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Abstract
We seek to obtain a pixel-wise segmentation and pose

estimation of multiple people in a stereoscopic video. This
involves challenges such as dealing with unconstrained
stereoscopic video, non-stationary cameras, and complex
indoor and outdoor dynamic scenes. The contributions of
our work are two-fold: First, we develop a segmentation
model incorporating person detection, pose estimation, as
well as colour, motion, and disparity cues. Our new model
explicitly represents depth ordering and occlusion. Second,
we introduce a stereoscopic dataset with frames extracted
from feature-length movies “StreetDance 3D” and “Pina”.
The dataset contains 2727 realistic stereo pairs and in-
cludes annotation of human poses, person bounding boxes,
and pixel-wise segmentations for hundreds of people. The
dataset is composed of indoor and outdoor scenes depicting
multiple people with frequent occlusions. We demonstrate
results on our new challenging dataset, as well as on the
H2view dataset from (Sheasby et al. ACCV 2012).

1. Introduction
Stereoscopic feature-length movies provide a large

amount of readily available video footage of realistic indoor
and outdoor dynamic scenes. Our goal is to automatically
analyze people in such challenging videos. In particular,
we aim to produce a pixel-wise segmentation, estimate the
pose, and recover the partial occlusions and relative depth
ordering of people in each frame, as illustrated in Figure 1.
Our motivation is three-fold. First and foremost, we wish to
develop a mid-level representation of stereoscopic videos
suitable for subsequent video understanding tasks such as
recognition of actions and interactions of people [42]. Hu-
man behaviours are often distinguished only by subtle cues
(e.g., a hand contact) and having a detailed and informative
representation of the video signal is an initial step towards
their interpretation. Second, disparity cues available from
stereoscopic movies are expected to improve results of per-
son segmentation and pose estimation. Such results, in turn,
can be used as a (noisy) supervisory signal for learning per-
son segmentation and pose estimation in monocular videos
or still images [1, 17, 26, 40]. Finally, pose estimation and
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segmentation of people will also support interactive annota-
tion, editing, and navigation in stereo videos [16, 22], which
are important tasks in post-production and home video ap-
plications.

Given the recent success of analyzing people in range
data from active sensors, such as Microsoft Kinect [27, 31],
and a plethora of methods to estimate pixel-wise depth from
stereo pairs [2], the task at hand may appear solved. How-
ever, depth estimates from stereo videos are much noisier
than range data from active sensors, see Figure 1 for an ex-
ample. Furthermore, we aim to solve sequences outside of
the restricted “living-room” setup addressed by Kinect. In
particular, our videos contain complex indoor and outdoor
scenes with multiple people occluding each other, and are
captured by a non-stationary camera.

In this paper, we develop a segmentation model in the
context of stereoscopic videos, which addresses challenges
such as: (i) handling non-stationary cameras, by incorpo-
rating explicit person detections and pose estimates; (ii) the
presence of multiple people in complex indoor and outdoor
scenarios, by incorporating articulated person-specific seg-
mentation masks (Section 3) and explicitly modelling oc-
clusion relations among people; and finally (iii) the lack
of accurate stereo estimates, by using other cues, such as
colour and motion features. We cast the problem as a dis-
crete labelling task involving multiple person labels, devise
a suitable cost function (Section 2), and optimize it effi-
ciently (Section 4). We evaluate the proposed model on the
new Inria 3DMovie Dataset with challenging realistic dy-
namic scenes from two stereoscopic feature-length movies
“StreetDance” [Giwa and Pasquini, 2010] and “Pina” [Wen-
ders, 2011]. Additionally, we compare our results on the
Humans in Two Views (H2view) dataset [30] (Section 5).

1.1. Related work
The problem of segmenting a stereo video into

foreground-background regions has been addressed for a
teleconferencing set-up in [21]. The sequences consid-
ered in this work involved only one or two people seated
in front of a webcam, i.e., a restricted set of poses and at
best, simple occlusions. Also, no articulated person model
was used. Many recent works have investigated the use
of stereo (or depth) signal in tasks such as person detec-
tion [19, 29, 32, 35], pose estimation [31], and segmenta-



(a) Original frame (left) (c) Unary cost for person 1 (e) Estimated pose for person 1

(b) Disparity (d) Smoothness cost (f) Segmentation result
Figure 1. Illustration of the steps of our proposed framework on a sample frame from the movie “StreetDance”. We compute the disparity
map (b) from the stereo pair. Occlusion-aware unary costs based on disparity and articulated pose mask are computed for all the people
detected in the scene. In (c) we show the unary cost for the person labelled 1. Pairwise smoothness costs computed from disparity, motion,
and colour features are shown in (d). The range of values in (b,c,d) is denoted by the red (low) - blue (high) spectrum of colours. The
estimated articulated pose for person 1 is shown in (e). (f) shows the final segmentation result, where each colour represents a unique
person, and the numbers denote the front (0) to back (4) ordering of people. (Best viewed in colour.)

tion [21]. Given the success in these individual tasks, the
challenge now is to take a step further, and look at these
problems jointly in scenarios involving multiple interacting
people (see Figure 1).

In addition to the significant progress in human pose es-
timation in still images and videos [15, 18, 28, 41], there
has been some work in joint pose estimation and segmen-
tation [20, 24, 30, 36]. However, these works are limited
to cases involving isolated people, and extending them to
situations with multiple interacting people is not straight-
forward. Recently, a model for joint reasoning about poses
of multiple upright people has been proposed in [12]. This
framework does not output segmentations of people, but can
be adapted to do so. We experimentally compare [12] to re-
sults of our method in Section 5.

The proposed method not only computes a segmentation
of people and their poses, but also estimates their depth or-
dering and occlusion. This relates our work to layered rep-
resentations [23, 33, 34, 37, 39]. For example, Kumar et
al. [23] demonstrate detection and tracking of articulated
models of walking people and animals. The method as-
sumes consistent appearance and a locally affine paramet-
ric motion model of each object part. Layered representa-
tions can also explicitly model occlusions and depth order-
ing [33]. In a similar spirit, Yang et al. [40] apply a layered
model to recover occlusions and depth ordering of multiple
overlapping object detections in one image. These methods
do not, however, recover any pose information, as we do.

Contributions. The main contribution of this paper is
a multi-person segmentation model for stereoscopic video

data. The model incorporates person detections and learnt
articulated pose-specific segmentation masks, as well as
colour, motion, and stereo disparity cues. The model also
explicitly represents depth ordering and occlusion. As a
second contribution, we introduce a new annotated dataset
with more than 400 pixel-wise segmentations of people in
frames extracted from a stereoscopic movie. We demon-
strate the benefits of the proposed approach on this new
challenging data.

2. The Segmentation Model
We segment a given stereoscopic video sequence ex-

tracted from a 3D movie into regions representing individ-
ual people. Figure 1 illustrates an overview of our method
on a sample frame from a video. Here we consider a stereo
pair (only the left image is shown in the figure), estimate
the disparity for every pixel, and use it together with person
detections, colour and motion features, and pose estimates,
to segment individual people, as shown in Figure 1(f).

We initialize our model using automatically obtained
person detections and assign every detection to a person,
i.e., we assume a one-to-one mapping between people and
detections. Each pixel i in the video takes a label from
the set L = {0, 1, . . . , L}, where {0, 1, . . . , L − 1} rep-
resents the set of person detections and the label L denotes
the “background”.1 The cost of assigning a person (or back-
ground) label, from the set L, to every pixel i, E(x; Θ, τ),
is given by:

1With a slight abuse of terminology we refer to image regions that cor-
respond to other objects, which may lie in front of or behind people, as
background.



E(x; Θ, τ) =
∑
i∈V

φi(xi; Θ, τ) +
∑

(i,j)∈E

φij(xi, xj)

+
∑

(i,k)∈Et
φtij(xi, xk), (1)

where V = {1, 2, . . . , N} denotes the set of pixels in the
video. The pairwise spatial and temporal neighbourhood
relations among pixels are represented by the sets E and Et
respectively. The temporal neighbourhood relations are ob-
tained from the motion field [25] computed for every frame.
The function φi(xi; Θ, τ) is the cost of a pixel i in V tak-
ing a label xi in L. It is characterized by pose parame-
ters Θ = {Θ0,Θ1, . . . ,ΘL−1} and disparity parameters
τ = {τ0, τ1, . . . , τL−1}, where Θl and τ l represent the
pose and disparity parameters for a person label l respec-
tively. Note that the pose and disparity parameters vary
across time. However, for brevity, we drop this dependency
on t in our notation.

The function φij(xi, xj) is a spatial smoothness cost of
assigning labels xi and xj to two neighbouring pixels i and
j. Similarly, φtij(xi, xk) is a temporal smoothness cost.
Given the parameters Θ and τ , minimizing the cost (1)
to obtain an optimal labelling x∗ = arg minxE(x; Θ, τ),
segments the video into regions corresponding to dis-
tinct people or background. However, in our prob-
lem, we also aim to optimize over the set of pose and
disparity parameters. In other words, we address the
problem of estimating x∗, the optimal segmentation la-
bels, and Θ∗, τ∗, the optimal pose and disparity param-
eters as: {x∗,Θ∗, τ∗} = arg minx,Θ,τ E(x; Θ, τ), where
E(x; Θ, τ) is the cost of label assignment x, given the pose
and disparity parameters, as defined in (1). Given the dif-
ficulty of optimizing E over the joint parameter space, we
simplify the problem and first estimate pose parameters Θ
independently of x and τ as described in Section 3. Given
Θ, we then solve for x, τ as:

{x∗, τ∗} = arg min
x,τ

E(x, τ ; Θ). (2)

Further details are provided in Section 4. A graphical repre-
sentation of our model is shown in Figure 2. The remainder
of this section defines the unary costs, which are computed
independently in every frame, and the spatio-temporal pair-
wise costs in (1).

Occlusion-based unary costs. Each pixel i takes one of
the person or background labels from the label set L. Build-
ing on the approach of [40], we define occlusion-based costs
corresponding to these labels, φi(xi = l; Θ, τ), l in L, as a
function of likelihoods βl, computed for each label l, as fol-
lows:

φi(xi = l; Θ, τ) = − logP (xi = l|Θ, τ), (3)

where P (xi = l|Θ, τ) = βli
∏

0≤m<l

(1− βmi ). (4)

d1 d3

Θ τ

d2 d4

x2

x1 x3

x4

Figure 2. A graphical illustration
of our model, where the observed
variables are shaded. Each pixel
in the video is represented as a
variable di in the graph. For
clarity, we show 4 pixels from
a frame, and 2 of the temporal
links (dashed line), which con-
nect pixels in one frame to the
next. The person label xi and
disparity parameters τ are in-
ferred given the image features
di, and the pose parameters Θ.

Here, βli is the likelihood of pixel i taking the person (or
background) label l. The label likelihood βl is then formed
by composing the likelihoods βli , for all pixels i ∈ V in
the image. In essence, βl is a soft mask, which captures
the likelihood for one person detection. It can be computed
using the pose estimate of the person, and image features
such as disparity, colour, and motion, as discussed in the
following section. To account for the fact that the people
in a scene may be occluding each other, we accumulate the
label likelihoods in a front-to-back order2 as in (4). This
makes sure that pixel i is likely to take label l, if it has suffi-
ciently strong evidence for label l (i.e., βli is high), and also
has low evidence for other labels m, which correspond to
people in front (i.e., βmi is low for all labels m < l).

Label likelihood βl. Given a person detection and its cor-
responding pose estimate Θl, the problem of computing the
label likelihood βl can be viewed as that of segmenting an
image into person vs. background. However, we do not
make a binary decision of assigning pixels to either the per-
son or the background label. This computation is more akin
to generating a soft likelihood map for each pixel taking a
particular person label. We define this using disparity and
pose cues as: βli = αlψp(Θ

l) + (1 − αl)ψd(τ
l), where

ψp(Θ
l) is an articulated pose mask described in Section 3,

ψd(τ
l) is a disparity likelihood, and αl is a mixing parame-

ter that controls the relative influence of pose and disparity.
The disparity potential is given by:

ψd(di; τ
l, σl) = exp

(
− (di − τ l)2

2(σl)2

)
, (5)

where di is the disparity value computed at pixel i. The dis-
parity potential is a Gaussian characterized by mean τ l and
standard deviation σl, which together with the pose param-
eter Θl determines the model for person l. We set βLi = 0.9
for all the pixels for the background label L.
Smoothness cost. In some cases, the disparity cue used
for computing the unary costs may not be very strong or
may “leak” into the background (see example in Figure 5).

2The order is determined by the disparity parameters τ as discussed in
Section 4.



(a) Estimated pose (b) Pose mask (c) Per-mixture masks
Figure 3. Estimated poses and masks on sample frames. Given a
pose estimate (a), we compute a pose-specific mask (b) using per-
mixture part masks learnt from manually segmented training data.
In (c) we show a scaled version of the masks, doubling the actual
distances between part masks. This visually explains how each
per-mixture mask is contributing to the final mask. In (b,c), the
cost for a pixel to take a person label is denoted by the red (low) -
blue (high) spectrum of colours. (Best viewed in colour.)

We introduce colour and motion features into the cost func-
tion (1), as part of the smoothness cost, to alleviate such
issues. The smoothness cost, φij(xi, xj), of assigning la-
bels xi and xj to two neighbouring pixels i and j takes the
form of a generalized Potts model [7] given by:

φij(xi, xj) =


λ1 exp(

−(di−dj)2
2σ2

c
) + λ2 exp(

−||vi−vj ||22
2σ2

v
)

+λ3 exp(
−(pbi−pbj)

2

2σ2
p

) if xi 6= xj ,

0 otherwise,
(6)

where λ1, λ2, λ3, σc, σv and σp are parameters of the
model. The function (di − dj)2 measures the difference in
disparity between pixels i and j. The motion vector at pixel
i is denoted by vi ∈ R2, and ||vi − vj ||2 is the norm of
the motion vector difference of pixels i and j. The function
(pbi − pbj)2 measures the difference of colour features (Pb
feature values [4]) of pixels i and j. The temporal smooth-
ness cost φtij(xi, xk) is simply a difference of Pb features
values for two pixels i and k connected temporally by the
motion vector vi.

Thus far we have discussed the model given person de-
tections, their pose and disparity parameters. In what fol-
lows, we will describe our method for detecting people,
their poses, and the likelihood computed from them (Sec-
tion 3). We then provide details of the inference scheme
for determining the parameters and the pixel-wise segmen-
tation (Section 4).

3. Estimating an Articulated Pose Mask
The aim here is to obtain an articulated pose segmenta-

tion mask for each person in the image, which can act as a
strong cue to guide the pixel-wise labelling. We wish to cap-
ture the articulation of the human pose as well as the likely
shape and width of the individual limbs, torso, and head
in the specific pose. We build here on the state-of-the-art
pose estimator of Yang and Ramanan [41], and extend it in
the following two directions. First, we incorporate dispar-
ity as input to take advantage of the available stereo signal.
Second, we augment the output to provide an articulated
pose-specific soft-segmentation mask learnt from manually
annotated training data.
Person detection and tracking. We obtain candidate
bounding boxes of individual people and track them
throughout the video. Detections are obtained from the de-
formable part-based person detector [14]. We found this to
perform empirically better than using the articulated pose
estimator [41] for detecting people. To benefit from the
stereo signal, we trained a joint appearance and disparity
model by concatenating appearance and disparity features
into one representation. We use HOG [10] computed on im-
ages converted to grayscale, similar to [41], as appearance
features. The disparity features are obtained by comput-
ing HOG on disparity maps. Our HOG feature representa-
tion for disparity maps is similar to that used in [32, 35] for
person/pedestrian detection. We track the person detections
computed in each frame of the video, and interpolate to fill-
in any missing detections, similar to [13]. The detections
are also smoothed temporally.
Pose estimation from appearance and disparity. We es-
timate the pose of the person within each person detec-
tion bounding box. We restrict our pose estimation mod-
els to upper body poses, which are more commonly found
in movie data. Again, to benefit from the stereo video, we
extract both appearance and disparity features in the frame.
The advantage is that some edges that are barely visible in
the image, e.g., between people in similar clothing, can be
more pronounced in the disparity map. We use HOG fea-
tures for both appearance and disparity, as described above
for person detection. We introduce specific mixtures for
handling occlusion, as in [11], into the pose estimation
framework of [41].

The model is represented as a set of parts, where a part
refers to a patch centered on a joint or on an interpolated
point on a line connecting two joints. For example, we have



one part for an elbow, one for a wrist, and two parts be-
tween the elbow and the wrist, spread uniformly along the
arm length. We use a model with 18 parts. The set of parts
includes 10 annotated joints, head, neck, 2 shoulders, 2 el-
bows, 2 wrists, 2 hips, together with 8 interpolated parts.
Further, each part is characterized by a set of mixtures. The
mixture components for an elbow part, for example, can be
interpreted as capturing different appearances of the elbow
as the pose varies, including occlusions by other limbs or
people, that are explicitly labelled in the training data. We
learn up to eight mixture components, among which one or
two are dedicated to handle occlusions, for each part.

Articulated pose mask ψp. The output of the pose esti-
mator is the location of the individual parts in the frame
as shown in Figure 3(a). To obtain a pose-specific mask
we learn an average mask for each mixture component for
each part. This is achieved by applying the trained pose-
estimator on a training set of people with manually provided
pixel-wise segmentations. All training masks, where mix-
ture component c of part k is detected, are then rescaled to
a canonical size and averaged together to obtain the mean
mask mkc(i). The value at pixel i in the mean mask counts
the relative frequency that this pixel belongs to the person.
An illustration of masks for individual parts and mixture
components is shown in Figure 3(c).

At test time, given an estimated pose with an instanti-
ated mixture component c∗ for a part k, the likelihood for
the person, ψp(Θ, i) at pixel i, is obtained by laying out and
composing the articulated masks mkc∗ for all the parts. If,
at pixel i, multiple masks overlap, we take the maximum as
ψp(Θ, i) = maxkmkc∗(i). We found that taking the max
was beneficial for person segmentation targeted in this pa-
per as it suppresses internal edges between body parts, such
as a hand positioned in front of the torso. An illustration of
the articulated pose masks for various examples is shown in
Figure 3. Note how the part masks can capture fine varia-
tions in the shape and style of the pose.

4. Inference
In the previous section we have outlined how we com-

pute the pose parameters Θl and the corresponding articu-
lated pose mask for each person l. Poses are estimated inde-
pendently for each person and fixed throughout the rest of
the inference procedure described next. The aim is to com-
pute the optimal disparity parameters τ∗ and pixel labels x∗

given the pose parameters Θ, as described by the minimiza-
tion problem (2). It is well known that minimizing multi-
label functions such as E(x; Θ, τ), which corresponds to
the segmentation problem, given the pose and disparity pa-
rameters, is in itself NP-hard (for the type of smoothness
cost we use) [6]. The additional complexity of optimizing
over disparity parameters τ further adds to the challenge.
We propose a two-step strategy, where we first: (i) estimate

the optimal disparity parameters τ∗ using an approximation
to (2), without the pairwise terms; and then (ii) obtain the
pixel labels x∗ with the estimated (and now fixed) parame-
ters τ∗ by minimizing the full cost (1). These two steps are
detailed below.

Obtaining disparity parameters. The estimation of the
set of disparity parameters τ for all the people in a frame
can be succinctly written as:

τ∗ = arg min
{τ}

Ẽ(x̃; Θ, τ), (7)

where we further approximate the original cost function
(1) by only using unary and ignoring the pairwise terms3

as Ẽ(x; Θ, τ) =
∑
i∈V φi(xi; Θ, τ). Note that for this

modified cost function, the optimal pixel labelling x̃ for a
given τ can be obtained independently for each pixel as
x̃i = arg minm∈L Ẽ(xi = m,Θ, τ). Further, the dispar-
ity parameter τ is inversely related to depth, and determines
the front-to-back order of people in a frame. Thus, this min-
imization problem (7) explores various combinations of the
relative order of people in a frame by optimizing over {τ}.
The set of possible disparity parameter values for each per-
son can still be large, and exploring the exponentially many
combinations for all the people in the frame may not be fea-
sible. To address this issue, we obtain and optimize over a
small set of (up to 3) candidates {τ l}, for each person l.4

Note that the disparity parameters are estimated jointly for
all the people in the scene.

Person segmentation. With the estimated disparity (and
pose) parameters, we compute the unary and smoothness
costs, and use the efficient α-expansion algorithm [8] to op-
timize (1). This assigns every pixel a person or background
label from the set L.

5. Experiments
In this section we detail our method for extracting dispar-

ity maps from stereo videos, and report results for person
detection, pose estimation, and segmentation. We present
results on challenging sequences, involving multiple peo-
ple, extracted from two stereoscopic movies, “StreetDance”
and “Pina”. Our new annotated Inria 3DMovie Dataset used
for evaluation in this paper is available on the project web-
site [3]. We also compare our method with [30] on the
H2view dataset.

Disparity estimation. We estimate the disparity for each
frame independently. A joint estimation of motion and dis-
parity from video is also possible [38]. We assume that the
stereo pair is approximately rectified, i.e., for a particular
pixel in view 1 the corresponding pixel in view 2 lies close

3We note that this is a reasonable approximation, as τ only directly
affects the unary cost φi in (1).

4Using a thresholded pose mask, we compute mean disparity µl of all
the pixels within, and set {τ l} = {µl, µl ± σl}. The parameter σl is set
according to a linear decreasing function of µl.



Figure 4. Precision-recall curves for person detection using ap-
pearance (HOG) and disparity (HOGdisp) based detectors, as
well as the jointly trained appearance & disparity based detec-
tor (HOGcomb). Note that the detectors using disparity cues have
an almost perfect precision until around 35% recall.

to the same horizontal scan-line. We use the method of Ay-
vaci et al. [5] for estimating disparities. It performs a search
in a 2D window, and thus can deal with small vertical dis-
placements. Such an approach alleviates the need to rec-
tify the stereo pairs, which is in itself a challenging task in
the context of stereo movies. This is partly due to the fact
that, in stereo movies, parameters of the camera rig, such
as the focal length, baseline or verging angle can change
across shots and even during a shot [22]. The 2D search
also helps to compensate for some unmodelled effects, e.g.,
due to radial distortion. Furthermore, the ability to handle
occlusions explicitly resulted in better disparity maps than
other methods, such as [25].

We use the horizontal component of the estimated dis-
parity field in our formulation. We follow [35] and work
with disparity values directly rather than depth to avoid
problems with infinite depth, and amplifying errors at small
disparities. Estimating the dense disparity field for a single
stereo pair of 960× 540 pixels takes approximately 30 sec-
onds on a modern GPU using the implementation from [5].

Datasets. We trained our person detection and pose esti-
mation methods on an annotated dataset from the feature-
length movie “StreetDance”. We evaluated our methods
on video clips from two movies, namely “StreetDance” and
“Pina”. The movie “StreetDance” was split into two parts
(roughly in the middle), from which we selected the training
and test frames, respectively. The training set is composed
of 520 annotated person bounding boxes and poses from
265 frames. Negative training data is extracted from 247
images with no people, taken from the training part of the
movie, and from stereo pairs shot using the Fuji W3 camera,
which were harvested from Flickr.

The test set for evaluating person detection has 638 per-
son bounding boxes in 193 frames, among which a few
do not contain any people. Given the cost of annotating
poses and pixel-wise segmentation, we evaluated them on

a smaller subset of 180 frames, containing 464 annotated
person segmentations and poses.

Person detection and pose estimation. We report per-
son detection and pose estimation results for models trained
using: (i) standard HOG extracted from grayscale images
(HOG), (ii) HOG extracted from disparity maps (HOGdisp),
and (iii) joint appearance and disparity based model, using
the concatenation of the two features (HOGcomb). First, we
compare the three person detection models using standard
metrics from the PASCAL VOC development kit 2011 [1].
Precision-recall curves are shown in Figure 4, with cor-
responding average precision (AP) values. It shows that
the disparity-based detector (HOGdisp) improves over the
appearance-based detector (HOG). Combining the two rep-
resentations (HOGcomb) further increases person detection
performance. Pose estimation is evaluated using the stan-
dard percentage of correctly estimated body parts (PCP)
score [12]. A body part is deemed correct if the two joints
it links are within a given radius of their ground truth po-
sition, where the radius is a percentage of the ground truth
length of the part. The PCP values for PCP-threshold 0.5
are reported in Table 1. The jointly trained pose estimator
(HOGcomb) outperforms the individual estimators. We ob-
serve that the head and the torso body parts are localized
with high accuracy. Furthermore, combining appearance
and disparity cues improves the lower arm localization by
about 4%.

Segmenting multiple people. In our experiments, we
used the following parameter values: λ1 = 6.3, λ2 = 6,
λ3 = 2.7, σ2

c = 0.025, σ2
v = 0.01, σ2

p = 0.025, which were
set empirically, and fixed for the evaluation. A quantitative
evaluation of the segmentation model is shown in Table 2.
Sample video sequence results are available on the project
webpage [3]. In Table 2 we compare four variants of our
approach and two baseline methods. The first one (Pro-
posed + no mask) refers to the case where the label like-
lihood βli = ψd, i.e., there is no influence of pose on the
segmentation. In other words, this method uses disparity
features, but not the pose information. The second method
(Proposed + uni mask) incorporates a person location like-
lihood, which is computed by averaging ground truth seg-
mentations of people from the training data (after rescaling
them to a standard size) into a single non-articulated “uni-
versal” person mask – an approach inspired by the success-
ful use of such masks in the past [40]. We use this as the per-
son likelihood ψp, and combine it with disparity likelihood
ψd, as explained in Section 2. The third variant (Proposed
+ pose mask) incorporates the articulated pose mask, de-
scribed in Section 3. Our complete model (Proposed + pose
mask + temporal) introduces temporal smoothness across
frames.

For the “Colour only” baseline, we used a colour-based
model for the unary costs without the disparity potential.



[41] HOG HOGdisp HOGcomb

Head & Torso 0.989 0.989 0.991 0.998
Upper arms 0.839 0.856 0.869 0.889
Lower arms 0.518 0.559 0.535 0.594
Global 0.782 0.802 0.799 0.827

Table 1. Evaluating pose estimation. We report global PCP scores
as and individual values for three types of body parts, as in [41].
We also evaluate the upper-body model from [41] trained on the
Buffy dataset. The numbers in bold indicate the best performance.
The combination of appearance and disparity features (HOG-
comb) outperforms the individual estimators (HOG, HOGdisp).
These costs were computed from colour histograms for each
label, similar to [7]. The success of this model certainly de-
pends on the regions used for computing the histograms.
We used the result obtained by segmenting in the disparity
space, i.e., “Proposed + no mask”, as these regions. We be-
lieve that this provides a reasonable estimate for the label
potentials. The background histogram was computed with
bounding boxes harvested from regions with no person de-
tections. Another baseline we compared with, is derived
from the recent work of [12], which computes the poses of
multiple people in a scene. We use the (monocular) per-
son vs. background segmentation performed as part of this
formulation on our dataset.

Intersection vs. union measure [1] is used to evaluate our
segmentation results. From Table 2, the method “Proposed
+ pose mask + temporal” performs better than the others.
The poor performance of the Colour only method, despite
a reasonable initialization for the histograms, is perhaps an
indication of the difficulty of our dataset. From Figures 1
and 5 we note that the person vs. background distinction is
not very marked in the colour feature space. Furthermore,
these images appear to be captured under challenging light-
ing conditions. The temporal smoothness terms in (1) re-
duce flickering artifacts in the segmentation, as shown in
our video results [3]. Other methods [9] to propagate seg-
mentations from a few key frames of the video onto others
can also be used.

Results on a few sample frames for our temporal model
are shown in Figure 5. On a 960 × 540 frame the method
takes about 13s to detect and track people, 8s to estimate
the pose of each person, and 30s per frame to perform the
segmentation with our non-optimized Matlab implementa-
tion. Naturally, the success of our approach depends on the
quality of person detections. Here, we operate in a high-
precision mode, at the expense of missing difficult exam-
ples, e.g., heavily occluded people. The most prominent
failure modes of our method are: (i) challenging poses very
different from training data; and (ii) cases where the dispar-
ity signal is noisy for people far away from the camera (e.g.,
Figure 5, row 1).

H2view dataset. The H2view dataset [30] was acquired
using a static stereo rig, in combination with a Kinect active

Method Int. vs Union

Proposed + no mask 0.278
Proposed + uni mask 0.543
Proposed + pose mask 0.779
Proposed + pose mask + temporal 0.802

Baselines:
Colour only 0.630
Eichner et al. [12] 0.662

Table 2. Evaluation of pixel-wise person segmentation. We used
the intersection vs. union score, which is the overall percentage
of pixels correctly classified. Our method, which uses disparity,
colour, and motion features, along with pose likelihoods performs
better than the others, notably 14% compared to the baseline [12].

sensor. Ground truth poses and segmentations are available
for 7 test video sequences, with a total of 1598 annotated
frames. It is, however, restricted to a single person setup and
hence has no inter-person occlusions. We tested our model
(trained on 3D movies) directly on this dataset, without any
further tuning, and analyzed the segmentation quality us-
ing the evaluation code from [30]. As our method models
only the upper body, we cropped the ground truth, our re-
sults, and those from [30] just above the hips, and consid-
ered only upper body (rather than full body) segmentation.
Our method achieves a segmentation overlap score of 0.825
compared to their 0.735. The time for segmentation is 6s
per frame for this dataset, which contains 512× 384 frame
sequences of a single person.

6. Discussion
We have developed a model for segmentation of peo-

ple in stereoscopic movies. The model explicitly repre-
sents occlusions, incorporates person detections, pose es-
timates, and can recover the depth ordering of people in
the scene. The results suggest that disparity estimates from
stereo video, while noisy, can serve as a strong cue for local-
izing and segmenting people. The results also demonstrate
that a person’s pose, incorporated in the form of an articu-
lated pose mask, can provide a strong shape prior for seg-
mentation. The developed representation presents a build-
ing block for modelling and recognition of human actions
and interactions in 3D films.
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