
Graphical Models
Discrete Inference and Learning

MVA
2024 – 2025

http://thoth.inrialpes.fr/~alahari/disinflearn

http://thoth.inrialpes.fr/~alahari/disinflearn

Recap

2

3
Slide courtesy: http://cs224w.Stanford.edu

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
1/11/2023

Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

4
Slide courtesy: http://cs224w.Stanford.edu

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Economic Networks

Citation Networks

Communication Networks

1/11/2023

Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

5
Slide courtesy: http://cs224w.Stanford.edu

6
Slide courtesy: http://cs224w.Stanford.edu Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

1/11/2023

7
Slide courtesy: http://cs224w.Stanford.edu Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 7

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

Main question:

How do we take advantage of
relational structure for better

prediction?

1/11/2023

8
Slide courtesy: http://cs224w.Stanford.edu

Complex domains have a rich relational
structure, which can be represented as a

relational graph

By explicitly modeling relationships we
achieve better performance!

1/11/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 8

What have we seen?

• Inference
– Belief propagation

– Graph cuts (to be completed)

– Variational inference

– Simulation-based inference

9

Outline

The st-mincut problem

What problems can we solve
using st-mincut?

st-mincut based Move algorithms

Connection between st-mincut
and energy minimization?

10

St-mincut and Energy Minimization

T

S st-mincut

E: {0,1}n → R

Minimizing a Qudratic
Pseudoboolean

function E(x)

Functions of boolean
variables

Pseudoboolean?

Polynomial time st-mincut algorithms
require non-negative edge weights

E(y) = ∑ ci yi + ∑ cij yi(1-yj) cij≥0
i,ji

11

So how does this work?

Construct a graph such that:
1.Any st-cut corresponds to an assignment of x

2.The cost of the cut is equal to the energy of x :
E(x)

Solution
T

S st-mincut

E(y)

12

Graph Construction

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2a1

2

13

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1

2

5

Sink (1)

Source (0)

14

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2

2

5

9

4
Sink (1)

Source (0)

15

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2

2

5

9

4
2

Sink (1)

Source (0)

16

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)

17

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

5 4
2

1 a1 = 1 a2 = 1

E (1,1) = 11

Cost of cut = 11

Sink (1)

Source (0)

2 9

18

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)

a1 = 1 a2 = 0

E (1,0) = 8

st-mincut cost = 8

19

Energy Function Reparameterization

Two functions E1 and E2 are reparameterizations if

E1 (x) = E2 (x) for all x

For instance:

E1 (a1) = 1+ 2a1 + 3ā1

E2 (a1) = 3 + ā1

a1 ā1 1+ 2a1 + 3ā1 3 + ā1

0 1 4 4

1 0 3 3

20

Flow and Reparametrization

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)

21

Flow and Reparametrization

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)

2a1 + 5ā1

= 2(a1+ā1) + 3ā1

= 2 + 3ā1

22

Flow and Reparametrization

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

0

3

9

4
2

1 2a1 + 5ā1

= 2(a1+ā1) + 3ā1

= 2 + 3ā1

23

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2 + 3ā1+ 5a2 + 4 + 2a1ā2 + ā1a2

0

3

5

0
2

1 9a2 + 4ā2

= 4(a2+ā2) + 5ā2

= 4 + 5ā2

Flow and Reparametrization

24

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2

0

3

5

0
2

1

Flow and Reparametrization

3ā1+ 5a2 + 2a1ā2

= 2(ā1+a2+a1ā2) +ā1+3a2

= 2(1+ā1a2) +ā1+3a2

a1 a2 F1 F2
0 0 1 1
0 1 2 2
1 0 1 1
1 1 1 1

F1 = ā1+a2+a1ā2

F2 = 1+ā1a2

25

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

0

1

3

0
0

3

Flow and Reparametrization

3ā1+ 5a2 + 2a1ā2

= 2(ā1+a2+a1ā2) +ā1+3a2

= 2(1+ā1a2) +ā1+3a2

a1 a2 F1 F2
0 0 1 1
0 1 2 2
1 0 1 1
1 1 1 1

F1 = ā1+a2+a1ā2

F2 = 1+ā1a2

26

Sink (1)

Source (0)

a1 a2

0

1

3

0
0

3

Flow and Reparametrization

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

No more
augmenting paths

possible

27

Sink (1)

a1 a2

0

1

3

0
0

3

Flow and Reparametrization

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

a1 = 1 a2 = 0

E (1,0) = 8

st-mincut cost = 8
Total Flow

bound on the
optimal solution

Inference of the optimal solution becomes
trivial because the bound is tight

Residual Graph
(positive coefficients)

Source (0)

28

Example: Image Segmentation

E(y) = ∑ ci yi + ∑ cij yi(1-yj)
E: {0,1}n → R

0 → fg
1 → bgi i,j

Global Minimum (y*)

y* = arg min E(y)
y

How to minimize
E(x)?

29

How does the code look like?

Sink (1)

Graph *g;

For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost);

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

Source (0)

30

How does the code look like?

Graph *g;

For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost);

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

a1 a2

fgCost(a1)

Sink (1)

Source (0)

fgCost(a2)

bgCost(a1) bgCost(a2)

31

Graph *g;

For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost(p,q));

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

How does the code look like?

a1 a2

fgCost(a1)

Sink (1)

Source (0)

fgCost(a2)

bgCost(a1) bgCost(a2)

cost(p,q)

32

Graph *g;

For all pixels p

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q), cost(p,q));

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)

How does the code look like?

a1 a2

fgCost(a1)

Sink (1)

fgCost(a2)

bgCost(a1) bgCost(a2)

cost(p,q)

a1 = bg a2 = fg

Source (0)

33

Outline

The st-mincut problem

What problems can we solve
using st-mincut?

st-mincut based Move algorithms

Connection between st-mincut
and energy minimization?

34

Minimizing Energy Functions

Space of Function
Minimization Problems

Submodular
Functions

NP-Hard

• General Energy
Functions
– NP-hard to minimize
– Only approximate minimization

possible

• Easy energy functions
– Solvable in polynomial time
– Submodular ~ O(n6)

MAXCUT

Functions defined on trees

35

Minimizing Submodular Functions

• Minimizing general submodular functions
– O(n5 Q + n6) where Q is function evaluation time

[Orlin, IPCO 2007]

• Symmetric submodular functions
– E (y) = E (1 - y)
– O(n3) [Queyranne 1998]

• Quadratic pseudoboolean
– Can be transformed to st-mincut
– One node per variable (O(n3) complexity)
– Very low empirical running time

36

Submodular Pseudoboolean Functions

• All functions for one boolean variable (f: {0,1} à ℝ) are submodular

• A function of two boolean variables (f: {0,1}2 à ℝ) is submodular if
f(0,1) + f(1,0) ³ f(0,0) + f(1,1)

• A general pseudoboolean function f : 2n® ℝ is submodular if all its
projections fp are submodular i.e.

fp(0,1) + fp(1,0) ³ fp(0,0) + fp(1,1)

Function defined over boolean vectors y = {y1,y2, yn}

Definition

37

E(y) = ∑ θi (yi) + ∑ θij (yi,yj)
i,ji

Quadratic Submodular Pseudoboolean
Functions

θij(0,1) + θij (1,0) ³ θij (0,0) + θij (1,1)For all ij

E(y) = ∑ ci yi + ∑ cij yi(1-yj) cij≥0
i,ji

Equivalent (transformable)

i.e. all submodular QPBFs are st-mincut solvable
38

A B

C D

0 1

0

1
yi

yj

= A +
0 0

C-A C-A

0 1

0

1

0 D-C

0 D-C

0 1

0

1

0 B+C-
A-D

0 0

0 1

0

1
+ +

if yi=1 add C-A if yj = 1 add D-C

B+C-A-D ³ 0 is true from the submodularity of θij

How are they equivalent?

A = θij (0,0) B = θij(0,1) C = θij (1,0) D = θij (1,1)

θij (yi,yj) = θij(0,0)
+ (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj

+ (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj

A B

C D

0 1

0

1
yi

yj

= A +
0 0

C-A C-A

0 1

0

1

0 D-C

0 D-C

0 1

0

1

0 1

0

1
+ +

B+C-A-D ³ 0 is true from the submodularity of θij

How are they equivalent?

A = θij (0,0) B = θij(0,1) C = θij (1,0) D = θij (1,1)

if yi=1 add C-A if yj = 1 add D-C

0 B+C-
A-D

0 0

θij (yi,yj) = θij(0,0)
+ (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj

+ (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj

A B

C D

0 1

0

1
= A +

0 0

C-A C-A

0 1

0

1

0 D-C

0 D-C

0 1

0

1

0 1

0

1
+ +

B+C-A-D ³ 0 is true from the submodularity of θij

How are they equivalent?

A = θij (0,0) B = θij(0,1) C = θij (1,0) D = θij (1,1)

0 B+C-
A-D

0 0
yi

yj

if yi=1 add C-A if yj = 1 add D-C

θij (yi,yj) = θij(0,0)
+ (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj

+ (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj

A B

C D

0 1

0

1
= A +

0 0

C-A C-A

0 1

0

1

0 D-C

0 D-C

0 1

0

1

0 1

0

1
+ +

B+C-A-D ³ 0 is true from the submodularity of θij

How are they equivalent?

A = θij (0,0) B = θij(0,1) C = θij (1,0) D = θij (1,1)

0 B+C-
A-D

0 0
yi

yj

if yi=1 add C-A if yj = 1 add D-C

θij (yi,yj) = θij(0,0)
+ (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj

+ (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj

A B

C D

0 1

0

1
= A +

0 0

C-A C-A

0 1

0

1

0 D-C

0 D-C

0 1

0

1

0 1

0

1
+ +

B+C-A-D ³ 0 is true from the submodularity of θij

How are they equivalent?

A = θij (0,0) B = θij(0,1) C = θij (1,0) D = θij (1,1)

0 B+C-
A-D

0 0
yi

yj

if yi=1 add C-A if yj = 1 add D-C

θij (yi,yj) = θij(0,0)
+ (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj

+ (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj

E(y) = ∑ θi (yi) + ∑ θij (yi,yj)
i,ji

Quadratic Submodular Pseudoboolean
Functions

θij(0,1) + θij (1,0) ³ θij (0,0) + θij (1,1)For all ij

Equivalent (transformable)

T

S
st-mincut

y in {0,1}n

44

Recap

• Exact minimization of Submodular QBFs
using graph cuts

• Obtaining partially optimal solutions of non-
submodular QBFs using graph cuts

45

Outline

The st-mincut problem

What problems can we solve
using st-mincut?

st-mincut based Move algorithms

Connection between st-mincut
and energy minimization?

46

St-mincut based Move algorithms

• Commonly used for solving non-submodular
multi-label problems

• Extremely efficient and produce good
solutions

• Not Exact: Produce local optima

E(y) = ∑ θi (yi) + ∑ θij (yi,yj)
i,ji

y ϵ Labels L = {l1, l2, … , lk}

47

Move Making Algorithms

Search
Neighbourhood

Current Solution

Optimal Move

Solution Space

En
er

gy

48

Move Making Algorithms

Search
Neighbourhood

Current Solution

Optimal Move

Solution Space

En
er

gy

49

Move Making Algorithms

Search
Neighbourhood

Current Solution

Optimal Move

Solution Space

En
er

gy

50

Move Making Algorithms

Search
Neighbourhood

Current Solution

Optimal Move

Solution Space

En
er

gy

51

Computing the Optimal Move

Search
Neighbourhood

Current Solution

Optimal Move

yc
(t) Key Property

Move Space

Bigger move
space

Solution Space

En
er

gy

• Better solutions
• Finding the optimal move hard

52

Moves using Graph Cuts

Expansion and Swap move algorithms
[Boykov Veksler and Zabih, PAMI 2001]

• Makes a series of changes to the solution (moves)
• Each move results in a solution with smaller energy

Space of Solutions (y) : LN

Move Space (t) : 2N

Search
Neighbourhood

Current Solution

N Number of
Variables

L Number of
Labels

53

Moves using Graph Cuts

Expansion and Swap move algorithms
[Boykov Veksler and Zabih, PAMI 2001]

• Makes a series of changes to the solution (moves)
• Each move results in a solution with smaller energy

Current Solution

Construct a move
function

Minimize move function
to get optimal move

Move to new
solution

How to
minimize

move
functions?

54

Expansion Move

Sky
House

Tree
Ground

Initialize with TreeStatus:

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

• Variables take label α or retain current label

55

Expansion Move

Sky
House

Tree
Ground

Status: Expand Ground

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

• Variables take label α or retain current label

56

Expansion Move

Sky
House

Tree
Ground

Status: Expand House

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

• Variables take label α or retain current label

57

Expansion Move

Sky
House

Tree
Ground

Status: Expand Sky

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

• Variables take label α or retain current label

58

Expansion Move

• Move energy is submodular if:
– Unary Potentials: Arbitrary
– Pairwise potentials: Metric

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

Semi metric

• Variables take label α or retain current label

Examples: Potts model, Truncated linear
Cannot solve truncated quadratic

θij (la,lb) ≥ 0
θij (la,lb) = 0 iff a = b

59

Expansion Move

• Move energy is submodular if:
– Unary Potentials: Arbitrary
– Pairwise potentials: Metric

[Boykov, Veksler, Zabih][Boykov, Veksler, Zabih]

θij (la,lb) + θij (lb,lc) ≥ θij (la,lc) Triangle
Inequality

• Variables take label α or retain current label

Examples: Potts model, Truncated linear
Cannot solve truncated quadratic

60

Exact
Transformation

(global optimum)

Or Relaxed
transformation

(partially optimal)

Summary

T

S
st-mincut

Labelling
Problem

Submodular Quadratic
Pseudoboolean Function

Move making algorithms

Sub-problem

61

Where do we stand ?

Chain/Tree, 2/multi-label: Use BP

Grid graph -
“submodular”: Use graph cuts
“metric”: Use expansion

otherwise: Use TRW,
dual decomposition,
relaxation

62

What have we seen?

• Inference
– Belief propagation

– Graph cuts

– Variational inference

– Simulation-based inference

• Learning

63

• Supervised Learning

• Probabilistic Methods

• Loss-based Methods

Outline

64

Image Classification

Which city is this?

Input: d Output: x Î {1,2,…,h}
65

CRF training
• Stereo matching:
• Z: left, right image
• X: disparity map

Z X

f :

argf = parameterized
by w

Goal of training:
estimate proper w

66

CRF training
• Denoising:
• Z: noisy input image
• X: denoised output image

Z X

f :

argf = parameterized
by w

Goal of training:
estimate proper w

67

CRF training (some further notation)

vector valued feature
functions

68

Learning formulations

Risk minimization

K training samples

70

Regularized Risk minimization

71

Regularized Risk minimization

Replace Δ with easier to handle upper bound LG
(e.g., convex w.r.t. w)

72

Choice 1: Hinge loss

§ Upper bounds Δ

§ Leads to max-margin learning

73

Max-margin learning

subject to the constraints:

energy of
ground truth

any other
energy

desired
margin

slack

74

Max-margin learning

subject to the constraints:

or equivalently

CONSTRAINED

UNCONSTRAINED

75

Choice 2: logistic loss

§ Can be shown to lead to maximum likelihood learning

partition function

76

Max-margin vs Maximum-likelihood
max-margin

maximum likelihood

77

Max-margin vs Maximum-likelihood
max-margin

maximum likelihood

soft-max

78

Solving the learning
formulations

Maximum-likelihood learning

§ Differentiable & convex

partition function

§ Global optimum via gradient descent, for example

80

Maximum-likelihood learning

gradient

Recall that:

81

Maximum-likelihood learning

gradient

§ Requires MRF probabilistic inference

§ NP-hard (exponentially many x): approximation via loopy-BP ?
82

Max-margin learning (UNCONSTRAINED)

§ Convex but non-differentiable

§ Global optimum via subgradient method

83

Max-margin learning (CONSTRAINED)

subject to the constraints:

linear in w

• Quadratic program (great!)
• But exponentially many constraints (not so great)

84

• What if we use only a small number of constraints?

• Resulting QP can be solved

• But solution may be infeasible

Max-margin learning (CONSTRAINED)

• only few constraints active at optimal solution !!
(variables much fewer than constraints)

• Constraint generation to the rescue

• Given the active constraints, rest can be ignored

85

What have we seen?

• Inference
– Belief propagation

– Graph cuts

– Variational inference

– Simulation-based inference

• Learning

86

87
9Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Images

Text/Speech

Modern deep learning toolbox is designed
for simple sequences & grids

1/11/2023Slide courtesy: http://cs224w.Stanford.edu

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10

Modern
deep learning toolbox

is designed for
sequences & grids

1/11/2023

88
Slide courtesy: http://cs224w.Stanford.edu

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 11

Not everything
can be represented as
a sequence or a grid

How can we develop neural
networks that are much more

broadly applicable?
New frontiers beyond classic neural
networks that only learn on images

and sequences
1/11/2023

89
Slide courtesy: http://cs224w.Stanford.edu

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13
1/11/2023

IC
LR

 2
02

2
ke

yw
or

ds

90
Slide adapted from: http://cs224w.Stanford.edu

91
Slide courtesy: http://cs224w.Stanford.edu

Networks are complex.
� Arbitrary size and complex topological

structure (i.e., no spatial locality like grids)

� No fixed node ordering or reference point
� Often dynamic and have multimodal features

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 14

vs.

Networks Images

Text

1/11/2023

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 16

…
z

Input: Network

Predictions: Node labels,
New links, Generated
graphs and subgraphs

1/11/2023

92
Slide courtesy: http://cs224w.Stanford.edu

17Jure Leskovec, Stanford University

Each node defines a computation graph
▪ Each edge in this graph is a

transformation/aggregation function

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks.
93

Slide courtesy: http://cs224w.Stanford.edu

18Jure Leskovec, Stanford University

Intuition: Nodes aggregate information from their
neighbors using neural networks

Neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.
94Slide courtesy: http://cs224w.Stanford.edu

(Supervised) Machine Learning Lifecycle:
This feature, that feature. Every single time!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 20

Raw
Data

Graph
Data

Learning
Algorithm Model

Downstream
prediction task

Feature
Engineering

Representation
Learning --

Automatically
learn the features

1/11/2023

95
Slide courtesy: http://cs224w.Stanford.edu

Map nodes to d-dimensional
embeddings such that similar nodes in

the network are embedded close
together

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

representationnode

𝒇: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation,
embedding

u
Learn a neural network

1/11/2023

96
Slide courtesy: http://cs224w.Stanford.edu

ML for Graph data

• Traditional methods

• Node embeddings

• Graph neural networks

• Applications

97

98
Slide courtesy: http://cs224w.Stanford.edu 1/11/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

Node level

Edge-level

Community
(subgraph)
level

Graph-level
prediction,
Graph
generation

� Node classification: Predict a property of a node
▪ Example: Categorize online users / items

� Link prediction: Predict whether there are missing
links between two nodes
▪ Example: Knowledge graph completion

� Graph classification: Categorize different graphs
▪ Example: Molecule property prediction

� Clustering: Detect if nodes form a community
▪ Example: Social circle detection

� Other tasks:
▪ Graph generation: Drug discovery
▪ Graph evolution: Physical simulation

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 261/11/2023

99
Slide courtesy: http://cs224w.Stanford.edu

� Design features for nodes/links/graphs
� Obtain features for all training data

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

C

A

B

D E

H

F

G

Node features

Graph featuresLink features

∈ ℝ𝐷
∈ ℝ𝐷

∈ ℝ𝐷

100
Slide courtesy: http://cs224w.Stanford.edu

� Train an ML model:
▪ Logistic Regression
▪ Random forest
▪ Neural network, etc.

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

𝒙𝑵 𝑦𝑁

� Apply the model:
▪ Given a new

node/link/graph, obtain
its features and make a
prediction

𝒙 𝑦

101
Slide courtesy: http://cs224w.Stanford.edu

102
Slide courtesy: http://cs224w.Stanford.edu

Goal: Make predictions for a set of objects

Design choices:
� Features: d-dimensional vectors 𝒙
� Objects: Nodes, edges, sets of nodes,

entire graphs
� Objective function:

▪ What task are we aiming to solve?

101/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

103
Slide courtesy: http://cs224w.Stanford.edu 13

? ?

?
?

?
Machine
Learning

Node classification

ML needs features.

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Goal: Characterize the structure and position of
a node in the network:

▪ Node degree
▪ Node centrality
▪ Clustering coefficient
▪ Graphlets

1/12/2023 14Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Node feature

104
Slide courtesy: http://cs224w.Stanford.edu

� The task is to predict new links based on the
existing links.

� At test time, node pairs (with no existing links)
are ranked, and top 𝐾 node pairs are predicted.

� The key is to design features for a pair of nodes.

1/12/2023 33Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

?

?
105

Slide courtesy: http://cs224w.Stanford.edu

Two formulations of the link prediction task:
� 1) Links missing at random:

▪ Remove a random set of links and then
aim to predict them

� 2) Links over time:
▪ Given 𝐺[𝑡0, 𝑡0′] a graph defined by edges

up to time 𝑡0′ , output a ranked list L
of edges (not in 𝐺[𝑡0, 𝑡0′]) that are
predicted to appear in time 𝐺[𝑡1, 𝑡1′]

▪ Evaluation:
▪ n = |Enew|: # new edges that appear during

the test period [𝑡1, 𝑡1′]
▪ Take top n elements of L and count correct edges

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

𝐺[𝑡0, 𝑡0′]
𝐺[𝑡1, 𝑡1′]

106

Slide courtesy: http://cs224w.Stanford.edu

107
Slide courtesy: http://cs224w.Stanford.edu

� Methodology:
▪ For each pair of nodes (x,y) compute score c(x,y)

▪ For example, c(x,y) could be the # of common neighbors
of x and y

▪ Sort pairs (x,y) by the decreasing score c(x,y)
▪ Predict top n pairs as new links
▪ See which of these links actually

appear in 𝐺[𝑡1, 𝑡1′]

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

X

108
Slide courtesy: http://cs224w.Stanford.edu

� Distance-based feature
� Local neighborhood overlap
� Global neighborhood overlap

1/12/2023 36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Link feature

� Distance-based features:
▪ Uses the shortest path length between two nodes

but does not capture how neighborhood overlaps.
� Local neighborhood overlap:

▪ Captures how many neighboring nodes are shared
by two nodes.

▪ Becomes zero when no neighbor nodes are shared.
� Global neighborhood overlap:

▪ Uses global graph structure to score two nodes.
▪ Katz index counts #walks of all lengths between two

nodes.
1/12/2023 45Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

109
Slide courtesy: http://cs224w.Stanford.edu

110
Slide courtesy: http://cs224w.Stanford.edu

� Goal: We want features that characterize the
structure of an entire graph.

� For example:

1/12/2023 47Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

� Kernel methods are widely-used for traditional
ML for graph-level prediction.

� Idea: Design kernels instead of feature vectors.
� A quick introduction to Kernels:

▪ Kernel 𝐾 𝐺,𝐺′ ∈ ℝ measures similarity b/w data
▪ Kernel matrix 𝑲 = 𝐾 𝐺,𝐺′

𝐺,𝐺′
must always be

positive semidefinite (i.e., has positive eigenvalues)
▪ There exists a feature representation 𝜙(∙) such that
𝐾 𝐺, 𝐺′ = 𝜙 G T𝜙 𝐺′

▪ Once the kernel is defined, off-the-shelf ML model,
such as kernel SVM, can be used to make predictions.

1/12/2023 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

111
Slide courtesy: http://cs224w.Stanford.edu

� Graph Kernels: Measure similarity between
two graphs:
▪ Graphlet Kernel [1]
▪ Weisfeiler-Lehman Kernel [2]
▪ Other kernels are also proposed in the literature

(beyond the scope of this lecture)
▪ Random-walk kernel
▪ Shortest-path graph kernel
▪ And many more…

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.
[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

112
Slide courtesy: http://cs224w.Stanford.edu

� Graphlet Kernel
▪ Graph is represented as Bag-of-graphlets
▪ Computationally expensive

� Weisfeiler-Lehman Kernel
▪ Apply 𝐾-step color refinement algorithm to enrich

node colors
▪ Different colors capture different 𝐾-hop neighborhood

structures
▪ Graph is represented as Bag-of-colors
▪ Computationally efficient
▪ Closely related to Graph Neural Networks (as we

will see!)
1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

113
Slide courtesy: http://cs224w.Stanford.edu

114
Slide courtesy: http://cs224w.Stanford.edu 3

Input
Graph

Structured
Features

Learning
Algorithm Prediction

Downstream
prediction task

Feature
Engineering

Representation Learning --
Automatically

learn the features

Graph Representation Learning alleviates
the need to do feature engineering every
single time.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu1/17/2023

115
Slide courtesy: http://cs224w.Stanford.edu

Goal: Efficient task-independent feature
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

vectornode

𝑓: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation,
embedding

𝑢

1/17/2023

� Task: Map nodes into an embedding space
▪ Similarity of embeddings between nodes indicates

their similarity in the network. For example:
▪ Both nodes are close to each other (connected by an edge)

▪ Encode network information
▪ Potentially used for many downstream predictions

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Vec

ℝ𝑑embeddings

• Node classification
• Link prediction
• Graph classification
• Anomalous node detection
• Clustering
• ….

Tasks

116
Slide courtesy: http://cs224w.Stanford.edu

� 2D embedding of nodes of the Zachary’s
Karate Club network:

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Example
• Zachary’s Karate Network:

18

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014. 117
Slide courtesy: http://cs224w.Stanford.edu

118
Slide courtesy: http://cs224w.Stanford.edu

� Assume we have a graph G:
▪ V is the vertex set.
▪ A is the adjacency matrix (assume binary).
▪ For simplicity: No node features or extra

information is used

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 81/17/2023

1

4
3

2

¸̧
¸
¸
¸

¹

·

¨̈
¨
¨
¨

©

§

=

0111
1000
1001
1010

AV: {1, 2, 3, 4}

� Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 91/17/2023

119
Slide courtesy: http://cs224w.Stanford.edu

120
Slide courtesy: http://cs224w.Stanford.edu Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Goal:

Need to define!

1/17/2023

in the original network Similarity of the embedding
similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢

121
Slide courtesy: http://cs224w.Stanford.edu

1. Encoder maps from nodes to embeddings
2. Define a node similarity function (i.e., a

measure of similarity in the original network)
3. Decoder𝐃𝐄𝐂 maps from embeddings to the

similarity score
4. Optimize the parameters of the encoder so

that:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 111/17/2023

in the original network Similarity of the embedding

similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢
𝐃𝐄𝐂(𝐳𝑣Τ𝐳𝑢)

� Encoder: maps each node to a low-dimensional
vector

� Similarity function: specifies how the
relationships in vector space map to the
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of 𝑢 and 𝑣 in
the original network

dot product between node
embeddings

1/17/2023

Decoder

ENC 𝑣 = 𝐳𝑣

similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢

node in the input graph

d-dimensional
embedding

122
Slide courtesy: http://cs224w.Stanford.edu

123
Slide courtesy: http://cs224w.Stanford.edu

Simplest encoding approach: Encoder is just an
embedding-lookup

Each node is assigned a unique
embedding vector

(i.e., we directly optimize
the embedding of each node)

Many methods: DeepWalk, node2vec

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

124
Slide courtesy: http://cs224w.Stanford.edu

� Encoder + Decoder Framework
▪ Shallow encoder: embedding lookup
▪ Parameters to optimize: 𝐙 which contains node

embeddings 𝐳𝑢 for all nodes 𝑢 ∈ 𝑉
▪ We will cover deep encoders (GNNs) in Lecture 6

▪ Decoder: based on node similarity.
▪ Objective: maximize 𝐳𝑣Τ𝐳𝑢 for node pairs (𝑢, 𝑣)

that are similar

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

later

125
Slide courtesy: http://cs224w.Stanford.edu

� Key choice of methods is how they define node
similarity.

� Should two nodes have a similar embedding if
they…
▪ are linked?
▪ share neighbors?
▪ have similar “structural roles”?

� We will now learn node similarity definition that uses
random walks, and how to optimize embeddings for
such a similarity measure.

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

There are also random walk based approaches

� This is unsupervised/self-supervised way of
learning node embeddings.
▪ We are not utilizing node labels
▪ We are not utilizing node features
▪ The goal is to directly estimate a set of coordinates

(i.e., the embedding) of a node so that some aspect
of the network structure (captured by DEC) is
preserved.

� These embeddings are task independent
▪ They are not trained for a specific task but can be

used for any task.
1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

126
Slide courtesy: http://cs224w.Stanford.edu

127
Slide courtesy: http://cs224w.Stanford.edu Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

probability that u
and v co-occur on a
random walk over

the graph

1/17/2023

1. Estimate probability of visiting node 𝒗 on a
random walk starting from node 𝒖 using
some random walk strategy 𝑹

2. Optimize embeddings to encode these
random walk statistics:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 231/17/2023

Similarity in embedding space (Here:
dot product=cos(𝜃)) encodes random walk “similarity”

128
Slide courtesy: http://cs224w.Stanford.edu

129
Slide courtesy: http://cs224w.Stanford.edu

1. Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information
Idea: if random walk starting from node 𝑢
visits 𝑣 with high probability, 𝑢 and 𝑣 are
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 241/17/2023

130
Slide courtesy: http://cs224w.Stanford.edu

� Intuition: Find embedding of nodes in
𝑑-dimensional space that preserves similarity

� Idea: Learn node embedding such that nearby
nodes are close together in the network

� Given a node 𝑢, how do we define nearby
nodes?
▪ 𝑁𝑅 𝑢 … neighbourhood of 𝑢 obtained by some

random walk strategy 𝑅

25Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu1/17/2023

� Given 𝐺 = (𝑉, 𝐸),
� Our goal is to learn a mapping 𝑓: 𝑢 → ℝ𝑑:
𝑓 𝑢 = 𝐳𝑢

� Log-likelihood objective:

▪ 𝑁𝑅(𝑢) is the neighborhood of node 𝑢 by strategy 𝑅

� Given node 𝑢, we want to learn feature
representations that are predictive of the nodes
in its random walk neighborhood 𝑁𝑅(𝑢).

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

131
Slide courtesy: http://cs224w.Stanford.edu

1. Run short fixed-length random walks
starting from each node 𝑢 in the graph using
some random walk strategy R.

2. For each node 𝑢 collect 𝑁𝑅(𝑢), the multiset*

of nodes visited on random walks starting
from 𝑢.

3. Optimize embeddings according to: Given
node 𝑢, predict its neighbors 𝑁R(𝑢).

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27
*𝑁𝑅(𝑢) can have repeat elements since nodes can be visited multiple times on random walks

1/17/2023

Maximum likelihood objective

132

Slide courtesy: http://cs224w.Stanford.edu

133
Slide courtesy: http://cs224w.Stanford.edu

� Core idea: Embed nodes so that distances in
embedding space reflect node similarities in
the original network.

� Different notions of node similarity:
▪ Naïve: similar if two nodes are connected
▪ Neighborhood overlap (covered in Lecture 2)
▪ Random walk approaches (covered today)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 481/17/2023

