Graphical Models and Simulation-Based Inference Graphical Models: Discrete Inference and Learning

Demian Wassermann 2025

Introduction to DAG and their relationship with Probability Functions (Pearl)

WATSON'S CALL = TRUE

[Pearl 1987]

[Kong et al 2019]

Graphical Models and Simulation Systems

 $P(X, Z, \theta) = P(X | Z, \theta) P(Z | \theta) P(\theta) = P(X | Z) P(Z | \theta) P(Z)$

General Inference Notation

Z: latent random variables $P(\theta | X) = \frac{\mathbb{E}_{Z}[P(X | Z, \theta)]P(\theta)}{P(X)}$

$P(\boldsymbol{\theta} | X) = \frac{\prod_{\eta \in \mathcal{N}} P(X | \boldsymbol{\theta}, \boldsymbol{\eta}) P(\boldsymbol{\theta})}{P(X)}$

General Inference Notation

Intractable in general: full likelihood impossible to evaluated or computation cost is extremely high

Likelihood computation is hard: Enter Mechanistic, Example Models Galton Board

Z: latent random variables $P(\theta | X) = \frac{\mathbb{E}_{Z}[P(X | Z, \theta)]P(\theta)}{P(X)}$

Simulation-Based Inference

• Inference is defined as finding the θ that could be at the origin of an observation *X*. Specifically computing $P(\theta | X) = \mathbb{E}_Z[P(\theta, Z | X)]$

we use Bayes

$$X) = \frac{P(X|Z,\theta)P(Z,\theta)}{P(X)}, \text{ nonetheless the}$$
od $P(X|Z,\theta)$ is often unknown or intractable

 Hence simulation-based inference either approximates or eliminates the need for an explicit likelihood by simulating observations.

9.

Simulation-Based Inference: Neural Network Approximations

P(X) estimators

• $P(\theta \mid X)$ approximated through "Neural Posterior" estimators

• $P(X \mid \theta)$ approximated through "Neural Likelihood" estimators

 $\frac{1}{10}$ approximated through the "Neural ratio"

7

Novel ML-based approaches allow us to massively

Autodifferentiation and neural network approaches

efficiency much better than Markov Chains

Approximate Bayesian Computation with Monte Carlo sampling

(Cranmer et al 2019)

(Cranmer et al 2019)

В

Probabilistic Programming with Monte Carlo sampling

(Cranmer et al 2019)

(Cranmer et al 2019)

Simulation-Based Inference: Amortization

Query 1: P(B|C) = P(C|B)P(B)/P(C)

Observation

Query 2: $P(A|C) = \sum P(A|B)P(B|C)$ \boldsymbol{B}

(Gershman et al 2014

Simulation-Based Inference: Amortisation Techniques

(Cranmer et al 2019)

Simulation-Based Inference: Neural Network Approximations

P(X) estimators

• $P(\theta | X)$ approximated through "Neural Posterior" estimators

• $P(X \mid \theta)$ approximated through "Neural Likelihood" estimators

 $\frac{1}{10}$ approximated through the "Neural ratio"

Simulation-Based Inference: Neural Network Approximations Through Stochastic Flows

- $P(\theta | X)$ approximated through "Neural Posterior" estimators
- $P(X \mid \theta)$ approximated through "Neural Likelihood" estimators

 $P(X \mid \theta)$ approximated through the "Neural ratio" estimators

$$\Theta) = N_{\mu,\Sigma}(\phi(X,\theta)) \left| J_{\phi}(X,\theta) \right|$$

f the Neural estimator and ϕ the stochastic flow

Simulation-Based Inference: Automatic Posterior Transformation (Greenberg et al 2019)

- $P(\theta | X)$ approximated through "Neural posterior" by a flow $Q_{F(x_0,\phi)}(\theta)$
- Loss function:

$$\tilde{q}_{x,\phi}(\theta) = q_{F(x,\phi)}(\theta) \frac{\tilde{p}(\theta)}{p(\theta)} \frac{1}{Z(x,\phi)},$$
(2)

• Where a proposal posterior is $\tilde{p}(\theta|x) = p(\theta|x) \frac{\tilde{p}(\theta) \ p(x)}{p(\theta) \ \tilde{p}(x)}$

Algorithm 1 APT with per-round proposal updates

Input: simulator with (implicit) density $p(x|\theta)$, data x_o , prior $p(\theta)$, density family q_{ψ} , neural network $F(x, \phi)$, simulations per round N, number of rounds R.

$$\begin{split} \tilde{p}_{1}(\theta) &:= p(\theta) \\ \text{for } r = 1 \text{ to } R \text{ do} \\ \text{for } j = 1 \text{ to } N \text{ do} \\ \text{Sample } \theta_{r,j} &\sim \tilde{p}_{r}(\theta) \\ \text{Simulate } x_{r,j} &\sim p(x|\theta_{r,j}) \\ \text{end for} \\ \phi &\leftarrow \operatorname*{argmin}_{\phi} \sum_{i=1}^{r} \sum_{j=1}^{N} -\log \tilde{q}_{x_{i,j},\phi}(\theta_{i,j}) \qquad \text{using (2)} \\ \tilde{p}_{r+1}(\theta) &:= q_{F(x_{o},\phi)}(\theta) \\ \text{end for} \\ \text{return } q_{F(x_{o},\phi)}(\theta) \end{split}$$

Simulation-Based Inference: Sequential Neural Likelihood (Papamakarios et al 2019)

• $P(X \mid \theta)$ approximated through "Neural likelihood" by a flow $Q_{\phi}(X \mid \theta)$

set $\hat{p}_0(\mathbf{0})$ for r =

re- $\hat{p}_r($ return

Algorithm 1: Sequential Neural Likelihood (SNL)

- **Input** : observed data \mathbf{x}_o , estimator $q_{\boldsymbol{\phi}}(\mathbf{x} | \boldsymbol{\theta})$, number of rounds R, simulations per round N
- **Output:** approximate posterior $\hat{p}(\boldsymbol{\theta} | \mathbf{x}_o)$

$$\begin{split} \hat{p}_{0}(\boldsymbol{\theta} \mid \mathbf{x}_{o}) &= p(\boldsymbol{\theta}) \text{ and } \mathcal{D} = \{\} \\ r = 1 : R \text{ do} \\ \text{for } n = 1 : N \text{ do} \\ \mid & \text{sample } \boldsymbol{\theta}_{n} \sim \hat{p}_{r-1}(\boldsymbol{\theta} \mid \mathbf{x}_{o}) \text{ with MCMC} \\ \mid & \text{simulate } \mathbf{x}_{n} \sim p(\mathbf{x} \mid \boldsymbol{\theta}_{n}) \\ \text{ add } (\boldsymbol{\theta}_{n}, \mathbf{x}_{n}) \text{ into } \mathcal{D} \\ (\text{re-)train } q_{\boldsymbol{\phi}}(\mathbf{x} \mid \boldsymbol{\theta}) \text{ on } \mathcal{D} \text{ and set} \\ \hat{p}_{r}(\boldsymbol{\theta} \mid \mathbf{x}_{o}) \propto q_{\boldsymbol{\phi}}(\mathbf{x}_{o} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \\ \text{urn } \hat{p}_{R}(\boldsymbol{\theta} \mid \mathbf{x}_{o}) \end{split}$$

Simulation-Based Inference: Neural Ratio (Hermans et al 2020)

• $P(X \mid \theta) / P(X)$ approximated through "Neural ratio" by a flow $d_{\phi}(X \mid \theta)$

2: 3: 4: 5: 6:

Algorithm 1 Optimization of $\mathbf{d}_{\phi}(\mathbf{x}, \boldsymbol{\theta})$.

Inputs:	Criterion ℓ (e.g., BCE)
	Implicit generative model $p(\mathbf{x} \mid \boldsymbol{\theta})$
	Prior $p(\boldsymbol{\theta})$
Outputs:	Parameterized classifier $\mathbf{d}_{\phi}(\mathbf{x}, \boldsymbol{\theta})$
Hyperparameters:	Batch-size M

1: while not converged do

Sample $\boldsymbol{\theta} \leftarrow \{\boldsymbol{\theta}_m \sim p(\boldsymbol{\theta})\}_{m=1}^M$ Sample $\boldsymbol{\theta}' \leftarrow \{\boldsymbol{\theta}_m' \sim p(\boldsymbol{\theta})\}_{m=1}^M$ Simulate $\mathbf{x} \leftarrow \{\mathbf{x}_m \sim p(\mathbf{x} \mid \boldsymbol{\theta}_m)\}_{m=1}^M$ $\mathcal{L} \leftarrow \ell(\mathbf{d}_{\phi}(\mathbf{x}, \boldsymbol{\theta}), 1) + \ell(\mathbf{d}_{\phi}(\mathbf{x}, \boldsymbol{\theta}'), 0)$ $\phi \leftarrow \text{OPTIMIZER}(\phi, \nabla_{\phi}\mathcal{L})$ 7: end while

8: return \mathbf{d}_{ϕ}

Training deep neural density estimators to identify mechanistic models of neural dynamics

Pedro J Gonçalves^{1,2†}*, Jan-Matthis Lueckmann^{1,2†}*, Michael Deistler^{1,3†}*, Marcel Nonnenmacher^{1,2,4}, Kaan Öcal^{2,5}, Giacomo Bassetto^{1,2}, Chaitanya Chintaluri^{6,7}, William F Podlaski⁶, Sara A Haddad⁸, Tim P Vogels^{6,7}, David S Greenberg^{1,4}, Jakob H Macke^{1,2,3,9}*

\bigcirc

RESEARCH

С

e

Training deep neural density estimators to identify mechanistic models of neural **dynamics**

Pedro J Gonçalves^{1,2†*}, Jan-Matthis Lueckmann^{1,2†*}, Michael Deistler^{1,3†*}, Marcel Nonnenmacher^{1,2,4}, Kaan Öcal^{2,5}, Giacomo Bassetto^{1,2}, Chaitanya Chintaluri^{6,7}, William F Podlaski⁶, Sara A Haddad⁸, Tim P Vogels^{6,7}, David S Greenberg^{1,4}, Jakob H Macke^{1,2,3,9}*

SIMULATION-BASED BAYESIAN INFERENCE FOR MULTI-FINGERED ROBOTIC GRASPING

Norman Marlier University of Liège norman.marlier@uliege.be **Olivier Brüls** University of Liège o.bruls@uliege.be **Gilles Louppe** University of Liège g.louppe@uliege.be

SIMULATION-BASED BAYESIAN INFERENCE FOR MULTI-FINGERED ROBOTIC GRASPING

(a)

Figure 2: (a) Probabilistic graphical model of the environment. Gray nodes correspond to observed variables and white nodes to unobserved variables. (b) Prior distributions.

(b)

SIMULATION-BASED BAYESIAN INFERENCE FOR MULTI-FINGERED ROBOTIC GRASPING

Norman Marlier University of Liège norman.marlier@uliege.be

Olivier Brüls University of Liège o.bruls@uliege.be

Gilles Louppe University of Liège g.louppe@uliege.be

