded tensor R̃a captures channel-wise struc-
tural patterns by encoding a (N × C) Hadamard correlation
matrix as a D-size vector. Since this process does not require
additional computation, the operator can exploit rich seman-
tics through the Hadamard correlation by only increasing the
number of parameters.

Combining features based on input semantics. While
the current form relies on query-key similarities for extract-
ing features, we can also produce a different type of features
that are fully based on input semantics, through a simple
bias term. When we add a bias term Ba ∈ RC×D to Eq 6,

Yi,k =
∑C

c
Q̄i,c

∑D

d

∑N

j,n
(K̄n,cR̃

a
i,n,c,d +Ba

c,d)

(Rb
i,j,dVj,k +Bb

k,d)
(7)

=
∑C

c
Q̄i,c

∑D

d

∑N

j,n
(K̄n,cR̃

a
i,n,c,dR

b
i,j,dVj,k

+Ba
c,dR

b
i,j,dVj,k + K̄n,cR̃

a
i,n,c,dB

b
k,d +Ba

c,dB
b
k,d).

(8)

In Eq. 8, we obtain two additional terms. While the last term
(
∑C,D

c,d Q̄i,cB
a
c,dB

b
k,d) is a common linear projection of the

query feature, the second term (
∑C,N,D

c,j,d Q̄i,cB
a
c,dR

b
i,j,dVj,k)

produces a different type of features. Considering the mul-
tiplication between Toeplitz matrices Rb and the value V
is equivalent to a global convolution, the second term can
be regarded as a global dynamic convolution, where the dy-
namic component is based on the query semantics. This
is roughly equivalent to Lambda convolution or Involution
operators [2, 26], which have shown the generated features
are effective for learning spatial structures. Similarly, our
operator gets the benefit of combining features based on
input semantics through the additive bias term.

4.3. Lightweight Structure-aware Attention (LiSA)

Although our proposed operator (SA) is highly-
expressive, it is impractical for neural architectures due to its
huge computational complexity. Here we describe our final
form, LiSA, which significantly reduces the complexity by
efficiently processing the heavy RPE tensors through FFTs.

Approximating RPEs with FFTs. In Eq. 7, RPE tensor
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Figure 3. Computational graph of LiSA and its block configuration. See text for details.

multiplications can be considered as global convolutions:

Yi,k =

C∑
c

Q̄i,c

D∑
d

(Ga
i,c,d +Ba

c,d)(G
b
i,k,d +Bb

k,d),

where Ga = K̄ ∗ Ẽa,Gb = V ∗Eb ∈ RN×C×D.

(9)

Note that Eb = {eb1, eb2, · · · , ebD} ∈ R(2N−1)×D are
learnable weights of the RPE tensor Rb, and ∗ denotes
convolution. Gb is a global convolution that applies the
global kernels Eb ∈ R(2N−1)×D for value V ∈ RN×C

by sharing the kernels across C channels, and Ga is a
depth-wise global convolution that applies the global kernels
Ẽa ∈ R(2N−1)×C×D for the key K̄ ∈ RN×C . To reduce
the complexity of these global convolutions, we approximate
them as global circular convolutions, indicating that the
RPEs are altered by circular position embeddings consisting
of circulant matrices. These circular convolutions can be
efficiently computed by FFTs [39] via the convolution the-
orem of Fourier transform: multiplication in the frequency
domain is equal to circular convolution in the time domain.
Thus, we can rewrite the convolutions as:

Ga ≈ K̄ ⊛W a = F−1(F(K̄)⊙F(W a)),

Gb ≈ V ⊛W b = F−1(F(V )⊙F(W b)), (10)

Note that W a = {wa
1 , · · · ,wa

CD} ∈ RN×C×D, W b =
{wb

1, · · · ,wb
D} ∈ RN×D are learnable weights of the cir-

cular convolutions and ⊛,⊙,F ,F−1 denotes circular con-
volution, element-wise multiplication, FFT, and IFFT, re-
spectively. The circular convolutions have the half size of
parameters since the kernel size reduces from (2N − 1) to
N . As shown in Tab. 1, we reduce the complexity in compu-
tation and memory on a linear scale by approximating heavy
global interactions with FFTs. Moreover, since the input
features and weights are real-valued, we can additionally
reduce the complexity by half via RFFT and inverse RFFT.
The computational graph of LiSA is illustrated in Fig. 3.

Model #Blocks #Channels (#heads)

LiSANet-I-T 12 192 (12)

LiSANet-H-S [1, 2, 11, 2] [64 (4), 128 (8), 256 (16), 512 (32)]
LiSANet-H-B [2, 3, 16, 3] [96 (6), 192 (12), 384 (24), 768 (48)]

Table 2. Detailed configurations of different variants of LiSANet.
For hierarchical models, we provide the number of channels and
blocks in 4 stages. FLOPs are calculated with a 224× 224 input.

5. Experiments

We first describe the implementation details and then
present extensive results. This includes a set of compre-
hensive ablation studies and a state-of-the-art comparison
on ImageNet-1K [11]. Finally, we also verify the effec-
tiveness of LiSA on object detection with COCO [29], and
video action recognition with Something-Something-V2 (SS-
V2) [15].

5.1. Implementation details

LiSA block. Our proposed block follows the traditional
transformers sequence of layers [1, 12, 45]: layer normal-
ization (LN), attention operator, LN and MLP. Instead of
using a traditional attention operator, we use LiSA. The la-
tent channel size D is set to 16 as default. The overall block
configuration is shown in Fig. 3.

LiSANet. To demonstrate the effectiveness of LiSA, we
define two different style transformer architectures as shown
in Tab. 2. The first style is an isotropic model (LiSANet-I-T)
which has no downsampling layers and fixes the number of
tokens (14 × 14) at all depths. The second style is hierar-
chical models (LiSANet-H-S, LiSANet-H-B) following the
recent hierarchical ViT architectures [27, 30, 39]. Hierarchi-
cal models (LiSANet-H-S, LiSANet-H-B) are composed of
4 stages with a different number of blocks, and the number
of tokens is downsampled in each stage. All the details of
our variants are summarized in the Supplementary Material.

Setup. For ImageNet-1K, our isotropic model (LiSANet-
I-T) is trained for 150 epochs, and hierarchical models
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operator FLOPs #params top-1 top-5

Self-attn [47] 1.25 G 5.72 M 71.0 90.0
Self-attn w/ RPE [37] 1.25 G 5.72 M 72.2 90.9
Self-attn w/ RPE (C ↑) [37] 1.40 G 6.44 M 73.4 91.6

Depthwise conv (7× 7) [19] 0.84 G 4.49 M 69.0 89.2
GF layer [39] 0.82 G 4.90 M 69.5 89.4
GF layer (C ↑) [39] 1.27 G 7.37 M 72.4 91.0
Lambda convolution [2] 2.41 G 5.41 M 72.6 91.0
RSA [23] 5.34 G 8.23 M 74.5 92.2

LiSA (ours) 1.21 G 6.36 M 74.9 92.4

(a) Comparison with other basic operators.

operator FLOPs #params top-1 top-5

Self-attn 1.25 G 5.72 M 71.0 90.0
Self-attn w/ RPE 1.25 G 5.72 M 72.2 90.9
Self-attn w/ h RPEs 1.25 G 5.81 M 72.7 91.3

SA (Eq. 4) 1.25 G 5.72 M 72.4 91.2
SA (Eq. 4 w/ h RPEs) 1.25 G 5.81 M 73.6 91.7

SA (Eq. 5) 3.92 G 5.99 M 73.9 92.0
+ bias term Ba 3.92 G 5.99 M 74.2 92.1
+ Hadamard corr 3.92 G 8.09 M 74.9 92.3
LiSA (ours) 1.21 G 6.36 M 74.9 92.4

(b) Effectiveness of LiSA components.

kernel size FLOPs #params top-1 top-5

Local - 3× 3 1.22 G 5.75 M 71.9 90.7
Local - 5× 5 1.45 G 5.80 M 73.8 91.7
Local - 7× 7 1.80 G 5.88 M 73.8 91.8
Global (ours) 1.21 G 6.36 M 74.9 92.4

(c) Impact of global interactions.

D FLOPs #params top-1 top-5

1 1.11 G 5.76 M 71.3 90.5
4 1.13 G 5.88 M 73.6 91.6
8 1.17 G 6.04 M 74.4 92.2

16 (ours) 1.21 G 6.36 M 74.9 92.4

(d) Influence of the number of latent channels D.

Table 3. Ablation studies on ImageNet. Top-1, top-5 accuracy (%), FLOPs (G) and the number of paramaters (M) are shown.

Figure 4. Comparisons among LiSA & efficient attention blocks in (a) FLOPs, (b) latency, and (c) memory. Dotted lines denote
estimated values due to the limited GPU memory. The latency and memory is measured by an RTX A5000 GPU with batch size 16.

(LiSANet-H-S, LiSANet-H-B) are trained for 300 epochs.
We follow the rest of the training recipes suggested in [30,45]
for a fair comparison. For COCO, we adopt standard Mask
R-CNN [17] detection frameworks, which employ ImageNet-
1K pre-trained weights for fine-tuning. We use a 1× sched-
ule (12 epochs), and follow the same recipe as in [30]. For
SS-V2, the isotropic model (LiSANet-I-T) is trained for 60
epochs from scratch, and we adopt the uniform sampling
strategy [49] for training and a single crop inference for
testing. Other recipes are in the Supplementary Material.

5.2. Ablation studies

We use the isotropic model (LiSANet-I-T) for ablations
since the operators with quadratic complexity are hard to be
adopted for hierarchical models due to their extreme memory
consumption shown in Fig. 4c. Unless specified otherwise,
we use 224× 224 resolution for input.

Comparison with other operators. In Tab. 3a, we com-
pare our LiSA operator with several others, including self-
attention [37,47], convolution [19,39], and highly-expressive
operators [2, 23]. For a fair comparison, we only replace our
operator with others in the LiSA blocks, and all the recep-

tive fields are set as global, except for the 7× 7 depthwise
convolution [19]. As expected, self-attention with RPE [37]
outperforms vanilla self-attention [47] in accuracy, showing
the impact of convolutional inductive biases. GF layer [39],
an FFT-based global convolution, outperforms local depth-
wise convolution [19], and the accuracy becomes comparable
to the self-attention when increasing FLOPs (6th row). How-
ever, the accuracy of the GF layer is lower than Lambda con-
volution or RSA due to the limited expressivity. RSA [23]
shows the effectiveness of learning structural patterns with
high accuracy, but it requires a huge computation budget.
LiSA shows the best trade-off between accuracy and FLOPs,
achieving the best accuracy among the operators with lower
FLOPs. The accuracy of LiSA is even 1.5% higher than the
self-attention with increased parameters (3rd row), indicat-
ing that the accuracy gain of LiSA does not come from the
increased parameters.

Effectiveness of LiSA components. In Tab. 3b, we
demonstrate the effectiveness of each component of LiSA.
We first compare the way of learning convolutional inductive
biases between self-attention and ours (Eq. 4). With the same
FLOPs and the number of parameters, our approach that uses
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an RPE as multiplicative weights (“SA (Eq. 4)”, 4th row in
the table) is better than standard self-attention with RPE (2nd

row) in accuracy. The accuracy gap between self-attention
and ours becomes more clear when we use an independent
RPE for each head (3rd row vs. 5th row), indicating our RPEs
defined in Eq. 4 are more beneficial than those of standard
self-attention. This indicates that our attention containing
negative values is potentially more effective for learning
spatial features such as gradient information compared to
softmax attention. Next, we demonstrate our structure-aware
attention variants in the third part of the table. Comparing
Eq. 4 with Eq. 5 (4th row vs. 6th row), we validate the ef-
fectiveness of learning structural patterns, which improves
by 1.5% in top-1 accuracy. The next two rows in the table
show the impact of exploiting semantic information of input
channels. With the bias term Ba and the Hadamard correla-
tion, our operator improves the top-1 accuracy by 1.0% with
negligible additional cost. Lastly, LiSA with FFT approx-
imation dramatically reduces the computational cost (3×)
without compromising accuracy.

Effect of global interactions. Tab. 3c studies the influ-
ence of local and global interactions. Focusing on the local
kernels (first three rows in the table), the larger the kernel,
the larger the number of parameters, FLOPs, and accuracies.
This shows that a big kernel with more trainable parameters
produces better results but at an increased computational
cost. However, our global version (last row) allows a larger
number of parameters with smaller FLOPs due to FFT, re-
sulting in the best performance among all the variants.

Effect of the number of latent channels D. Tab. 3d sum-
marizes this study using four different values of D. Since
D represents the size of the encoded vector that learns struc-
tural patterns from the query-key correlation, it is expected
that larger values result in better performances. As shown
in Tab. 3d, the accuracy is indeed improved with larger val-
ues of D, being 16 the best one. We use this value in our
attention kernel. Note that the cases over D = 16 are not
reported since the accuracy becomes saturated.

Efficiency of the LiSA block. In Fig. 4, we demonstrate
the efficiency of LiSA in terms of FLOPs, latency, and GPU
memory consumption. We measure the performance of a sin-
gle block (C = 96) by varying the number of tokens. For a
fair comparison, we replace our LiSA block with other atten-
tion blocks [14, 30]. Window attention block [30] efficiently
computes local attention with shifted windows, and pooling
attention block [14] downsamples the key and value before
computing attention for reducing complexity. We set the
window size as N/4 and the pooling stride as 2×2. Window
and pooling attention are more efficient than the standard
one in all cases, but their values increase exponentially since
their computational complexities are still quadratic in the
number of tokens. In comparison, the values of LiSA in-
crease gracefully due to the log-linear complexity, and thus

model attn+conv FLOPs #params top-1

ResNet-50 [18] 4.1 G 26 M 76.1
PVT-S [51] 3.8 G 25 M 79.8
Deit-S [45] 4.6 G 22 M 79.9
RegNetY-4.0GF [36] 4.0 G 21 M 80.0
Swin-Ti [30] 4.5 G 29 M 81.2
T2T-ViT-14 [56] 4.8 G 22 M 81.5
GFNet-H-S [39] 4.6 G 32 M 81.5
CvT-13 [53] ✓ 4.5 G 20 M 81.6
CoAtNet-0 [10] ✓ 4.2 G 25 M 81.6
MViTv2-T [28] ✓ 4.7 G 24 M 82.3

LiSANet-H-S (ours) 2.9 G 19 M 82.5

ResNet-101 [18] 7.9 G 45 M 77.4
RegNetY-8.0GF [36] 8.0 G 39 M 81.7
PVT-L [51] 9.8 G 61 M 81.7
Deit-B [45] 17.5 G 86 M 81.8
T2T-ViT-24 [56] 13.8 G 64 M 82.3
CvT-21 [53] ✓ 7.1 G 32 M 82.5
GFNet-H-B [39] 8.6 G 54 M 82.9
Swin-S [30] 8.7 G 50 M 83.1
Swin-B [30] 15.4 G 88 M 83.4
CoAtNet-1 [10] ✓ 8.4 G 42 M 83.3
CoAtNet-2 [10] ✓ 15.7 G 75 M 84.1
MViTv2-B [28] ✓ 10.2 G 52 M 84.4

LiSANet-H-B (ours) 9.6 G 59 M 84.4

Table 4. Comparison to the state-of-the-art models on ImageNet.
We compare our models with several state-of-the-art architectures.
FLOPs (G), the number of parameters (M), top-1, top-5 accuracy
(%) on ImageNet validation set are shown. All the models use
224× 224 resolution images for training and testing.

model FLOPs #params Mask R-CNN 1× schedule
APb APb

50 APb
75 APm APm

50 APm
75

Res-50 [18] 260 G 44 M 38.0 58.6 41.4 34.4 55.1 36.7
PVT-S [51] 245 G 44 M 42.9 65.8 47.1 40.0 62.7 42.9
Twins-S [8] 238 G 44 M 24.0 50.0 41.4 34.4 55.1 36.7
Swin-T [30] 264 G 48 M 42.2 64.6 46.2 39.1 61.6 42.0
ViL-S [59] 218 G 45 M 44.9 67.1 49.3 41.0 64.2 44.1
Focal-T [55] 291 G 49 M 44.8 67.7 49.2 41.0 64.7 44.2

LiSANet-H-S 232 G 38 M 46.1 67.9 50.5 41.6 64.8 44.9

Table 5. Comparison with other models on COCO object
detection. FLOPs (G), the number of parameters (M), box mAP
(APb) and mask mAP (APm) are shown. Note that FLOPs are
measured at resolution 800× 1280.

LiSA achieves the best efficiency in all cases. Additional
details are presented in the Supplementary Material.

5.3. State-of-the-art Results on ImageNet-1K

In Tab. 4, we compare our two hierarchical models
with state-of-the-art approaches including CNNs [18, 36],
ViTs [30, 39, 45, 51, 56], and the models containing both
convolution and self-attention [10,28,53] (marked with ✓ in
‘attn+conv’ column). In the top half of the table, we present
the results of small models that have comparable FLOPs
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operator FLOPs #params top-1 top-5

Self-attention [47] 7.36 G 5.82 M 18.0 40.9
Self-attention w/ RPE [37] 7.36 G 5.87 M 24.0 50.0

Depthwise conv (3× 7× 7) [19] 3.75 G 4.82 M 33.0 60.9
GF layer [39] 3.53 G 6.54 M 28.7 40.0
Lambda convolution [2] 26.87 G 6.34 M 34.5 63.1
RSA [23] 72.58 G 23.45 M 34.1 62.7

LiSA (ours) 5.16 G 8.37 M 38.1 67.1

Table 6. Comparison with other basic operators on SS-V2. Top-
1, top-5 accuracy (%), FLOPs (G) and the number of parameters
(M) are shown.

and the number of parameters. Models that incorporate con-
volutions into ViTs [10, 53] perform better than the others
on the accuracy measure. Our proposed model, LiSANet-
H-S, clearly outperforms all the other models in terms of
both accuracy and FLOPs. In the case of larger models,
grouped in the bottom half of the table, many of the methods
show comparable performance. Swin-S & -B [30] shows
the effectiveness of hierarchical ViT based on its efficient
window attention technique. CoAtNet-1 & -2 [10] obtains
an effective result by adopting depthwise convolutions in the
early stages and self-attentions in the latter stages. MViTv2-
B [28], which shows the highest accuracy, adopts depthwise
convolutions and additional residual connections inside the
attention blocks for the performance boost. While these
models rely on elaborated architecture designs, our proposed
model, LiSANet-H-B, is a pure transformer architecture
without any complicated modification, achieving state-of-
the-art accuracy with less computation.

5.4. Object Detection & Video Action Recognition

Object detection on COCO. To show the generalization
ability of LiSA, we conduct object detection experiments
on the COCO dataset using the standard Mask R-CNN [17]
detection framework with ImageNet-1K pre-trained weights
and following the experimental setup in [30] (1× schedule
of 12 epochs). In Tab. 5, we compare the results of small
models that have comparable FLOPs and parameters. As
expected, LiSANet-H-S shows the best performance among
CNN [18] and ViT [30, 51, 55, 59] backbones in APb and
APm, while maintaining its efficiency. Since object detection
is a high-resolution computer vision task (e.g., 800× 1280),
these results demonstrate that LiSA is a better fit for process-
ing a large number of tokens compared to other attention
methods [30, 51, 55].

Video action recognition on SS-V2. We perform experi-
ments on video data to show the wide applicability of LiSA.
We compare LiSA with other attention operators trained
from scratch on SS-V2 [15] in Tab. 6. We sample 8 frames
per video, and the rest of the details are the same as in
Sec. 5.2. Since structural patterns of videos, i.e., motion
patterns, are important cues for recognizing video actions,

Figure 5. Attention kernels of self-attention & LiSA. Attention
kernels from different layers and heads are visualized. For each
sample, the top row is self-attention and the bottom is LiSA. Note
that the red box in the center of each subfigure is the query pixel.

the operators that learn convolutional priors [2, 19, 39, 61]
or geometric structures [23] are more effective than their
self-attention counterparts [37, 47]. LiSA shows even better
performance on video than image, in terms of both accuracy
and complexity. While FLOPs of the attention [47, 61] and
highly-expressive [2, 23] operators significantly grow due to
the increased number of tokens (T ×H×W ), LiSA remains
efficient due to its log-linear complexity.

5.5. Visualization

In Fig. 5, we visualize both self-attention and LiSA ker-
nels of different layers and heads from isotropic models. As
expected, LiSA kernels contain much more diverse patterns
compared to self-attention kernels. Self-attention kernels in
the early layers often fail to capture relevant context, and
those in the latter layers are effective but they usually capture
redundant information. Unlike self-attention, LiSA kernels
in the early layers focus on encoding local features. Some
of these look similar to Sobel filters or Laplacian filters,
which are beneficial for learning local structural information.
Considering that modern hybrid models [10, 27, 54], which
replace self-attention with convolution in early layers obtain
an extra accuracy gain, the behavior of LiSA kernels in early
layers seems reasonable. Meanwhile, LiSA kernels in the
latter layers concentrate on the context relevant to the target
object like self-attention does. LiSA, however, generates
more diverse shapes of kernels than self-attention, which
implies that they aggregate the relevant context and further
consider structural patterns inside the context at the aggre-
gation. Therefore, this visualization demonstrates that our
structure-aware attention kernel can be more expressive and
flexible compared to the self-attention kernel.
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6. Conclusion
In this paper, we have presented LiSA, a novel expressive,

yet efficient, attention operator that learns rich structural
patterns with log-linear complexity. Our comprehensive
ablation studies have shown that the ViTs based on LiSA,
LiSANets, outperform their counterparts in accuracy and
computational complexity. Our LiSANet, which is purely
based on LiSA for spatial modeling, has achieved competi-
tive performance on various kinds of visual understanding
tasks. We believe that LiSA can be further extended for
diverse understanding tasks, including machine translation.
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A. Implementation details

A.1. Architecture Details

LiSA. In addition to the details included in the main
paper, we provide pseudo-code of structure-aware attention
(Eq. 4 & Eq. 5 in the main paper) and LiSA in Fig. 6 and
Fig. 7, respectively. The notation of multi-head is omitted
for clarity and simplicity. As shown in the pseudo-code, we
effectively reduce the computational complexity with the
FFT approximation. In actual implementation, we employ
2D RFFT/IRFFT for images and 3D variant for videos.

LiSANet. A detailed overview of our proposed archi-
tectures is shown in Tab. 7. LiSANet-I-T is composed of a
single stage following the traditional ViT guidelines [1, 45].
The number of tokens is constant in this model: 14 × 14.
Focusing on the blocks, we have an initial patch embedding
layer with a stride of 16 pixels and then, 12 LiSA blocks with
an embedding size of 192. On the other hand, our hierar-
chical models follow the guidelines proposed in [27, 30, 39].
Both models (LiSANet-H-S and LiSANet-H-B) are com-
posed of the same four stages with different token sizes and
numbers of tokens. In the earlier stages, the token size is
larger producing a smaller number of tokens. We adopt the
overlapping patch embedding strategy [52] for hierarchical
models. The number of LiSA blocks differs in both mod-
els, with LiSANet-H-B the larger model employing a larger
number of blocks (16 vs. 24 blocks).

A.2. Experimental Setup

Image classification. Our models are trained with
AdamW [32] with a weight decay of 0.05 and a learning
rate of 0.0005

512 · batch_size with a cosine decay scheduler
and 20 warm-up epochs. Our isotropic model (LiSANet-
I-T) is trained for 150 epochs and hierarchical models are
trained for 300 epochs. Following the training recipe pro-
posed in [30], we apply several regularization techniques
such as Mixup [58], Cutmix [57], label smoothing [44] and
stochastic depth [20]. The stochastic depth strategy is ap-
plied only to the hierarchical models with a probability of
0.1 and 0.4 for the LiSANet-H-S and LiSANet-H-B mod-
els, respectively. In addition, we also apply several data
augmentation techniques like Rand-Augment [9], random
erasing [62], and repeated augmentation. Note that all these
hyperparameter values and data-augmentation techniques
are selected following the training recipes of the previous
works [30, 45].

Object detection. We adopt standard Mask R-CNN [17]
detection frameworks, and ImageNet-1K pre-trained model
(LiSANet-H-S) are utilized as backbones. weights for fine-
tuning. We use a 1× schedule (12 epochs) with total batch
size 16, and follow the same recipe as in [30]. The code is
mainly based on mmdetection [4]. For training, the shorter
side of the image is resized to 800 pixels while keeping the

# B: batches, N: tokens, C: channels, D: latent_channels
def structure_aware_attn_Eq4(input, e):
# input shape: [B,N,C], e shape: [2N−1]

qkv = linear_proj(input, channels=3C) # shape: [B,N,3C]
query,key,value = split(qkv, [C,C,C], dim=−1)
# query,key,value shape: [B,N,C]
query = L2norm(query) # shape: [B,N,C]
key = L2norm(key) # shape: [B,N,C]

R = Toeplitz(e) # shape: [N,N]
attn = einsum(query,key, ’BNC,BMC−>BNM’) # shape: [B,N,N

]
attn_R = attn ∗ R # shape: [B,N,N]

out = einsum(attn_R,value,’BNM,BMC−>BNC’) # shape: [B,N,
C]

out = linear_proj(out, channels=C) # shape: [B,N,C]
return out

def structure_aware_attn_Eq5(input, Ea, Eb, Bb):
# input shape: [B,N,C], Ea,Eb shape: [2N−1,D], Bb shape: [C,

D]
qkv = linear_proj(input, channels=3C) # shape: [B,N,3C]
query,key,value = split(qkv, [C,C,C], dim=−1)
# query,key,value shape: [B,N,C]
query = L2norm(query) # shape: [B,N,C]
key = L2norm(key) # shape: [B,N,C]

Ra = Toeplitz(Ea) # shape: [N,N,D]
Rb = Toeplitz(Eb) # shape: [N,N,D]
K_Ra = einsum(key,Ra,’BMC,NMD−>BNCD’) # shape: [B,N,C,D]
Rb_V = einsum(Rb,value, ’NMD,BMV−>BNVD’) # shape: [B,N,C

,D]
Rb_V_Bb = Rb_V + Bb # shape: [B,N,C,D]

out = einsum(query,K_Ra,Rb_v_Bb,’BNC,BNCD,BNVD−>BNV’) #
shape: [B,N,C]

out = linear_proj(out, channels=C) # shape: [B,N,C]
return out

Figure 6. Pseudo-code for structure-aware attention. We
describe the way of learning convolutional inductive biases in
structure-aware attention (Eq. 4) and its basic form (Eq. 5) pre-
sented in Sec. 4.1 of the main paper.

longer side no more than 1333 pixels. AdamW [32] with
a weight decay of 0.05 is adopted as an optimizer, and the
initial learning rate is set as 0.0001. Stochastic depth rate is
set as 0.1.

Video action recognition. Our video models are trained
with AdamW [32] with a weight decay of 0.05 and 0.0002

32 ·
batch_size with a cosine decay scheduler and 5 warm-up
epochs. Total epoch is set as 60 epochs, and we apply several
regularization techniques following [1, 27, 28]. We adopt the
uniform sampling strategy [49] for training and a single crop
inference for testing.

Code. Our source code is included for reproducibility.

B. Additional Ablations
Comparison between LiSANet & (conv+attn) mod-

els. In this ablation study, we provide a new comparison
between the state-of-the-art (conv+attn) models [27, 28]
and LiSANet with hierarchical architecture. Both mod-
els [27, 28] incorporate self-attention with convolution op-
erators in each block to increase expressivity. Since self-
attention requires a large amount of memory in higher reso-
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Output Size LiSANet-I-T LiSANet-H-S LiSANet-H-B

Stage1 H

4
× W

4
-

Overlap Patch Embed↓4 Overlap Patch Embed↓4

LiSA Block (64) × 1 LiSA Block (96) × 2

Stage2 H

8
× W

8
-

Overlap Patch Embed↓2 Overlap Patch Embed↓2

LiSA Block (128) × 2 LiSA Block (192) × 3

Stage3 H

16
× W

16

Patch Embed↓16 Overlap Patch Embed↓2 Overlap Patch Embed↓2

LiSA Block (192) × 12 LiSA Block (256) × 11 LiSA Block (384) × 16

Stage4 H

32
× W

32
-

Overlap Patch Embed↓2 Overlap Patch Embed↓2

LiSA Block (512) × 2 LiSA Block (768) × 3

Classifier Global Average Pooling, Linear

Table 7. Details of LiSANet variants. Patch Embed↓n denotes a patch embedding layer that downsamples features with a stride n.

# B: batches, N: tokens, C: channels, D: latent_channels
def LiSA(input, Wa, Wb, Ba, Bb):
# input shape: [B,N,C], Wa shape: [N,C,D], Wb shape: [N,D],

Ba,Bb shape: [C,D]
qkv = linear_proj(input, channels=3C) # shape: [B,N,3C]
query,key,value = split(qkv, [C,C,C], dim=−1)
# query,key,value shape: [B,N,C]
query = L2norm(query) # shape: [B,N,C]
key = L2norm(key) # shape: [B,N,C]

K_fft = rfft(key, dim=1) # shape: [B,N//2+1,C]
Wa_fft = rfft(Wa, dim=0) # shape: [N//2+1,C,D]
K_Wa = einsum(K_rfft, Wa_rfft, ’BMK,MKD−>BMKD’) # shape:

[B,N//2+1,C,D]
K_Wa = irfft(K_Wa, dim=1) # shape: [B,N,C,D]
K_Wa_Ba = K_Wa + Ba # shape: [B,N,C,D]

V_fft = rfft(value, dim=1) # shape: [B,N//2+1,C]
Wb_fft = rfft(Wb, dim=0) # shape: [N//2+1,D]
V_Wb = einsum(V_rfft, Wb_rfft, ’BMV,MD−>BMVD’) # shape:

[B,N//2+1,C,D]
V_Wb = irfft(V_Wb, dim=1) # shape: [B,N,C,D]
V_Wb_Bb = V_Wb + Bb # shape: [B,N,C,D]

out = einsum(query,K_Wa_Ba,V_Wb_Bb,’BNK,BNKD,BNVD−>BNV’)
# shape: [B,N,C]

out = linear_proj(out, channels=C) # shape: [B,N,C]
return out

Figure 7. Pseudo-code for LiSA. We describe the final form of
LiSA described in Sec. 4.3 of the main paper.

lutions, Uniformer [27] only uses depthwise convolutions in
earlier layers and MViTv2 [28] downsamples features with
convolutions before applying attention. For a fair compar-
ison, we use the same configuration (shown in Tab 8a) for
all the models. Tab. 8b summarizes the results on ImageNet,
which show that the accuracy of LiSANet-H-T is higher
than the state-of-the-art (conv+attn) models with compara-
ble FLOPs and params. This is impressive since we do not
apply any modification for our block while other models rely
on elaborated architecture designs and handcrafted schemes.

Model #Blocks #Channels (#heads)

MViTv2-H-T [1, 2, 5, 2] [64 (4), 128 (8), 256 (16), 512 (32)]
Uniformer-H-T [1, 2, 5, 2] [64 (4), 128 (8), 256 (16), 512 (32)]
LiSANet-H-T [1, 2, 5, 2] [64 (4), 128 (8), 256 (16), 512 (32)]

(a) Model configuration of hierarchical-tiny models.

model FLOPs #params top-1

MViTv2-H-T 2.1 G 12.0 M 79.3
Uniformer-H-T 1.7 G 11.9 M 79.7
LiSANet-H-T (D=8) 1.8 G 12.7 M 80.4
LiSANet-H-T (D=8) w/ conv 1.8 G 12.7 M 80.9

(b) Performance comparison among hierarchical-tiny models. Note that D is
the number of latent channels of LiSA. Top-1, accuracy (%), FLOPs (G), and
the number of parameters (M) are shown.

Table 8. Comparison between (conv+attn) models & ours.

For example, LiSANet-H-T obtains an additional gain by
using the depthwise convolution scheme of [27]. These re-
sults show that the models based on LiSA outperform the
(conv+attn) models with hierarchical architecture. We use
the official source code of Uniformer [27] and MViTv2 [28]
for implementing their blocks. For Uniformer, we only apply
depthwise convolutions for the early 2 stages, following their
paper. For MViTv2, we downsample features with stride 2
for the early 2 stages, and do not downsample for the other
stages.

Fine-tuning on higher resolutions. We have verified
that fine-tuning LiSANet on higher resolutions can boost
image recognition accuracy. Tab. 9 summarizes the results
of LiSANet-I-T on ImageNet. LiSANet obtains a 2.5%
gain when we use 384× 384 resolution. While MLP-mixer
models are hard to adapt to higher resolutions since they
process a fixed number of tokens, LiSANet can be easily
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model Image size FLOPs #params top-1

LiSANet-I-T 224× 224 1.21 G 6.36 M 74.9
LiSANet-I-T 384× 384 3.62 G 7.82 M 77.4

Table 9. Fine-tuning to higher resolutions on ImageNet. Image
size, Top-1, accuracy (%), FLOPs (G) and the number of para-
maters (M) are shown.

interpolated to higher resolutions due to the property of
Discrete Fourier transform, where each element of the time
(i.e. spatial) domain is a sampling of a continuous spectrum
in the frequency domain. Since the circular embeddings
W a, W b can be considered as samplings of continuous
spectrums, changing the resolution is equal to changing the
sampling interval of spectrums [39]. Thus, LiSA can be
adapted to higher resolutions by simple interpolation.

C. Visualization
In Fig. 8, we additionally visualize both self-attention and

LiSA kernels of different layers and heads from isotropic
models.
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(a)

(b)

Figure 8. Attention kernels of self-attention & LiSA. Attention kernels from different layers and heads are visualized. For each sample,
the top row is self-attention and the bottom is LiSA. Note that the red box in the center of each subfigure is the query pixel.
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