Causality

Causality

based on the presentation by I. Guyon et al.

Why Causality AI / ML

- Underspecified Goals
- Underspecified Limitations
- Underspecified Caveats

Goals in Al

- Fair
- Accountable
- Transparent
- Robust

- → Big Data Cures Everything
- → Big Data Can Do Everything
- →Big Data & Big Brother

- **→**Biases
- explainability
- → Decision making can be supported
- →attacks / manipulations

Why Causality —What's the Issue with pure Al

- Biases in data, lots of them
- Leads to biased learnt models
- Robustness
- Scope becomes very important

References

- C. O'Neill, Weapons of Math Destruction, 2016
- Zeynep Tufekci, We're building a dystopia just to make people click on ads, Ted Talks, Oct 2017.

Why Causality —Some Issues with "Data is Everything"

- Biases in data, lots of them
- Leads to biased learnt models
- Robustness
- Scope becomes very important

References

- C. O'Neill, Weapons of Math Destruction, 2016
- Z. Tufekci, We're building a dystopia just to make people click on ads, Ted Talks, Oct 2017.

ML Approach to Explainable Models

Discriminative or Generative modelling

Given

$$D = \{(x_i, y_i), x_i \in \mathbb{R}^d, i \in 1 \dots N\}, \text{ iid samples } P(X, Y)$$

- Supervised learning $\hat{h}: X \mapsto Y$ i.e. $\arg \max_{Y} P(Y|X)$
- Generative modelling $\hat{q}: X \times Y \to \mathbb{R}_+, \text{ i.e. } \hat{P}(X,Y)$

Lead to Predictive Modelling which will reproduce data biases

e.g.: If there are lots of umbrellas, then it rains

ML Approach to Explainable Models

But Not All Biases are Bad

The Implicit Big Data Promise

• If you can predict, can you control?

Knowledge -> Prediction -> Control

So How can this be Tested? Interventions

- Think about nutrition
- Think about healthcare
- Economy
- Climate

Pearl's "Do" operator: do(X = a) means that we intervene a system on event X to make "a" true (Pearl 2009).

The Implicit Big Data Promise

X is a direct cause of Y if when we intervene it Y's law changes

$$X \to Y$$
 iif

$$P_{Y|do(X=a,Z=c)} \neq P_{Y|do(X=b,Z=c)}$$

Example: Cancer, Smoking, and Genetic Factors

$$P_{C|do(S=1,G=0)} \neq P_{C|do(S=0,G=0)}$$

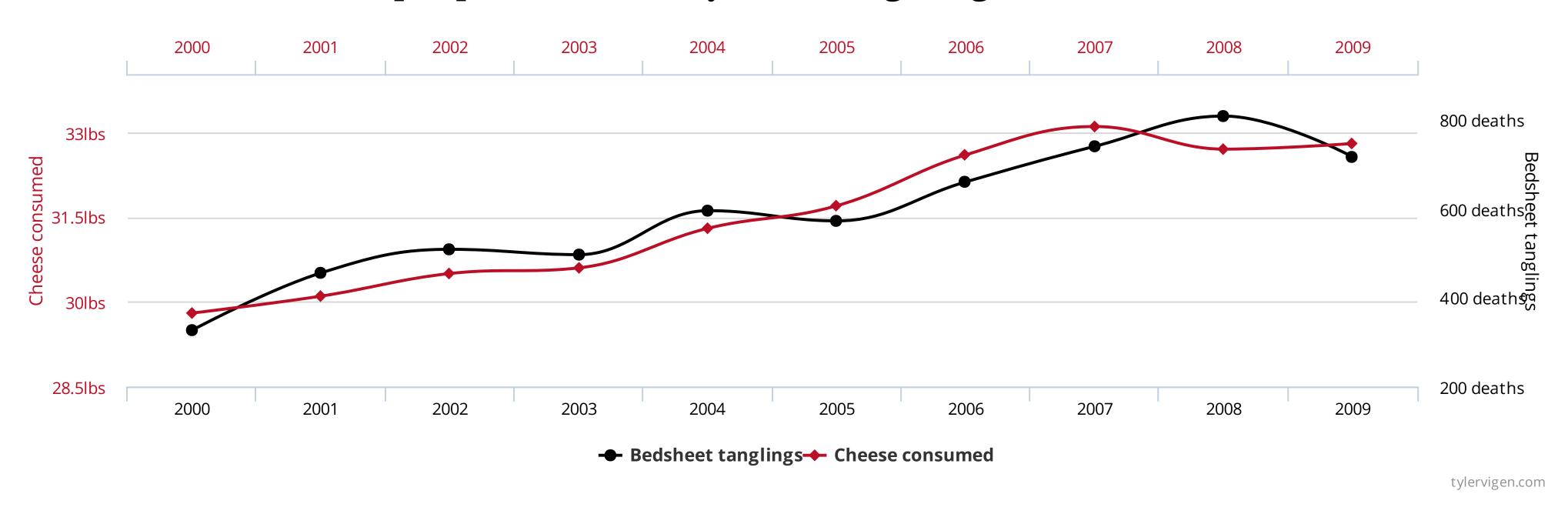
Intervention

Correlation does not Imply Causation

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets



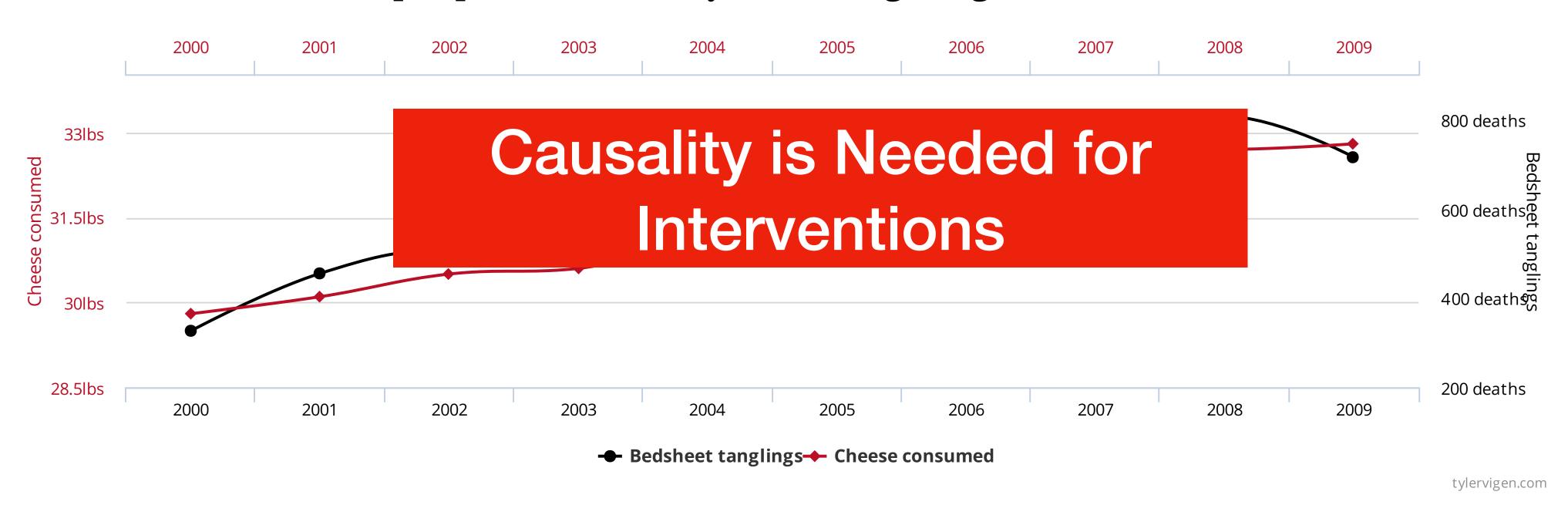
https://www.tylervigen.com/spurious-correlations

Correlation does not Imply Causation

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets



https://www.tylervigen.com/spurious-correlations

Prediction is not Causation

Consider

$$X \sim \text{Uniform}(0, 1)$$

$$E_Y, E_Z \sim \mathcal{N}(0, 1)$$

$$Y \leftarrow 0.5X + E_Y$$

$$Z \leftarrow Y + E_Z$$

Prediction

$$\hat{Y} = 0.25X + 0.5Z$$

as a causal model suggests that Y depends on Z

Prediction is not Causation

Consider

$$X \sim \text{Uniform}(0, 1)$$

$$E_Y, E_Z \sim \mathcal{N}(0, 1)$$

$$Y \leftarrow 0.5X + E_Y$$

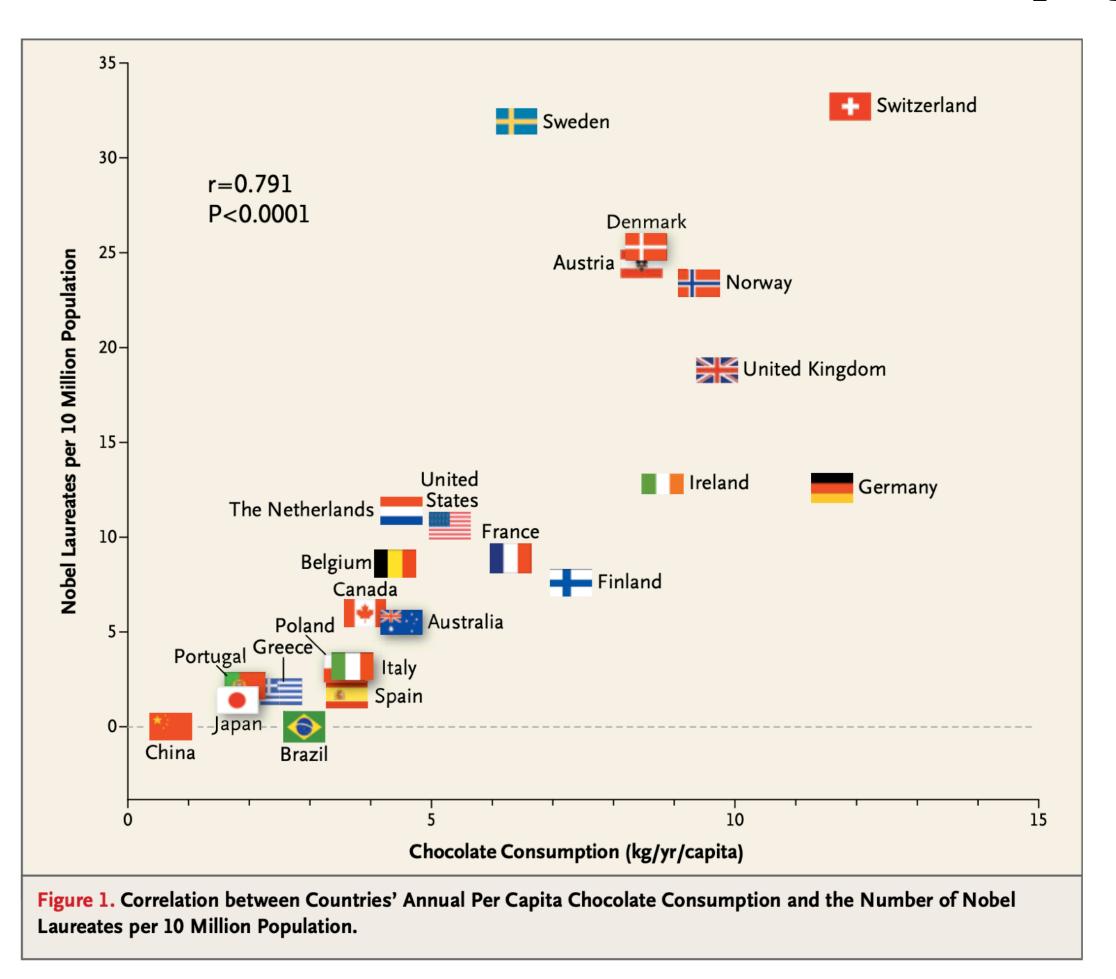
$$Z \leftarrow Y + E_Z$$

Prediction

$$\hat{Y} = 0.25X + 0.5Z$$

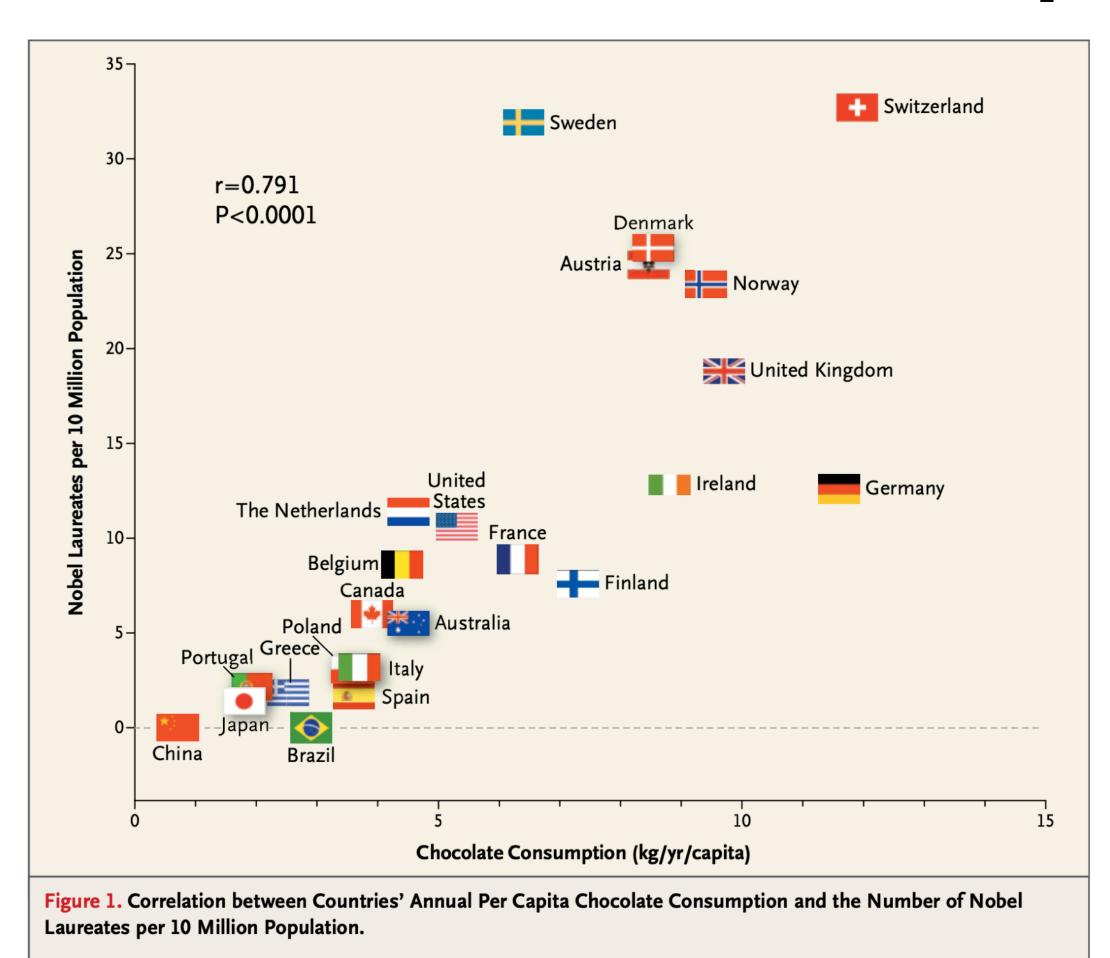
as a causal model suggests that Y depends on Z

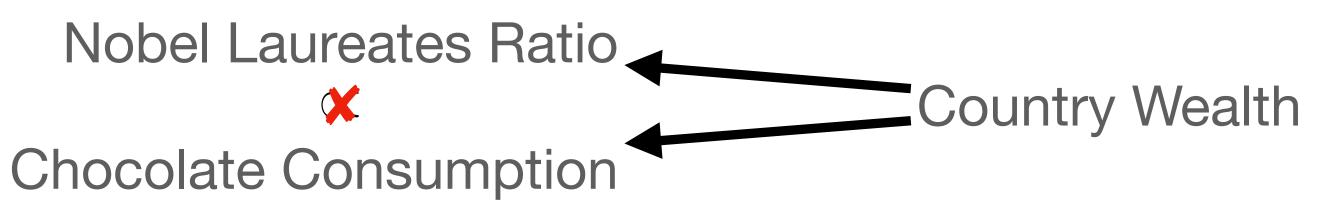
Direction of prediction often indistinguishable

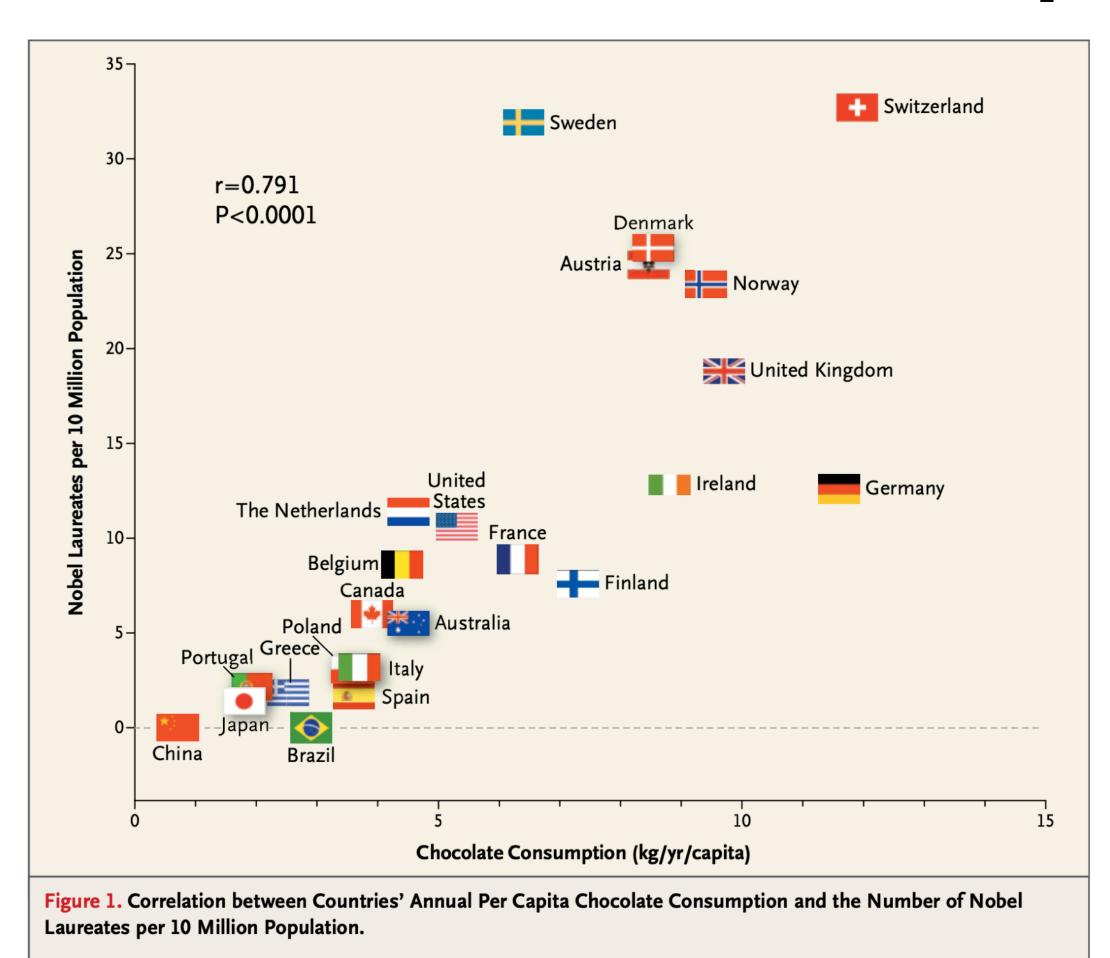


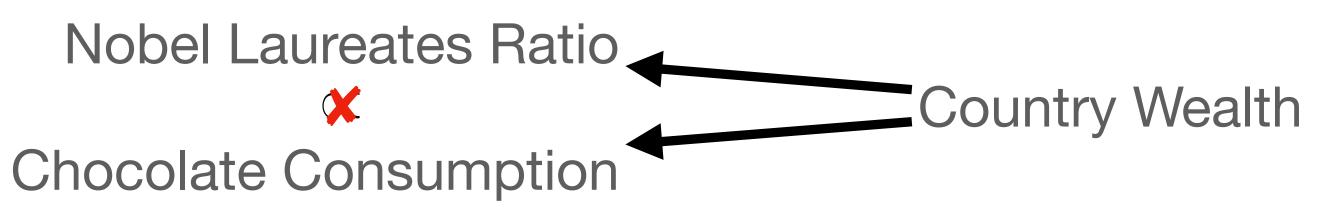
Nobel Laureates Ratio

Chocolate Consumption



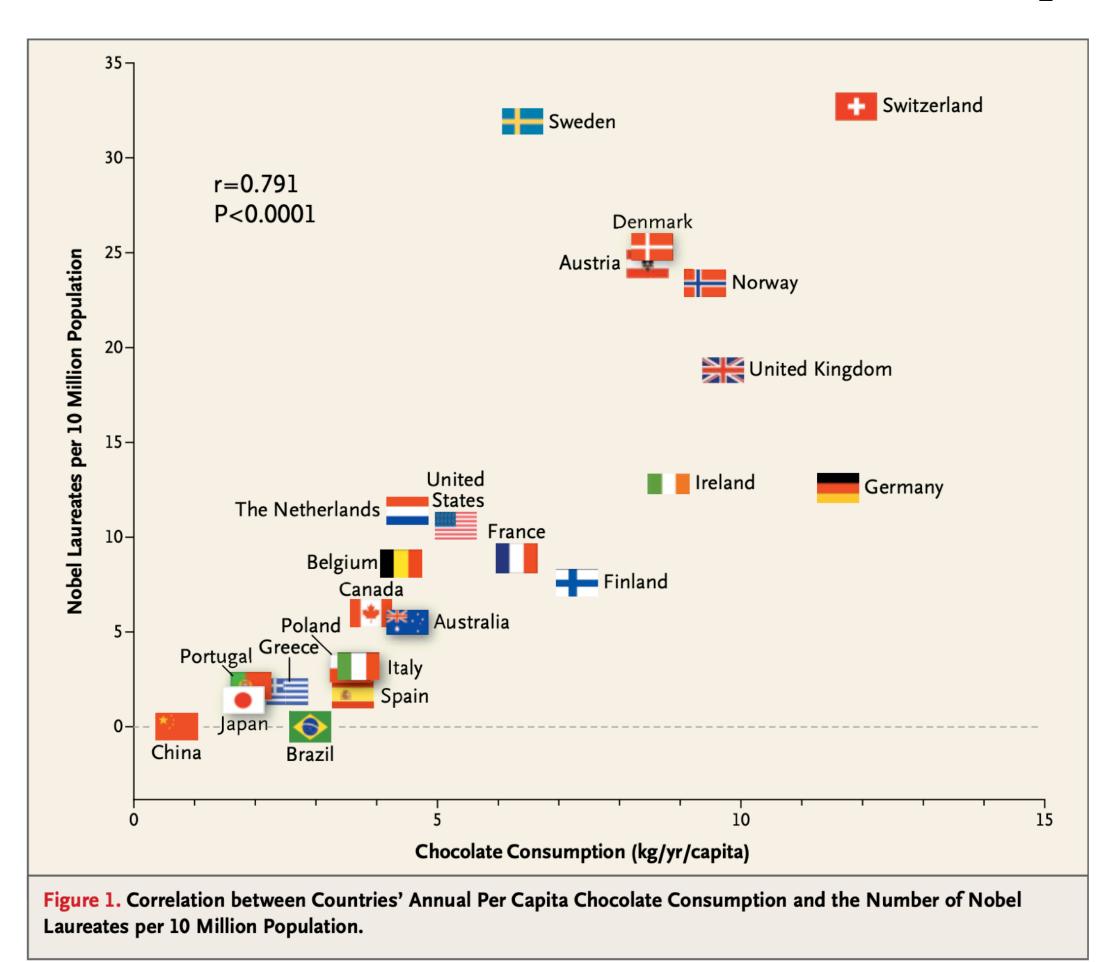


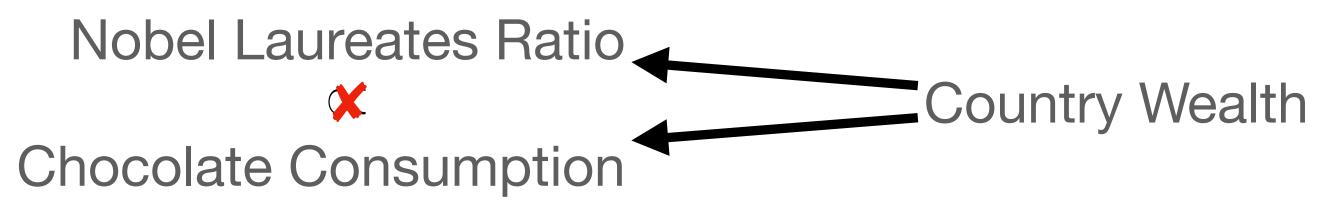




This means Confounders: Variables are not Independent

chocolate consumption $\not\perp$ nobel laurate ration





This means Confounders: Variables are not Independent

chocolate consumption $\not\perp$ nobel laurate ration

Probable Explanation:

Variables are Independent Conditionally to Another Event

chocolate consumption \perp nobel laurate ration country wealth

Causality and Paradoxes

- If mother smokes, child is small
- Tiny child, implies health issues
- However, P(tiny child, mother smokes)>P(tiny child)

So smoking is beneficial to child's health?

Explain issues away:

- Multi-causality of children weight
- These causes also affect health
- Compared to these mother smoking is not that bad, but frequency of smoking?
- Conclusions Contain Social Biases: mother is always responsible (autism, etc)

Why Causality

Goals in Al

- Fair
- Accountable
- Transparent
- Robust

Causality Argued Advantages

- Decreased sensitivity wrt to Data
- Simulation of Interventions
- Hopes for explanation / bias detection
- Robust

- **⇒**Biases
- explainability
- → Decision making can be supported
- →attacks / manipulations

→ variable clamping

Causal Discovery

How

- Gold Standard
- Feasibility
- The AI/ML Setting

- → Randomised Controlled Experiments
- →Low in many cases, especially human
- ⇒discovery: infer model from data

What For?

- Understandable, interpretable models
- Prioritise confirmatory experiments: enable some control
- Generate new data: for simulation, privacy, medical training

Causality can systematically address the monsters under the bench(marks)

Felix Leeb^{1,*}, Zhijing Jin^{1,2,3}, and Bernhard Schölkopf¹

¹Max Planck Institute for Intelligent Systems, Tübingen

²ETH Zürich

³University of Toronto

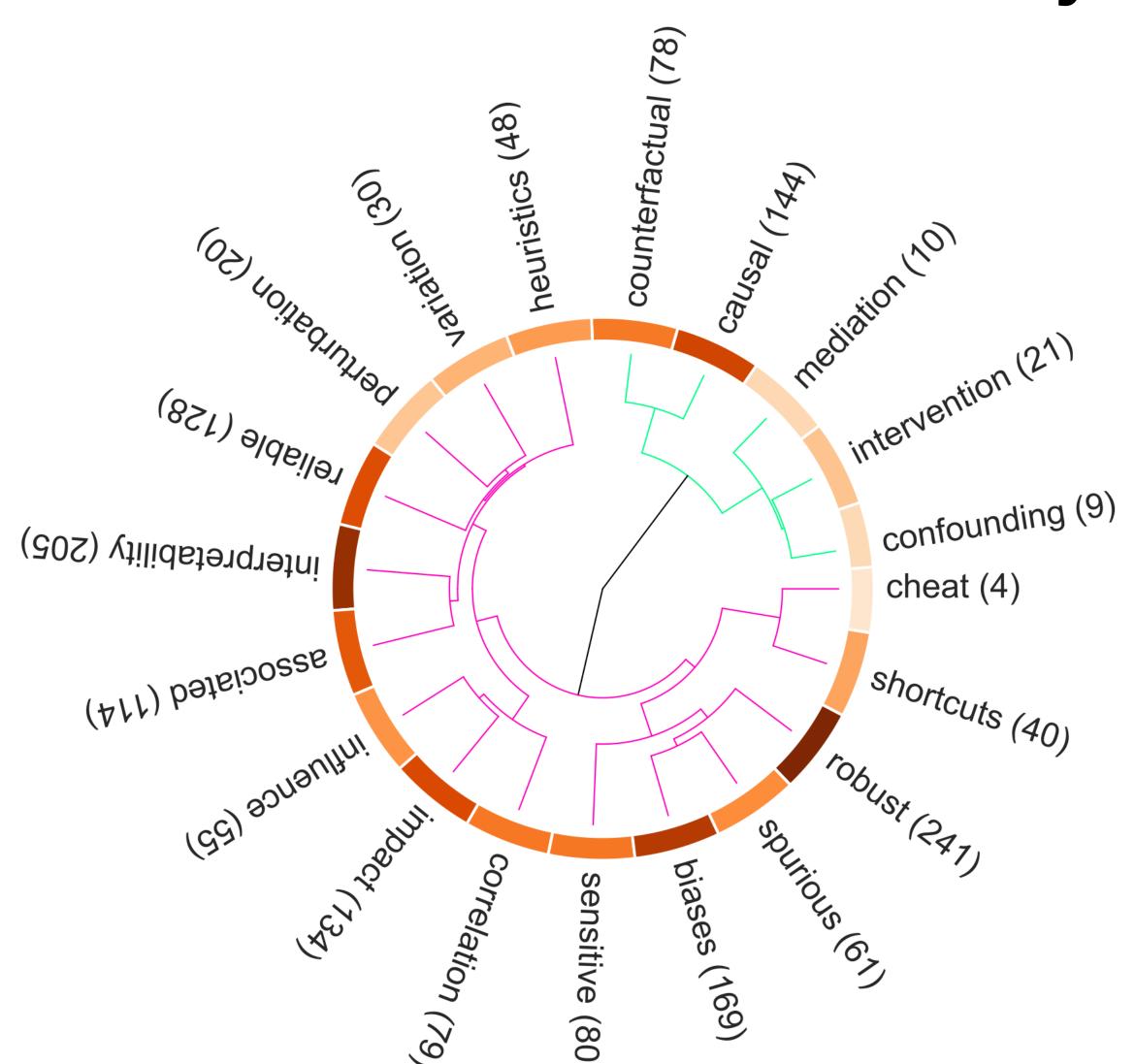
ICML 2025

Causality and Reasoning Evaluation: The Answer can be Correct, yet Reasoning is Wrong

Prompt: Listen here, I'm starvin' and it's already half past four. Gotta rake in 10 grand in protection dough before I eat. I'm hittin' up every joint in the hood with my bat, collecting an average of 800 bucks a pop. Takes me 10 minutes to move from one mark to the next. Am I gonna get to chow down before 7? LLM Chatbot: If you're aiming to collect 10 grand by shaking down joints for an average of \$800 each and it takes you 10 minutes to move from one target to the next, it would take you approximately 3 hours and 20 minutes (200 minutes) to reach your goal. Starting at half-past four, you should be able to hit your target before 7 PM. So, yes, you can have a meal before 7 if everything goes as planned. Enjoy your dinner!

- We tend to evaluate results
- Is the result the conclusion or the reasoning?
- •LLMs are a model of human culture, not a model of reality (Scholkopf)
- •A benchmark of reasoning results instead of just conclusions might be a solution (paper proposal)

Causality-Related in Paper Claims but not in the Analyses



- Correlational Meta-Analysis of Papers in NLP
- The use of terms that imply causality does not go with terms that connote causality

Applications

- Physics
- Neuroscience
- Epidemiology
- Economy
- Climate

How do we do it?

Causal Modelling Setting

Assume we have the random variables

$$X_1, \ldots, X_d$$

with a sample joint distribution

$$\mathcal{D} = \{x_i \in \Omega^d, i = 1 \dots n\}$$

Formal Background

- Key concept
- Framework
- Approaches

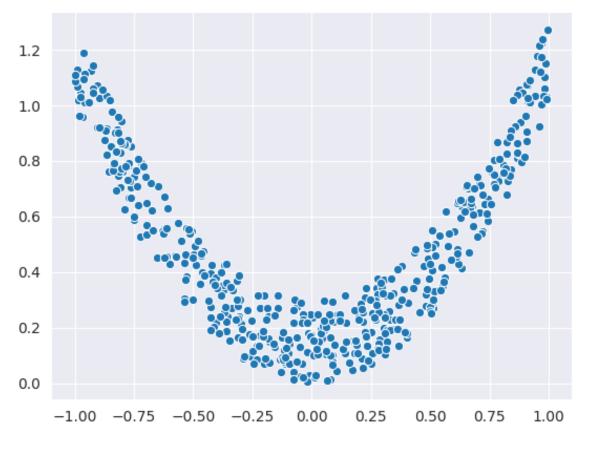
Key Concept 1: Variable (in)Dependency

Definition of Independency

$$X \perp \!\!\! \perp Y \leftrightarrow P(X,Y) = P(X)P(Y)$$

How do we test for independency?
 Correlation? It only works for first order linear dependencies

$$Y = X^2 + \epsilon \rightarrow \operatorname{correlation}(X, Y) \simeq 0$$



Key Concept 1: Variable (in)Dependency

Definition of Independency

$$X \perp \!\!\!\perp Y \leftrightarrow P(X,Y) = P(X)P(Y)$$

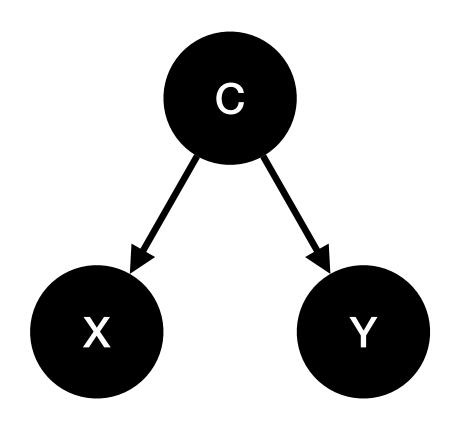
- How do we test for independency?
 Different tests:
 - Correlation $Y = X^2 + \epsilon \to \operatorname{correlation}(X, Y) \simeq 0$
 - HSIC, Hilbert-Schmitt Independence Criterion (Gretton et al 05) $HSIC(Pr_{XY}), \mathcal{F}, \mathcal{G}) \triangleq \|C_{XY}\|_{HS}^{2}$

where $||C_{XY}||_{HS}^2$ is the Hilbert-Schmitt norm of the kernel correlation matrix and \mathcal{F}, \mathcal{G} are two kernels: i.e. it's the kernel trick for correlation.

Key Concept 2: Conditional (in)Dependency

Definition of Conditional Independency

$$X \perp \!\!\!\perp Y|C \leftrightarrow P(X,Y|C) = P(X|C)P(Y|C)$$



C=rains, X=wet sidewalk,
 Y=people with umbrellas

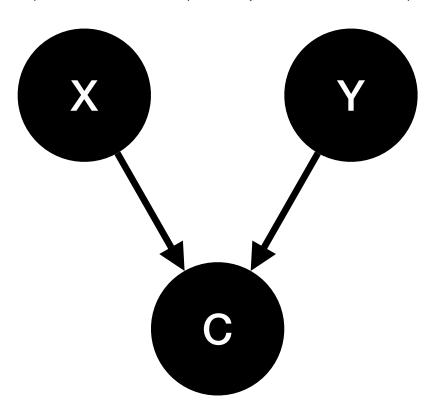
Definition of Conditional Dependency

$$P(C|X,Y) \neq P(C|X)P(C|Y)$$

$$X \not\perp L Y | C = 1 \leftrightarrow$$

$$P(X,Y) = P(X)P(Y)$$

$$P(X,Y|C=1) \neq P(X|C=1)P(Y|C=1)$$



X=Complex Machine,
 Y=Inexperienced worker, C=Accident

Definition of Causal Relationship

X is a direct cause of Y if when we intervene it Y's law changes

$$X \to Y$$
 iif

$$P_{Y|do(X=a,Z=c)} \neq P_{Y|do(X=b,Z=c)}$$

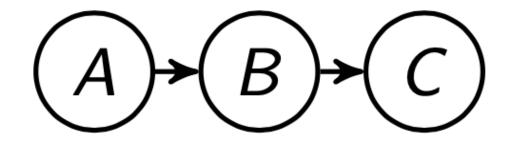
Example: Cancer, Smoking, and Genetic Factors

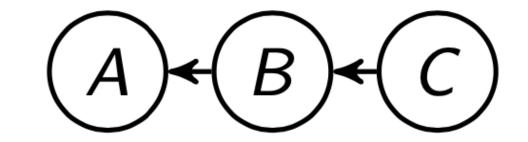
$$P_{C|do(S=1,G=0)} \neq P_{C|do(S=0,G=0)}$$

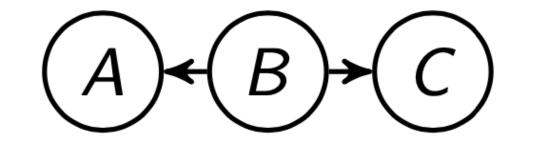
Intervention

Markov Equivalences

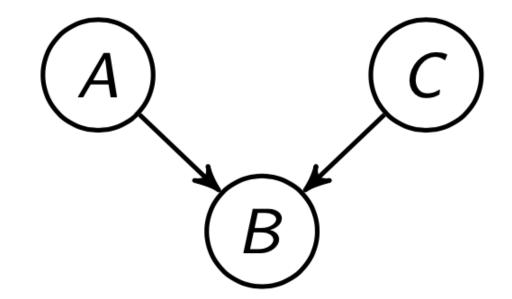
Markov Equivalent Class: $A \perp \!\!\! \perp C | B \operatorname{and} A \not \perp \!\!\! \perp C$







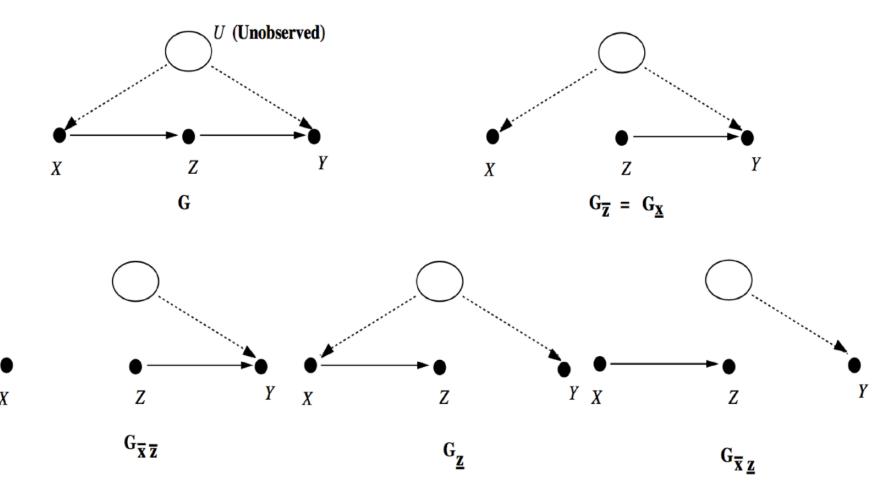
V-Structure: $A \not\perp \!\!\!\perp C | B \text{ and } A \perp \!\!\!\perp C$



Variable Independency and the Definition of Causal Relationship

The do operator was proposed by Pearl et al 1995. To simulate interventions. It has three main algebraic rules

- If an observation doesn't alter the outcome, you can ignore it $P(y \mid z, do(x), w) = P(y \mid do(x), w)$ if $(Y \perp \!\!\! \perp Z \mid W, X)_{G_{\bar{X}}}$ i.e. if Y is independent on Z, conditional to W and X if we remove all inputs to X
- Actions/observations can be exchanged $P(y\,|\,do(x),do(z),w) = P(y\,|\,do(x),z,w) \quad \text{if } (Y \perp\!\!\!\perp Z\,|\,W,X)_{G_{\bar{X},\underline{Z}}}$ i.e. if Y is independent on Z, conditional to W and X if we remove all inputs to X and outputs to Z
- Insertion/deletion of actions $P(y\,|\,do(x),do(z),w) = P(y\,|\,do(x),w) \quad \text{if } (Y \perp\!\!\!\perp Z\,|\,W,X)_{G_{\bar{X},\bar{Z}(W)}}$ i.e. if Y is independent on Z, conditional to W and X if we remove all inputs to X and inputs to $Z(W) := \{Z:Z\to W\not\in G\}$



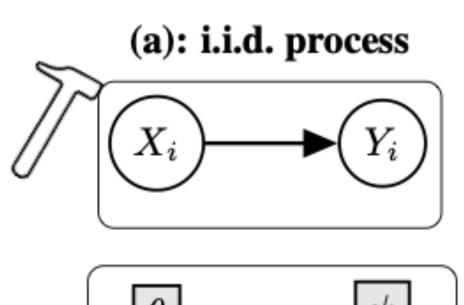
Do Finetti: on Causal Effects for Exchangeable Data

Siyuan Guo¹⁴ * Chi Zhang² Karthika Mohan³ Ferenc Huszár^{4†} Bernhard Schölkopf^{1†}

¹Max Planck Institute for Intelligent Systems ²Toyota Research Institute

³ Oregon State University ⁴ University of Cambridge

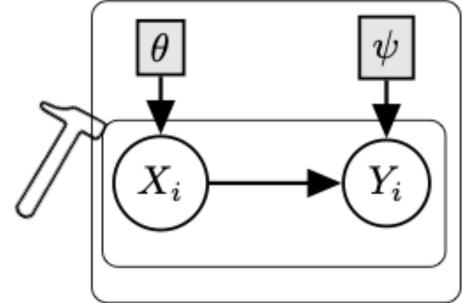
† Equal supervision NeurIPS 2024 (oral)



 \mathbf{A}

(a):
$$P(Y|do(X = x)) = P(Y|x)$$

(b):
$$P(Y|do(X=x)) = \int P(Y|x,\psi)p(\psi)d\psi$$

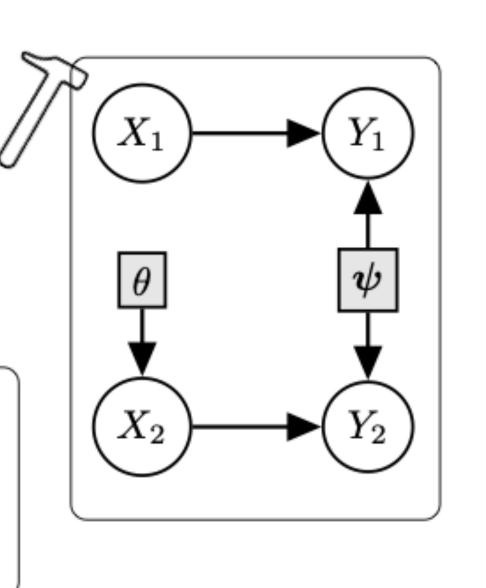


B

(a):
$$P(Y_1|do(X_1=x), Y_2, X_2) = P(Y_1|x)$$

(b):
$$P(Y_1|do(X_1=x), Y_2, X_2) = P(Y_1|x, Y_2, X_2)$$

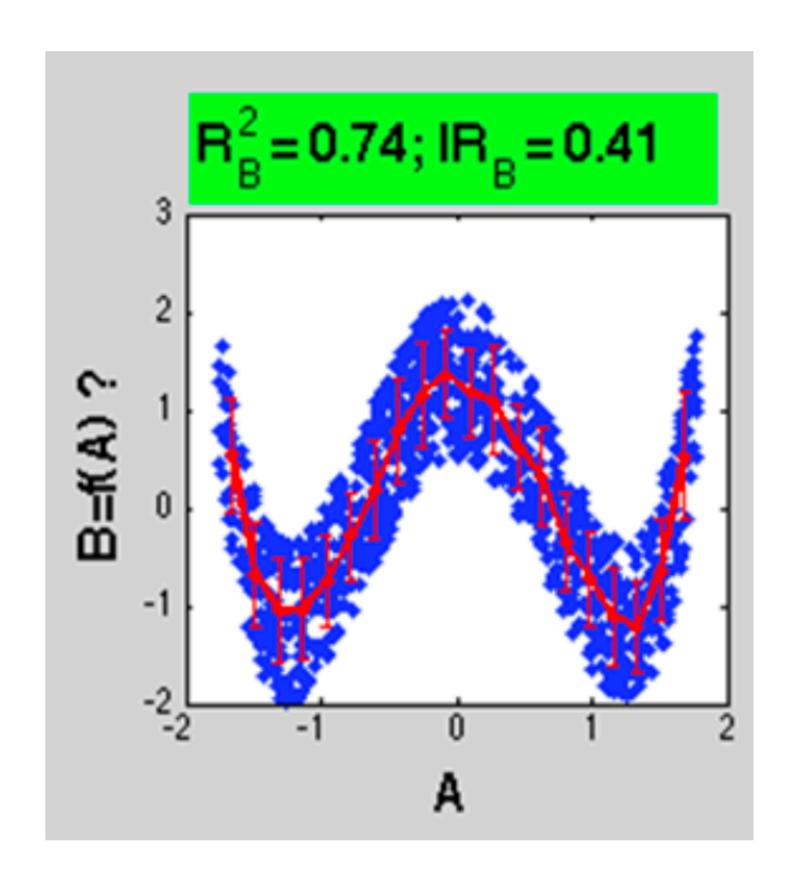
(b): ICM generative process

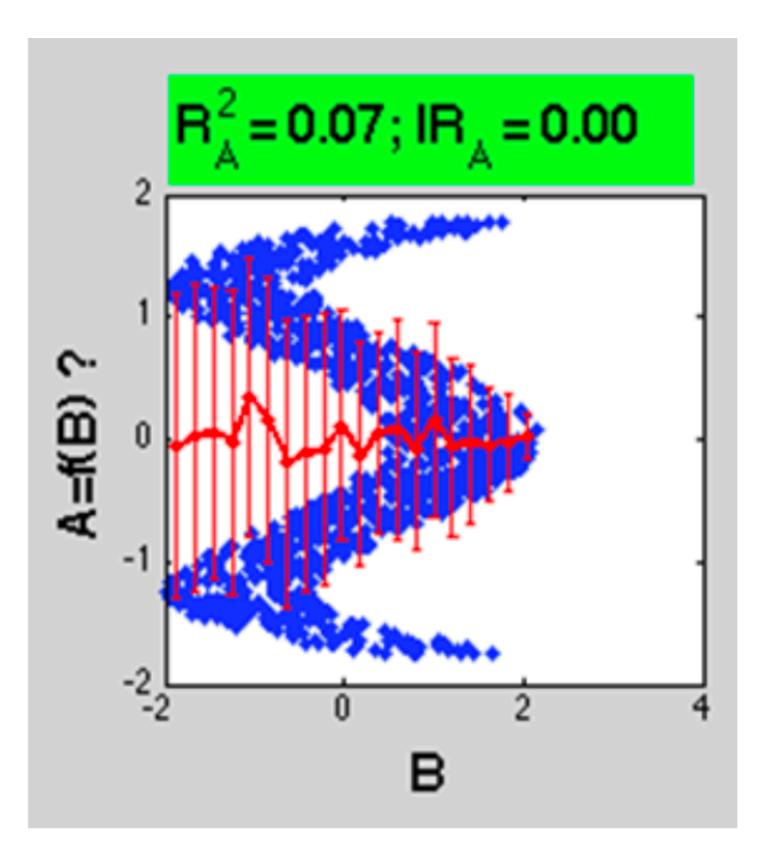


(c)

Key Concept 3: Causality with Distributional Asymmetry

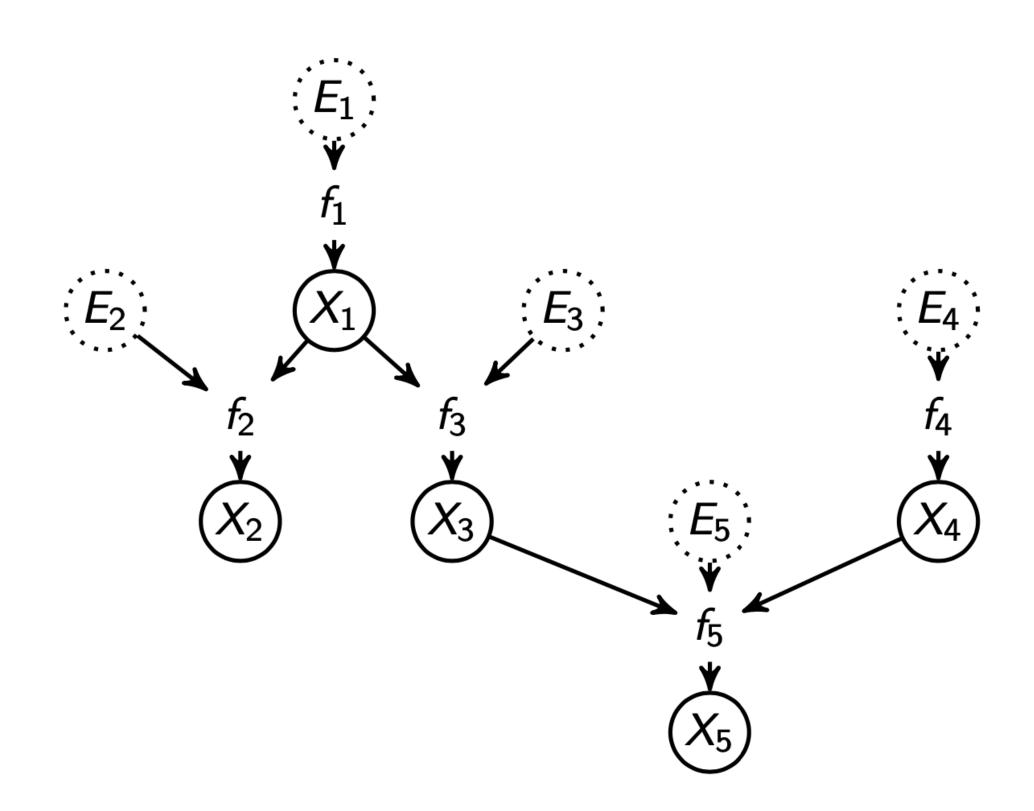
Leverages Occam's Principle
 The causal model as the simplest explaining the data (Janzig 19)





Framework: Functional Causal Models (FCMs)

• Given X_1, \ldots, X_d where $X_i = f_i(X_{Pa(X_i)}, E_i)$, with $X_{Pa(X_i)}$ the parents or causes of X_i , a deterministic function f_i , and E_i an error representing independent random variable.

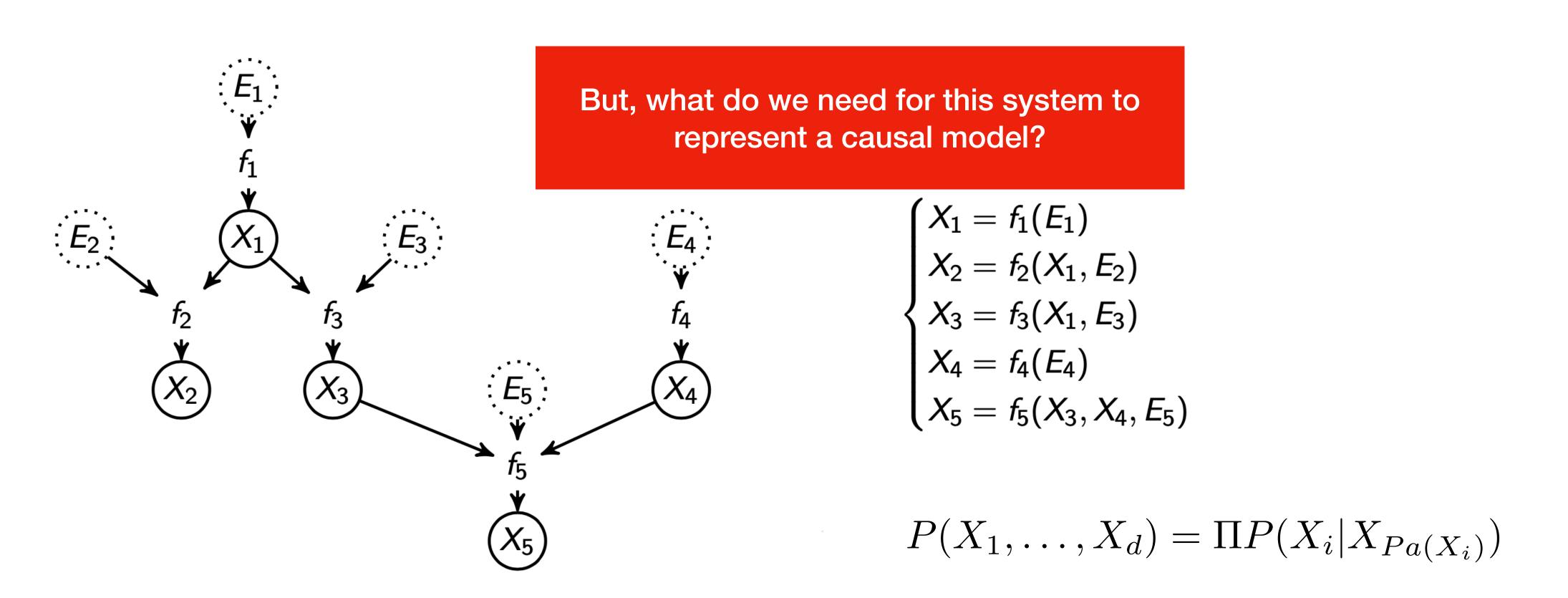


$$\begin{cases} X_1 = f_1(E_1) \\ X_2 = f_2(X_1, E_2) \\ X_3 = f_3(X_1, E_3) \\ X_4 = f_4(E_4) \\ X_5 = f_5(X_3, X_4, E_5) \end{cases}$$

$$P(X_1, \dots, X_d) = \Pi P(X_i | X_{Pa(X_i)})$$

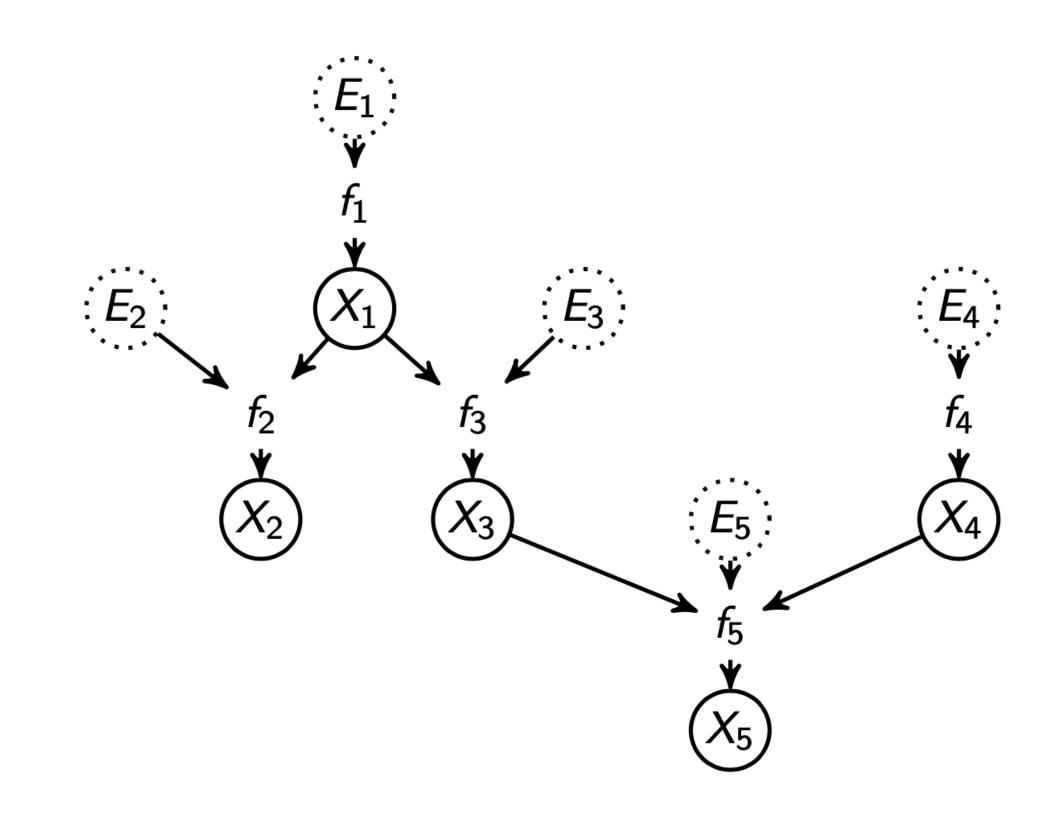
Framework: Functional Causal Models (FCMs)

• Given X_1, \ldots, X_d where $X_i = f_i(X_{Pa(X_i)}, E_i)$, with $X_{Pa(X_i)}$ the parents or causes of X_i , a deterministic function f_i , and E_i an error representing independent random variable.



Conditions for Causal Model Representation

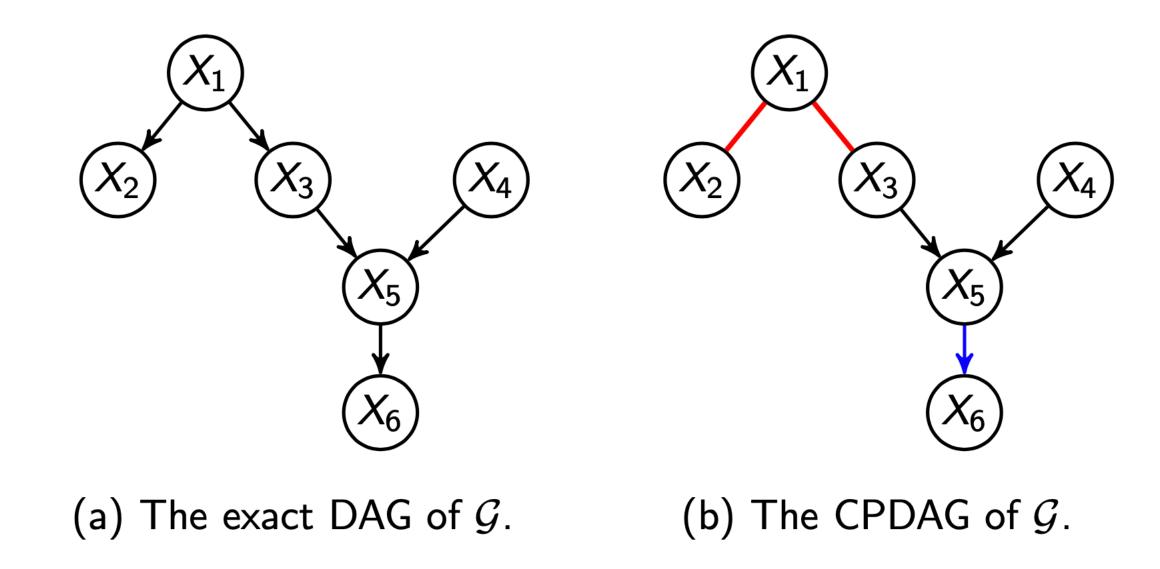
- Causal Sufficiency: no unobserved confounders
- Causal Markov: all d-separations in the causal graph G imply conditional independencies in the observational distribution P
- Causal Faithfulness: all conditional independencies in P imply d-separations in the causal graph G



How Do We Infer the Causal Model From Data?

Key Approach 1: Constraint-Based Methods

 Constraint-based methods, through V-Structures and constraint propagation, output a CPDAG (Completed Partially Directed Acyclic Graph).



• Examples: Peter-Clark Algorithm (PC) and it's extensions such as PC-Hist (Spires et al 00, Zhang et al 12)

Key Approach 2: Score-Based

 Use an objective function to optimise the graph. For instance the Bayesian information criterion

$$BIC(\mathcal{G}) = -2\ln(L) + k\ln(n)$$

- with L the likelihood of the model, k number of parameters, and n the number of samples
- We optimise the sample with operations such as:
 - Add an edge
 - remove an edge
 - revert and dee
- An algorithm for this are Greedy Equivalence Search (GES) by Chickering et al 02.

Key Approaches 1 and 2

- Limitations
 - Computational cost depending on the test/scoring/loss
 - Data hungry
 - Identifiability issues
 - Example:

$$X_{1}, E_{X_{1}}, E_{X_{2}} \sim U(0, 1)X_{1} \perp \!\!\!\perp E_{X_{1}}, Y \perp \!\!\!\perp E_{X_{2}}$$

$$Y \leftarrow 0.5X_{1} + E_{X_{1}}$$

$$X_{2} \leftarrow Y + E_{X_{2}}$$

$$X_{2} - Y - X_{1}$$

 $X_1 \perp \!\!\! \perp X_2 | Y$. No V-struture

Key Approach 3: Global Optimisation

 Assuming linear causal mechanisms, the system can be formulated in terms of linear equations

$$X = B^T X + E$$

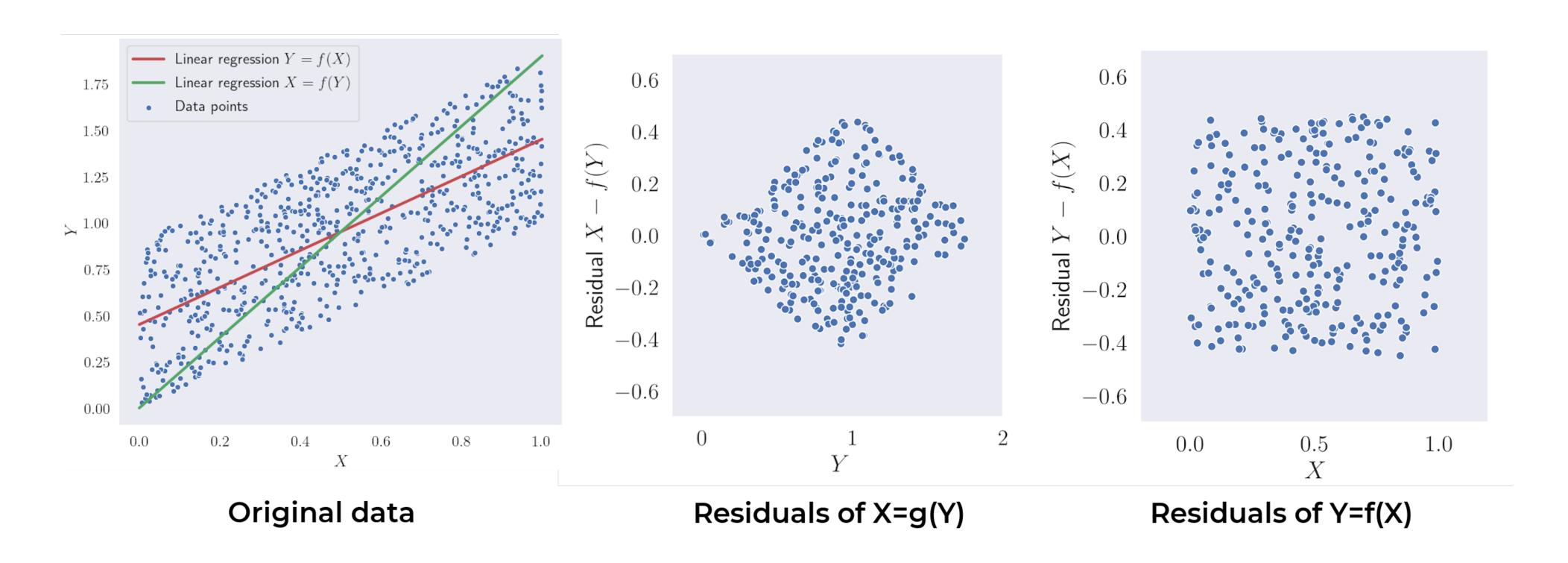
where the triangular B matrix can be estimated through ICA for LinGAM (Shimizu 06, Hyvarien 99)

• This also can be done in terms of graphical models (Pearl 09, Friedman 08)

For instance with Max-Min Hill-Climbing (MMHC) by Tsamardinos (06) and concave penalised Descent (CCDr) by Aragam (15)

Key Approach 4: Exploiting Asymmetries

 If no v-structure is available and causal discovery with 2 variables is hard, we can leverage asymmetries in the distributions. For instance with the Additive Noise Model (ANM) of Hoyer (09)



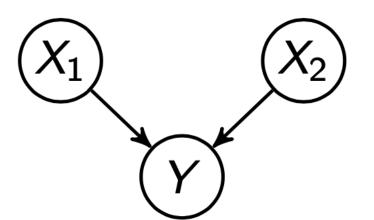
Key Approach 4: Exploiting Asymmetries

Limitations

- Restrictive assumptions on the type of causal mechanisms
- Conditional independence is not taken into account

$$X_1, E_{X_1}, X_2 \sim \mathcal{N}(0, 1) X_1 \perp \!\!\!\perp E_{X_1}, Y \perp \!\!\!\perp E_{X_1}$$

 $Y \leftarrow 0.5 X_1 + X_2 + E_1$



(X1,Y) and (X2,Y) are a perfectly symmetric pairwise distribution after rescaling. However, $X_1 \not\perp X_2 \mid Y$ a v-structure is at the origin of the data.

Key Approach 5: Machine Learning Base

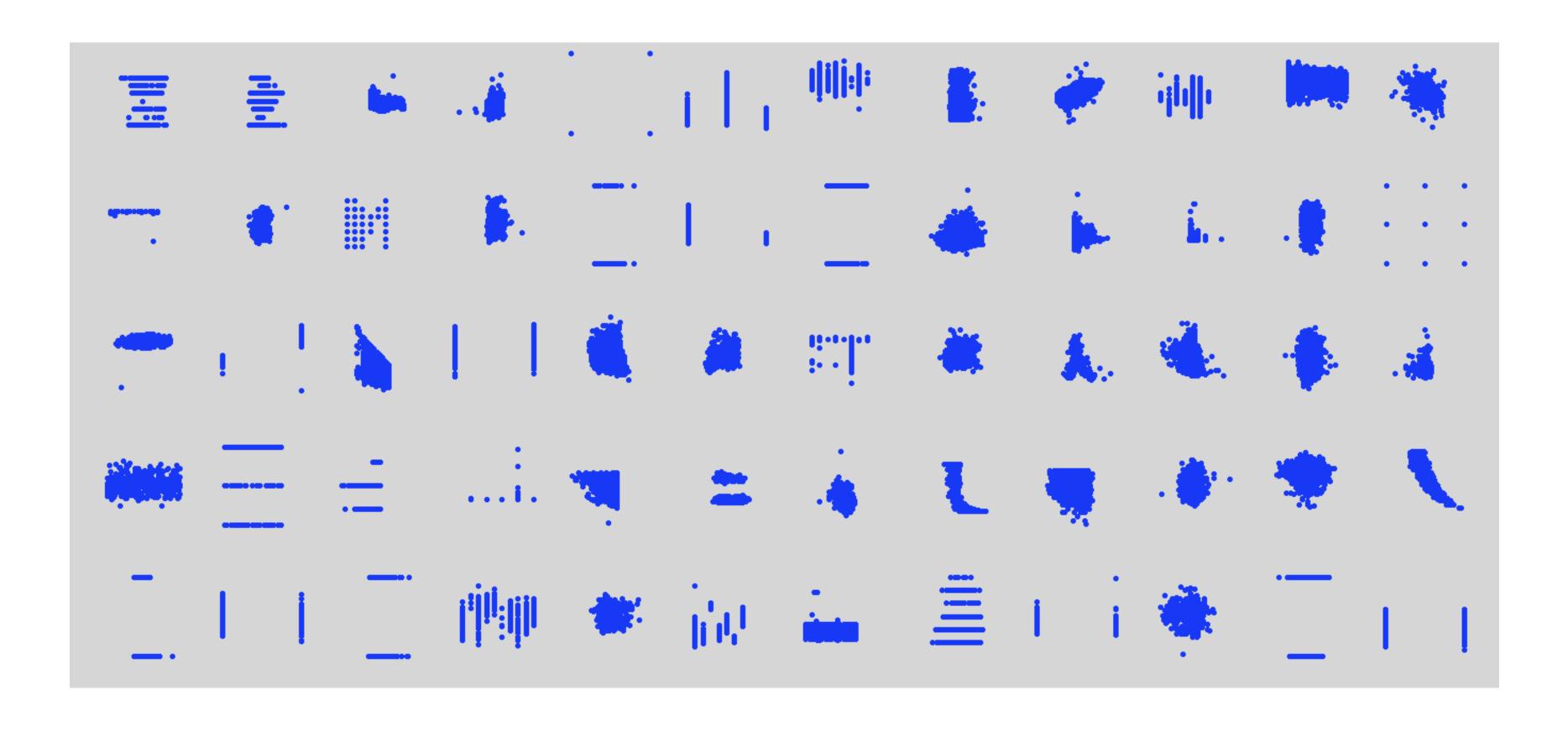
- Guyon et al 2014—2015
- Pair Cause-Effect Challenges
 - Gather data: a sample is a pair of variables (Ai, Bi)
 - Its label ℓ_i is the "true" causal relation (e.g. age "causes" salary)
- Input

$$\mathcal{E} = \{(A_i, B_i, \ell_i), \ell_i \text{ in } \{\rightarrow, \leftarrow, \bot\}\}$$
Example A_i, B_i Label ℓ_i
 A_i causes B_i \rightarrow
 B_i causes A_i \leftarrow
 A_i and B_i are independent \bot

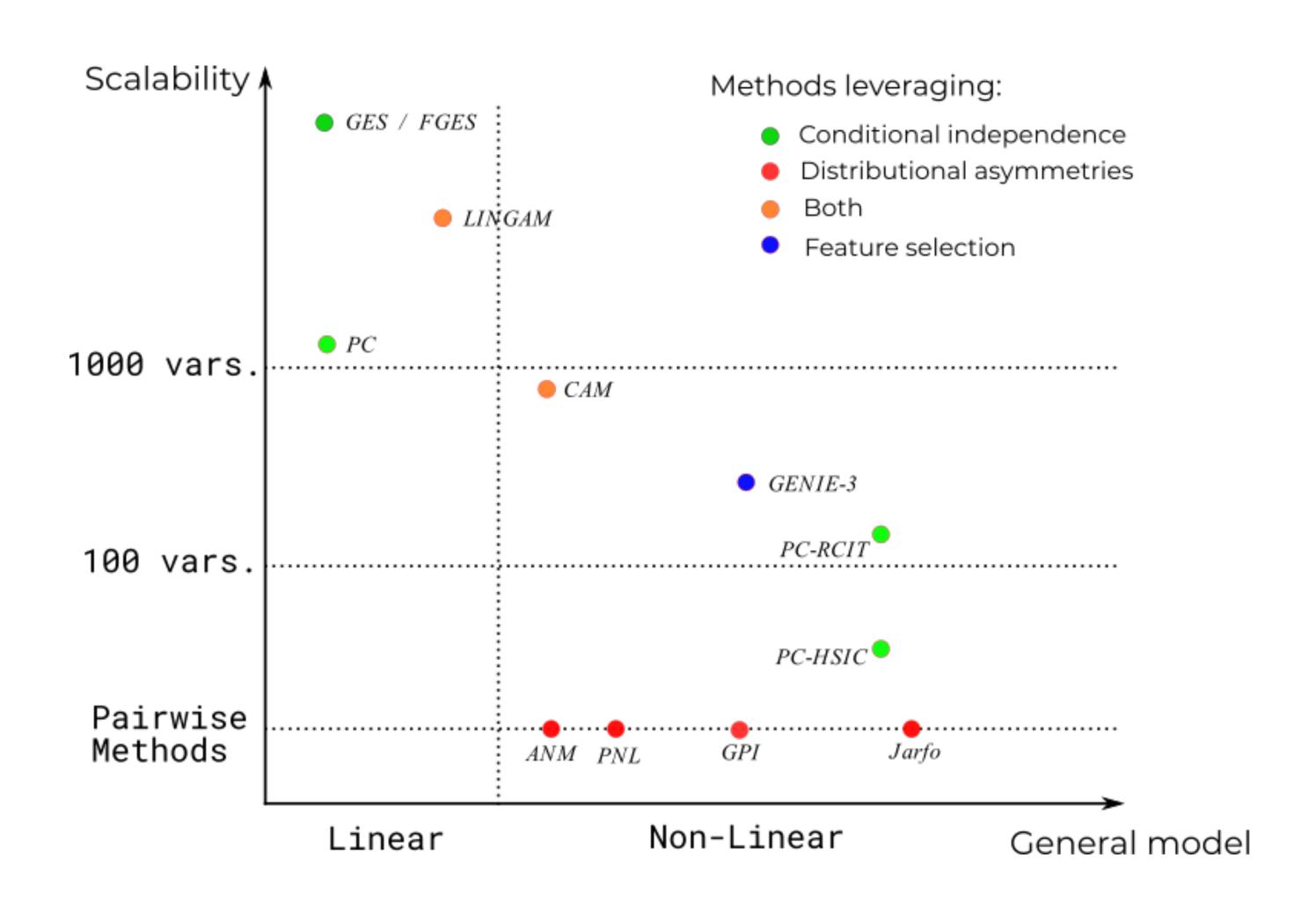
• Output: $(A, B) \rightarrow \ell$

Key Approach 5: Machine Learning Base

Guyon et al 2014-2015



Summary for "Key Approaches"



A Python Package for Causal Discovery

Causal Discovery Toolbox Documentation

Package for causal inference in graphs and in the pairwise settings for Python>=3.5. Tools for graph structure recovery and dependencies are included. The package is based on Numpy, Scikit-learn, Pytorch and R.