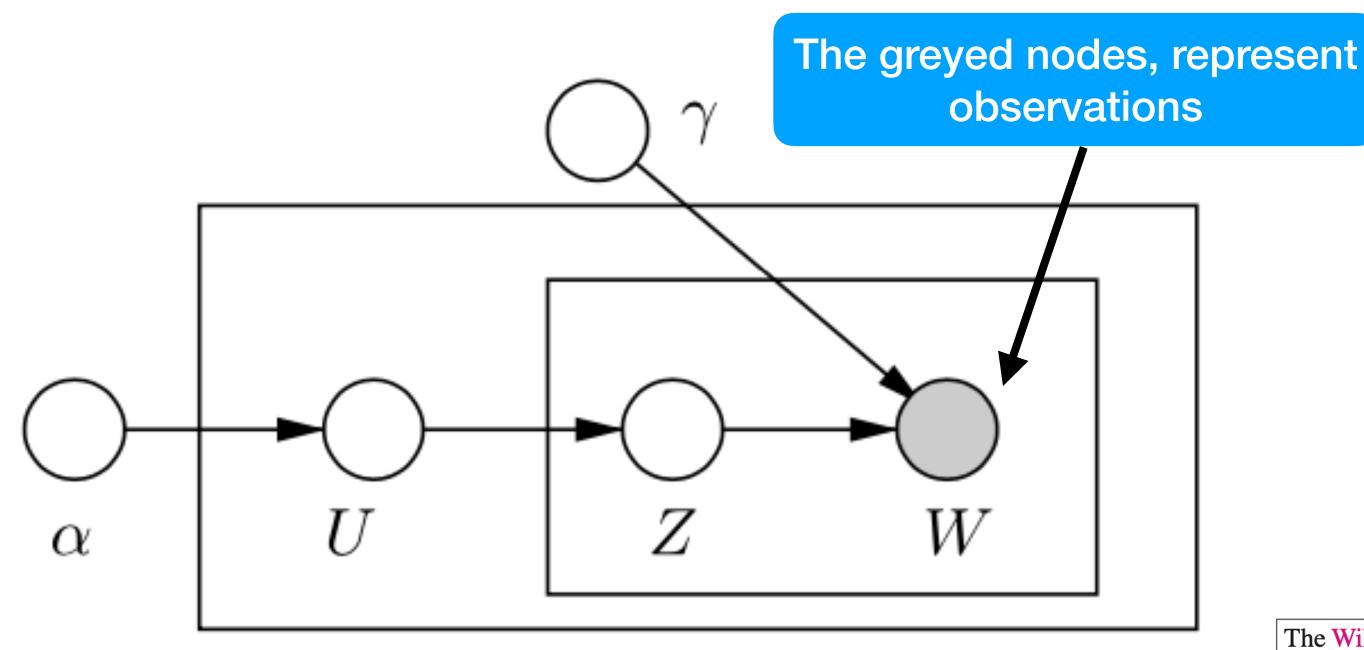

# Graphical Models and Variational Inference

Demian Wassermann, Inria Graphical Models: Discrete Inference and Learning


- Show examples of the above, Yeo, RE, etc
- Show the formal relationship between graphs and probs
- Show the discrete case and mention solving algorithms
- Show the continuous case and state the problem is too complex, we need approximations



[Pearl 1987]

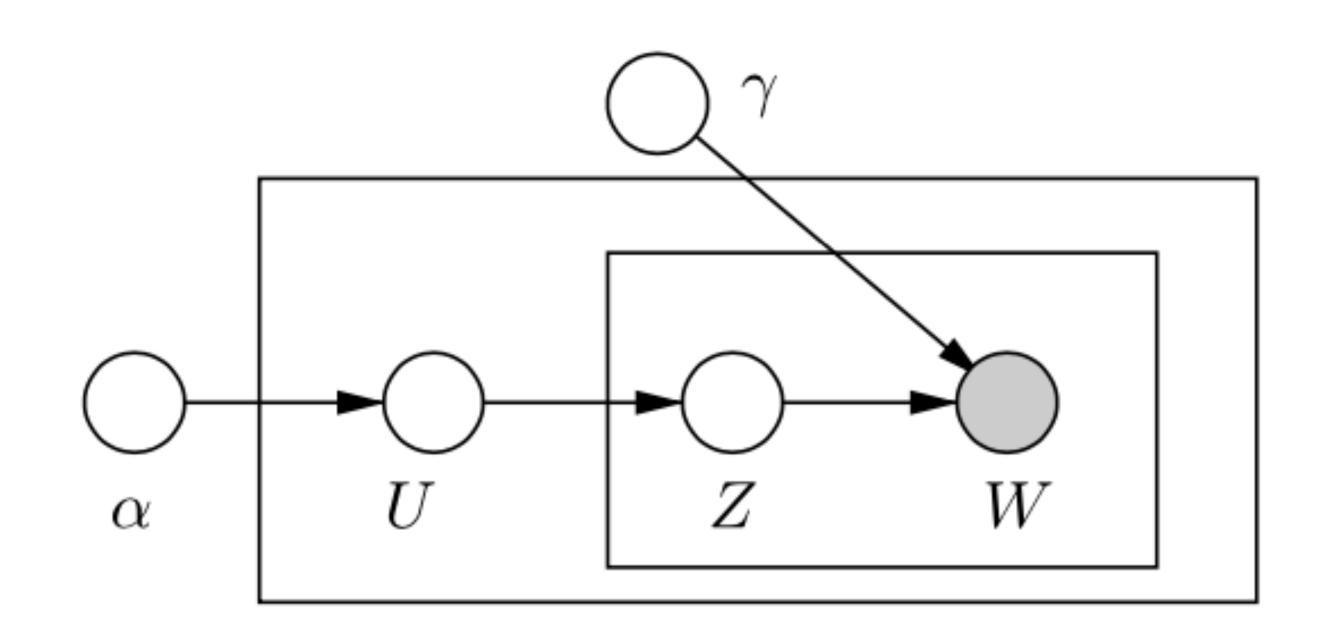


[Kong et al 2019]



U: is a Dirichlet or "clustering variable"

Z: is a "Topic"


W: is an observed "Word"

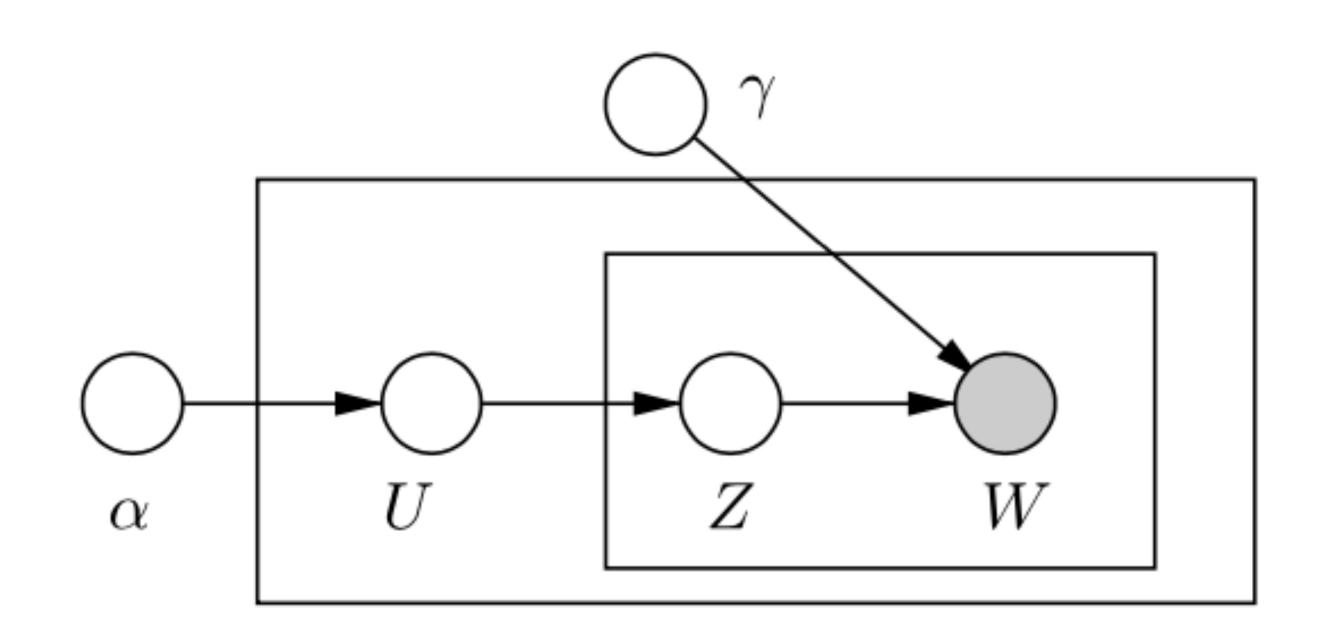
[Blei et al 2003]

Each "box" or template represents a set of i.i.d. random variables with the same distribution

| "Arts"                | "Budgets"               | "Children"            | "Education"            |
|-----------------------|-------------------------|-----------------------|------------------------|
|                       |                         |                       |                        |
| NEW                   | MILLION                 | CHILDREN              | SCHOOL                 |
| $\operatorname{FILM}$ | TAX                     | WOMEN                 | STUDENTS               |
| SHOW                  | PROGRAM                 | PEOPLE                | SCHOOLS                |
| MUSIC                 | $\operatorname{BUDGET}$ | CHILD                 | <b>EDUCATION</b>       |
| MOVIE                 | BILLION                 | YEARS                 | TEACHERS               |
| PLAY                  | FEDERAL                 | FAMILIES              | HIGH                   |
| MUSICAL               | YEAR                    | WORK                  | PUBLIC                 |
| $\operatorname{BEST}$ | SPENDING                | PARENTS               | TEACHER                |
| ACTOR                 | NEW                     | SAYS                  | BENNETT                |
| FIRST                 | $\operatorname{STATE}$  | FAMILY                | MANIGAT                |
| YORK                  | PLAN                    | WELFARE               | NAMPHY                 |
| OPERA                 | MONEY                   | MEN                   | $\operatorname{STATE}$ |
| THEATER               | PROGRAMS                | PERCENT               | PRESIDENT              |
| ACTRESS               | GOVERNMENT              | CARE                  | ELEMENTARY             |
| LOVE                  | CONGRESS                | $\operatorname{LIFE}$ | HAITI                  |

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.




$$U_{j} \sim Dirichlet(\alpha), \alpha < 1$$

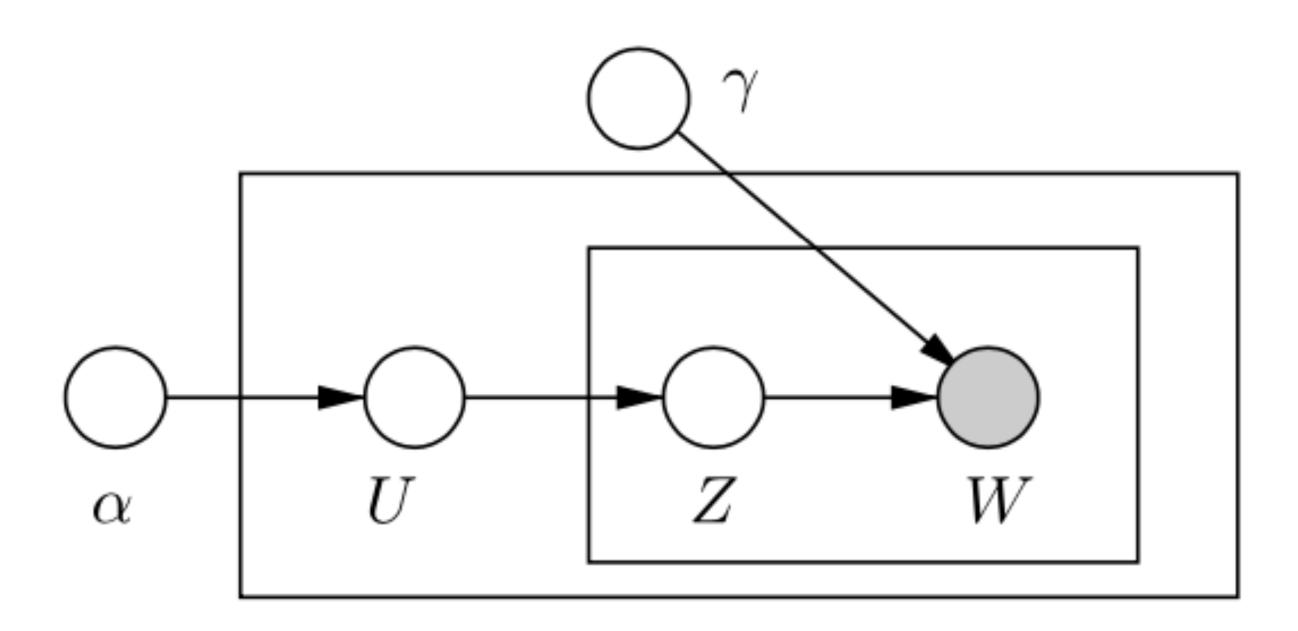
$$Z_{i,j} \sim Multinomial(U_{j})$$

$$W_{i,j} \sim Multinomial\left(\gamma_{Z_{i,j}}\right)$$

Then, we are looking for the posterior  $P(U,Z|W,\alpha,\gamma) = \frac{P(U,Z,W|\alpha,\gamma)}{P(W|\alpha,\gamma)}$ 

$$P(W|\alpha,\gamma) = \prod_{j} \int P(U_{j}|\alpha) \left( \prod_{i} \sum_{Z_{i,j}} P(Z_{i,j}|U_{j}) P(W_{i,j}|Z_{i,j},\gamma) \right) dU_{j}$$




$$U_{j} \sim Dirichlet(\alpha), \alpha < 1$$

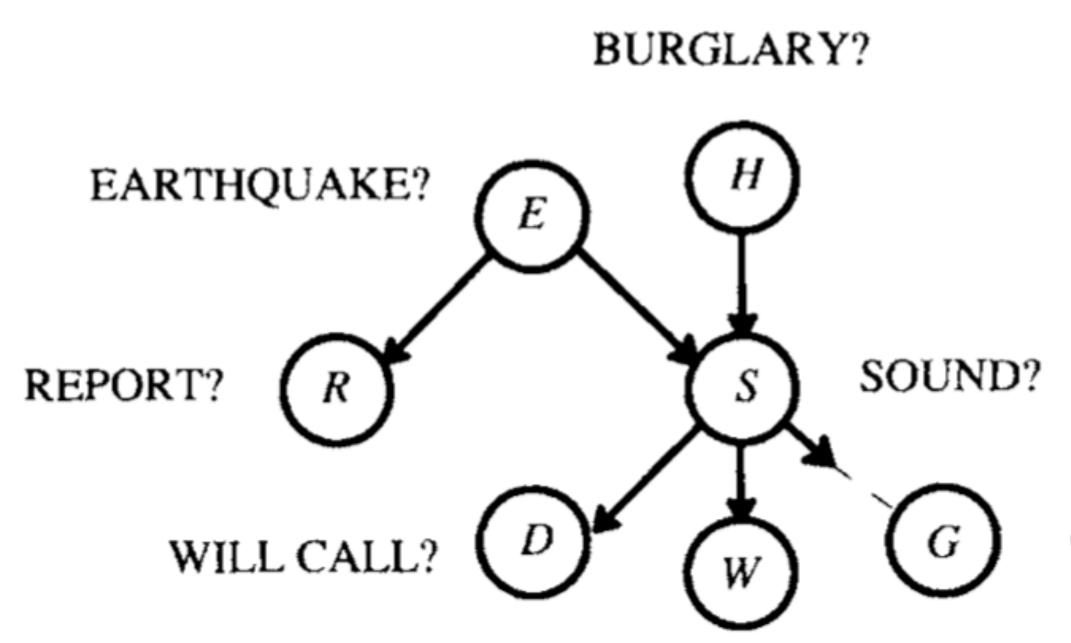
$$Z_{i,j} \sim Multinomial(U_{j})$$

$$W_{i,j} \sim Multinomial\left(\gamma_{Z_{i,j}}\right)$$

Then, we are looking for the posterior  $P(U,Z \mid W,\alpha,\gamma) = \frac{P(U,Z,W \mid \alpha,\gamma)}{P(W \mid \alpha,\gamma)}$ 

$$P(W|\alpha,\gamma) = \prod_{j} \int P(U_{j}|\alpha) \left( \prod_{i} \sum_{Z_{i,j}} P(Z_{i,j}|U_{j}) P(W_{i,j}|Z_{i,j},\gamma) \right) dU_{j}$$



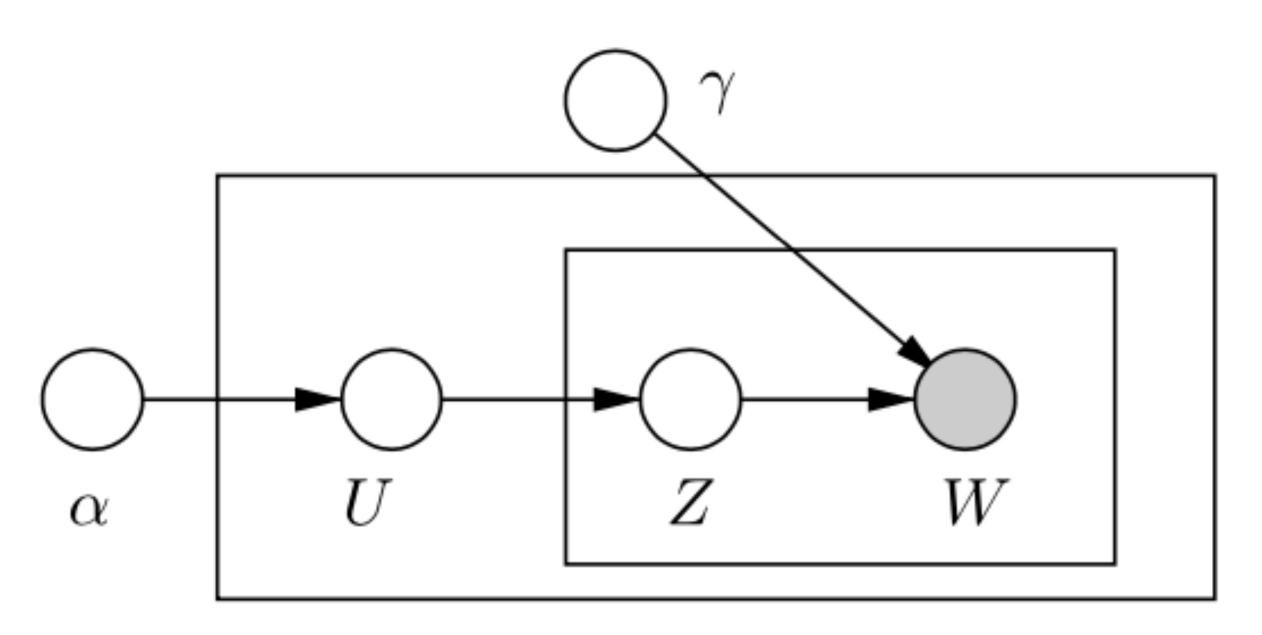

| "Arts"                | "Budgets"               | "Children"   | "Education" |
|-----------------------|-------------------------|--------------|-------------|
|                       |                         |              |             |
| NEW                   | MILLION                 | CHILDREN     | SCHOOL      |
| $\operatorname{FILM}$ | TAX                     | WOMEN        | STUDENTS    |
| SHOW                  | PROGRAM                 | PEOPLE       | SCHOOLS     |
| MUSIC                 | $\operatorname{BUDGET}$ | CHILD        | EDUCATION   |
| MOVIE                 | BILLION                 | YEARS        | TEACHERS    |
| PLAY                  | FEDERAL                 | FAMILIES     | HIGH        |
| MUSICAL               | YEAR                    | WORK         | PUBLIC      |
| $\operatorname{BEST}$ | SPENDING                | PARENTS      | TEACHER     |
| ACTOR                 | NEW                     | SAYS         | BENNETT     |
| FIRST                 | STATE                   | FAMILY       | MANIGAT     |
| YORK                  | PLAN                    | WELFARE      | NAMPHY      |
| OPERA                 | MONEY                   | MEN          | STATE       |
| THEATER               | PROGRAMS                | PERCENT      | PRESIDENT   |
| ACTRESS               | GOVERNMENT              | CARE         | ELEMENTARY  |
| LOVE                  | CONGRESS                | $_{ m LIFE}$ | HAITI       |
|                       |                         |              |             |

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too

$$P(W_1, ..., W_I, Z_1, ..., Z_I, U_1, ..., U_J, \alpha, \gamma) = \prod_j \prod_i P(W_i | Z_i, \gamma) P(Z_i | U_j) P(U_j | \alpha)$$

In general, for a graphical model Graphical Model with vertices V and edges E

$$GM = (V, E), P(V) = \prod_{v \in V} P(v | Pa(v)), Pa(v) = \{v' : v' \to v \in E\}$$



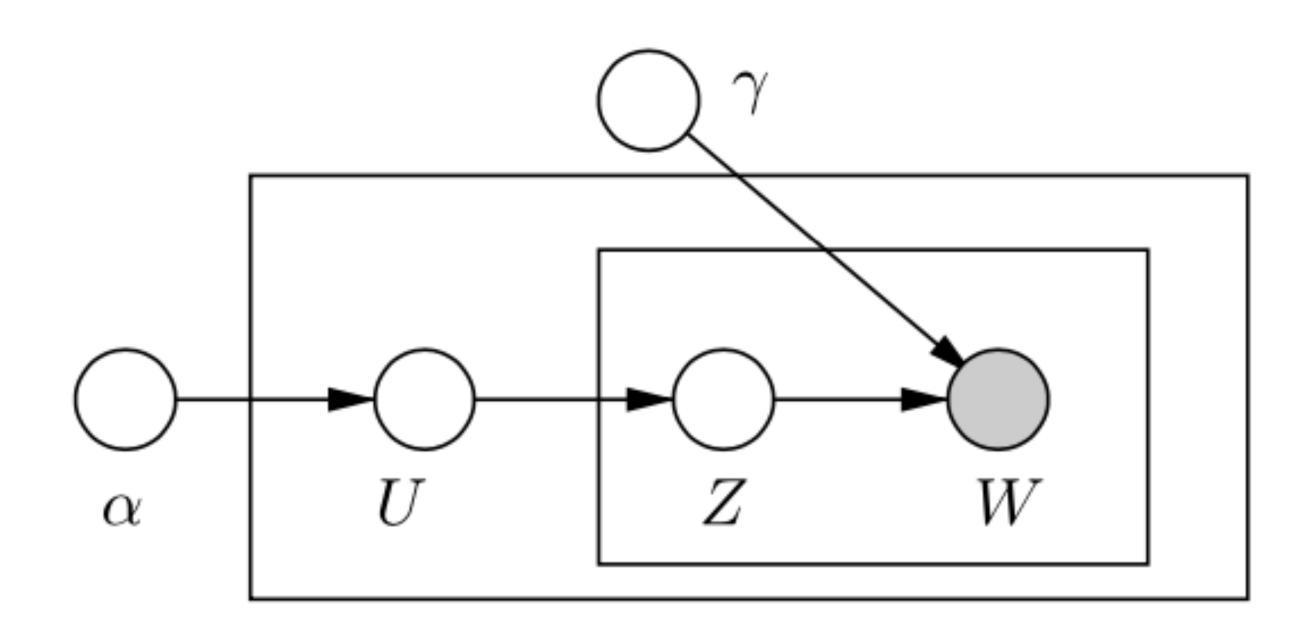

Here, the report and the sound are independent, given that we know if there was an earthquake: They are **conditionally** independent

$$P(R, S \mid E) = P(R \mid E)P(S \mid E) \text{ iif } I(R, S, E)$$

**GIBBON'S TESTIMONY** 

WATSON'S CALL = TRUE




| "Arts"                                | "Budgets"                                      | "Children"                                | "Education"                                            |
|---------------------------------------|------------------------------------------------|-------------------------------------------|--------------------------------------------------------|
| NEW<br>FILM<br>SHOW<br>MUSIC<br>MOVIE | MILLION<br>TAX<br>PROGRAM<br>BUDGET<br>BILLION | CHILDREN WOMEN PEOPLE CHILD YEARS         | SCHOOL<br>STUDENTS<br>SCHOOLS<br>EDUCATION<br>TEACHERS |
| PLAY MUSICAL BEST ACTOR FIRST YORK    | FEDERAL YEAR SPENDING NEW STATE PLAN           | FAMILIES WORK PARENTS SAYS FAMILY WELFARE | HIGH PUBLIC TEACHER BENNETT MANIGAT NAMPHY             |
| OPERA<br>THEATER<br>ACTRESS<br>LOVE   | MONEY PROGRAMS GOVERNMENT CONGRESS             | MEN PERCENT CARE LIFE                     | STATE<br>PRESIDENT<br>ELEMENTARY<br>HAITI              |

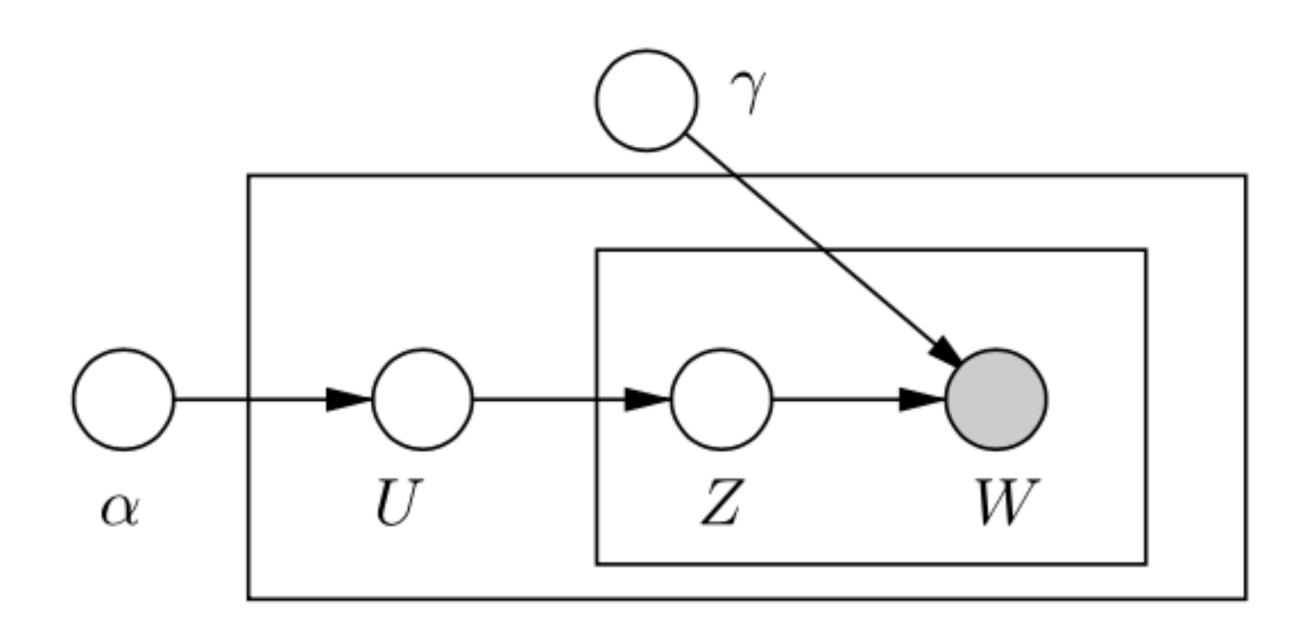
The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

$$P(W_1, ..., W_I, Z_1, ..., Z_I, U_1, ..., U_J, \alpha, \gamma) = \prod_j \prod_i P(W_i | Z_i, \gamma) P(Z_i | U_j) P(U_j | \alpha)$$

However, our usual problem is: given observed variables O and latent variables L, to compute the posterior  $P(L\,|\,O)$ 

$$P(L \mid O) = \frac{\prod_{v \in V} P(v \mid Pa(v))}{\prod_{o} P(o \mid Pa(o))}, GM = (V = L \cup O, E), \ \ \exists l \in L : o \to l \in E$$




| "Arts"                                                    | "Budgets"                                                               | "Children"                                                               | "Education"                                                                         |
|-----------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| "Arts"  NEW FILM SHOW MUSIC MOVIE PLAY MUSICAL BEST ACTOR | "Budgets"  MILLION TAX PROGRAM BUDGET BILLION FEDERAL YEAR SPENDING NEW | "Children"  CHILDREN WOMEN PEOPLE CHILD YEARS FAMILIES WORK PARENTS SAYS | "Education"  SCHOOL STUDENTS SCHOOLS EDUCATION TEACHERS HIGH PUBLIC TEACHER BENNETT |
| FIRST<br>YORK<br>OPERA<br>THEATER<br>ACTRESS<br>LOVE      | STATE PLAN MONEY PROGRAMS GOVERNMENT CONGRESS                           | FAMILY WELFARE MEN PERCENT CARE LIFE                                     | MANIGAT NAMPHY STATE PRESIDENT ELEMENTARY HAITI                                     |

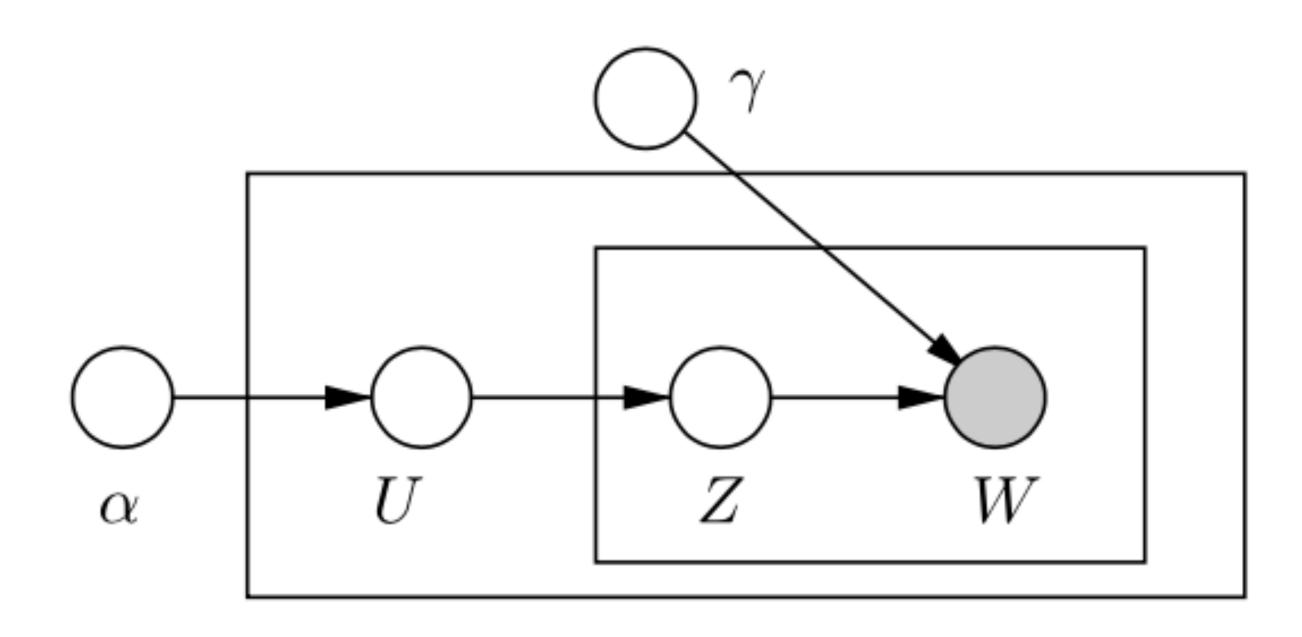
The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

$$P(L \mid O) = \frac{\prod_{v \in V} P(v \mid Pa(v))}{\prod_{o} P(o \mid Pa(o))}, GM = (V = L \cup O, E), \ \exists l \in L : o \to l \in E$$

In the case of continuous variables this is

$$P(L \mid O) = \frac{P(L, O)}{\int P(L, O)dO}$$




|   | "Arts"  | ${ m `Budgets''}$ | "Children" | "Education" |
|---|---------|-------------------|------------|-------------|
| _ | NEW     | MILLION           | CHILDREN   | SCHOOL      |
|   | FILM    | TAX               | WOMEN      | STUDENTS    |
|   | SHOW    | PROGRAM           | PEOPLE     | SCHOOLS     |
|   | MUSIC   | BUDGET            | CHILD      | EDUCATION   |
|   | MOVIE   | BILLION           | YEARS      | TEACHERS    |
|   | PLAY    | FEDERAL           | FAMILIES   | HIGH        |
|   | MUSICAL | YEAR              | WORK       | PUBLIC      |
|   | BEST    | SPENDING          | PARENTS    | TEACHER     |
|   | ACTOR   | NEW               | SAYS       | BENNETT     |
|   | FIRST   | STATE             | FAMILY     | MANIGAT     |
|   | YORK    | PLAN              | WELFARE    | NAMPHY      |
|   | OPERA   | MONEY             | MEN        | STATE       |
|   | THEATER | PROGRAMS          | PERCENT    | PRESIDENT   |
|   | ACTRESS | GOVERNMENT        | CARE       | ELEMENTARY  |
|   | LOVE    | CONGRESS          | LIFE       | HAITI       |

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

$$P(L \mid O) = \frac{\prod_{v \in V} P(v \mid Pa(v))}{\prod_{o} P(o \mid Pa(o))}, GM = (V = L \cup O, E), \ \ \exists l \in L : o \to l \in E$$

In the case of continuous variables this is

No analytical solution, for the general case  $P(L \mid O) = \frac{P(L, O)}{\int P(L, O) dO}$ 



| NEW MILLION CHILDREN FILM TAX WOMEN SHOW PROGRAM PEOPLE MUSIC BUDGET CHILD MOVIE BILLION YEARS PLAY FEDERAL FAMILIES MUSICAL YEAR WORK BEST SPENDING PARENTS | SCHOOL                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| MUSICAL YEAR WORK                                                                                                                                            | STUDENTS SCHOOLS EDUCATION TEACHERS HIGH                         |
| ACTOR NEW SAYS FIRST STATE FAMILY YORK PLAN WELFARE OPERA MONEY MEN THEATER PROGRAMS PERCENT ACTRESS GOVERNMENT CARE LOVE CONGRESS LIFE                      | PUBLIC TEACHER BENNETT MANIGAT NAMPHY STATE PRESIDENT ELEMENTARY |

The William Randolph Hearst Foundation will give \$1.25 million to Lincoln Center, Metropolitan Opera Co., New York Philharmonic and Juilliard School. "Our board felt that we had a real opportunity to make a mark on the future of the performing arts with these grants an act every bit as important as our traditional areas of support in health, medical research, education and the social services," Hearst Foundation President Randolph A. Hearst said Monday in announcing the grants. Lincoln Center's share will be \$200,000 for its new building, which will house young artists and provide new public facilities. The Metropolitan Opera Co. and New York Philharmonic will receive \$400,000 each. The Juilliard School, where music and the performing arts are taught, will get \$250,000. The Hearst Foundation, a leading supporter of the Lincoln Center Consolidated Corporate Fund, will make its usual annual \$100,000 donation, too.

$$P(L \mid O) = \frac{\prod_{v \in V} P(v \mid Pa(v))}{\prod_{o} P(o \mid Pa(o))}, GM = (V = L \cup O, E), \ \exists l \in L : o \to l \in E$$

Can we approximate  $P(L \mid O)$ ?

$$Q(L) \simeq P(L \mid O) = \frac{P(L, O)}{\int P(L, O) dO}$$

Can we approximate  $P(L \mid O)$ ?

$$Q(L) \simeq P(L \mid O) = \frac{P(L, O)}{\int P(L, O) dO}$$

- First try: MacLaurin  $Q(L \mid O) = \sum P(L = l \mid O) + P'(L = l \mid O)(l L) + \dots$  problem: how to guarantee that  $Q(L \mid O)$  is a probability law?
- Second try: cumulant approximations (changing the random  $L \mid O$  by X)

$$\phi(t) = \log \mathbb{E}_X[\exp(tX)] = \sum_{n} \kappa_n \frac{t^n}{n!} = \kappa_1 t + \kappa_2 \frac{t^2}{2!} + \dots = \mu t + \sigma^2 \frac{t^2}{2!} + \dots$$

Can we approximate  $P(L \mid O)$ ?

$$Q(L) \simeq P(L \mid O) = \frac{P(L, O)}{\int P(L, O) dO}$$

- First try: MacLaurin  $Q(L \mid O) = \sum P(L = l \mid O) + P'(L = l \mid O)(l L) + \dots$  problem: how to guarantee that  $Q(L \mid O)$  is a probability law?
- Second try: cumulant approximations (changing the random  $L \mid O$  by X)  $\phi(t) = \log \mathbb{E}_X[\exp(tX)] = \sum \kappa_n \frac{t^n}{n!} = \kappa_1 t + \kappa_2 \frac{t^2}{2!} + \dots = \mu t + \sigma^2 \frac{t^2}{2!} + \dots$
- However, a probability law has either up to two moments, or an infinite number (Cramèr 1938)

Can we approximate  $P(L \mid O)$ ?

$$Q(L) \simeq P(L \mid O) = \frac{P(L, O)}{\int P(L, O) dO}$$

Other options: Edgesworth, approximations which come from this identity

$$\phi(t) = \log \mathbb{E}_X[\exp(itX)] = \sum_{n} \kappa_n \frac{(it)^n}{n!},$$

$$\psi(t) = \log \mathbb{E}_X[\exp(itX)] = \sum_{n=1}^{n} \gamma_n \frac{(it)^n}{n!}$$

$$\hat{\phi}(t) = \sum_{n} (\kappa_n - \gamma_n) \frac{(it)^n}{n!} + \log \psi(t)$$

however, they are not guaranteed to be probability laws for finite samples.

Can we approximate  $P(L \mid O)$ ?

$$Q(L) \simeq P(L \mid O) = \frac{P(L, O)}{\int P(L, O) dO}$$

- So? What do we do?
  - We choose an approximate distribution  $Q_{\theta}(X) = Q_{\theta}(L)$  from a given family, with parameters  $\theta$ . Then

$$Q^* = Q_{\theta^*} : \theta^* = \arg\min_{\theta} D(Q_{\theta}(X), P(X|Z))$$

so we need to define the right similarity measurement D to compare distributions. And in standard Variational Inference (VI), Z is notation for O

Can we approximate  $P(L \mid O)$ ?

$$P(L, O)$$

$$P(L, O)$$

$$P(L, O)dC$$

- So? What do we do?
  - We choose an approximate distribution  $Q_{\theta}(X) = Q_{\theta}(L)$  in family, with parameters  $\theta$ . Then

$$Q^* = Q_{\theta^*} : \theta^* = \arg\min_{\theta} D(Q_{\theta}(X), P(X|Z))$$

so we need to define the right similarity measurement D to compare distributions. And in standard Variational Inference (VI), Z is notation for O

### So Which D and Q Should We Choose?

$$Q^* = Q_{\theta^*} : \theta^* = \arg\min_{\theta} D(Q_{\theta}(X), P(X|Z))$$

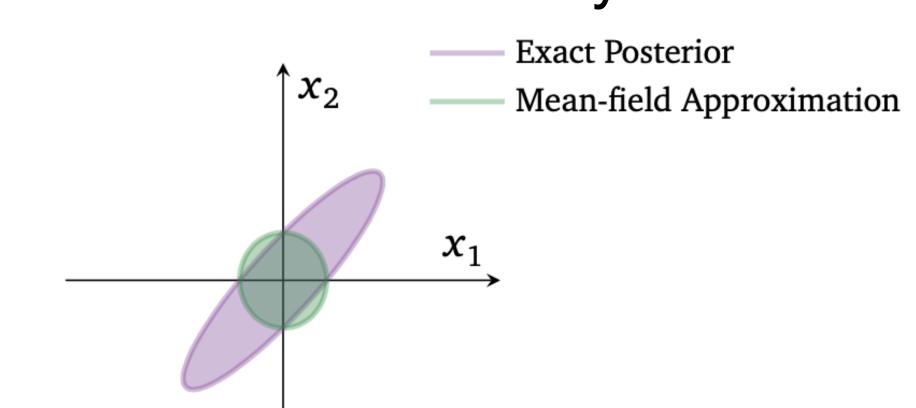
X the latent variables and Z the observations

Let's start with "analytical" ideas:

$$D(Q_{\theta}(X), P(X|Z)) = \int (Q_{\theta}(x) - P(x|Z))^2 dx$$

- •What does it mean for two distributions to be close in the  $L_2$  sense?
- How easy is to obtain bounds and closed form solutions?
- $Q_{\theta}(X): X \sim \mathcal{N}(\mu, \Sigma), \theta = (\mu, \Sigma)$ : This is called the Laplace approximation
  - •Even simpler  $\Sigma=\sigma^2$ Id, which boils down to  $Q_\mu(X)=\Pi_iQ_{\mu_i}(X_i)$

## So Which D and Q Should We Choose?


$$Q^* = Q_{\theta^*} : \theta^* = \arg\min_{\theta} D(Q_{\theta}(X), P(X|Z))$$

X the latent variables and Z the observations

More Information theoretic

$$D_{KL}(Q_{\theta}(X), P(X)) = \mathbb{E}_{X \sim Q_{\theta}} \left[ -\log \frac{P(X|Z)}{Q_{\theta}(X)} \right] = -\int dQ_{\theta}(x) \log \frac{P(x|Z)}{Q_{\theta}(x)}$$

- •The Kullback-Leibler divergence is based on information theory
- Known formulations for common cases
- -Mean field  $Q_{\theta=\mu}(X)=\Pi_i Q_{\mu_i}(X_i)$

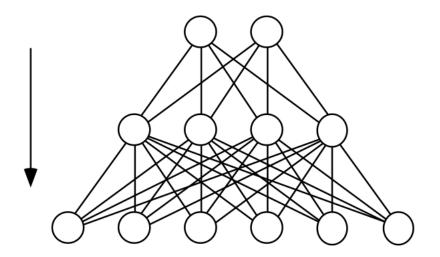


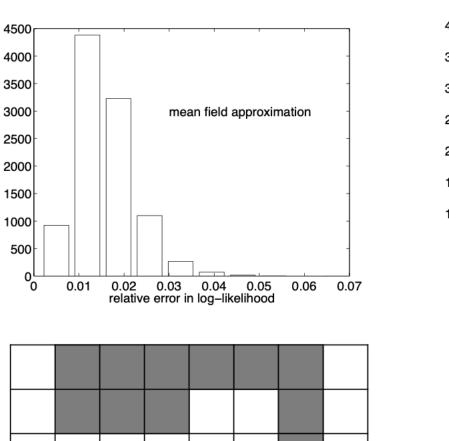
[Blei et al 2017]

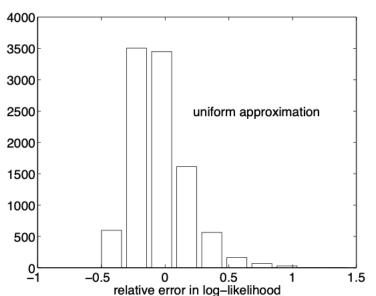
### A Case for Mean Field KL-based VI

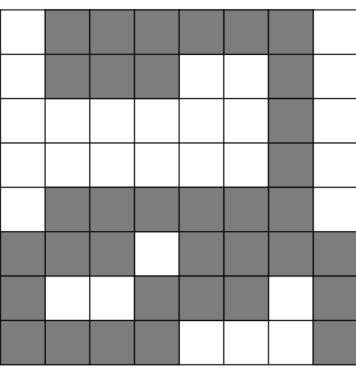
Journal of Artificial Intelligence Research 4 (1996) 61—76

Submitted 11/95; published 3/96


#### Mean Field Theory for Sigmoid Belief Networks


Lawrence K. Saul Tommi Jaakkola Michael I. Jordan LKSAUL@PSYCHE.MIT.EDU
TOMMI@PSYCHE.MIT.EDU
JORDAN@PSYCHE.MIT.EDU


Center for Biological and Computational Learning Massachusetts Institute of Technology 79 Amherst Street, E10-243 Cambridge, MA 02139


#### Abstract

We develop a mean field theory for sigmoid belief networks based on ideas from statistical mechanics. Our mean field theory provides a tractable approximation to the true probability distribution in these networks; it also yields a lower bound on the likelihood of evidence. We demonstrate the utility of this framework on a benchmark problem in statistical pattern recognition—the classification of handwritten digits.









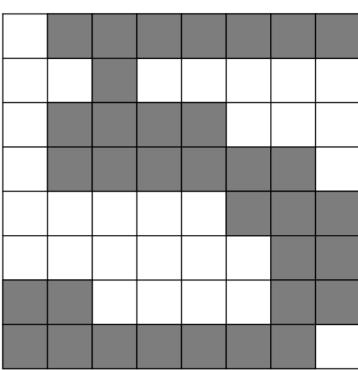



Figure 7: Binary images of handwritten digits: two and five.

|   | 0   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 | 388 | 2   | 2   | 0   | 1   | 3   | 0   | 0   | 4   | 0   |
| 1 | 0   | 393 | 0   | 0   | 0   | 1   | 0   | 0   | 6   | 0   |
| 2 | 1   | 2   | 376 | 1   | 3   | 0   | 4   | 0   | 13  | 0   |
| 3 | 0   | 2   | 4   | 373 | 0   | 12  | 0   | 0   | 6   | 3   |
| 4 | 0   | 0   | 2   | 0   | 383 | 0   | 1   | 2   | 2   | 10  |
| 5 | 0   | 2   | 1   | 13  | 0   | 377 | 2   | 0   | 4   | 1   |
| 6 | 1   | 4   | 2   | 0   | 1   | 6   | 386 | 0   | 0   | 0   |
| 7 | 0   | 1   | 0   | 0   | 0   | 0   | 0   | 388 | 3   | 8   |
| 8 | 1   | 9   | 1   | 7   | 0   | 7   | 1   | 1   | 369 | 4   |
| 9 | 0   | 4   | 0   | 0   | 0   | 0   | 0   | 8   | 5   | 383 |

### So Which D and Q Should We Choose?

$$Q^* = Q_{\theta^*} : \theta^* = \arg\min_{\theta} D(Q_{\theta}(X), P(X|Z))$$

X the latent variables and Z the observations

A second order information-theoretic model

$$D_{KL}(Q_{\theta}(X), P(X|Z)) = \mathbb{E}_{X \sim Q_{\theta}} \left[ -\log \frac{P(X|Z)}{Q_{\theta}(X)} \right] = -\int dQ_{\theta}(x) \log \frac{P(x|Z)}{Q_{\theta}(x)}$$

 ${ullet} Q_{\theta}(X): X \sim \mathcal{N}(\mu, \Sigma), \theta = (\mu, \Sigma)$ : This is called the Laplace approximation

## But Laplace is Better

Journal of Machine Learning Research (2013)

Submitted 00/00; Published 00/00

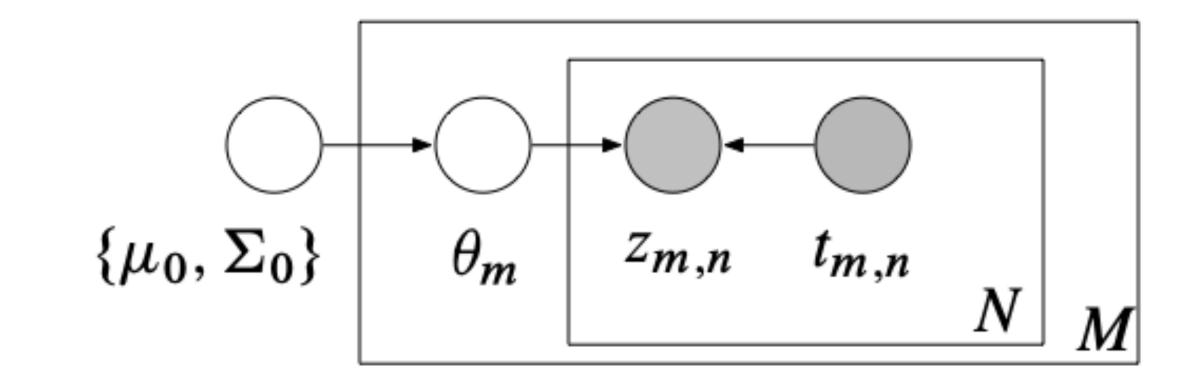
#### Variational Inference in Nonconjugate Models

#### **Chong Wang**

Machine Learning Department Carnegie Mellon University Pittsburgh, PA, 15213, USA

#### David M. Blei

Department of Computer Science Princeton University Princeton, NJ, 08540, USA










CHONGW@CS.CMU.EDU



BLEI@CS.PRINCETON.EDU

- 1. Draw coefficients  $\theta \sim \mathcal{N}(\mu_0, \Sigma_0)$ .
- 2. For each data point n and its covariates  $t_n$ , draw its class label from

$$z_n \mid \theta, t_n \sim \text{Bernoulli}\left(\sigma(\theta^\top t_n)^{z_{n,1}}\sigma(-\theta^\top t_n)^{z_{n,2}}\right),$$

|                            | Yeast    |                | Scene    |                |
|----------------------------|----------|----------------|----------|----------------|
|                            | Accuracy | Log Likelihood | Accuracy | Log Likelihood |
| Jaakkola and Jordan (1996) | 79.7%    | -0.678         | 87.4%    | -0.670         |
| Laplace inference          | 80.1%    | -0.449         | 89.4%    | -0.259         |

### So Which D and Q Should We Choose?

$$Q^* = Q_{\theta^*} : \theta^* = \arg\min_{\theta} D(Q_{\theta}(X|Z), P(X|Z))$$

X the latent variables and Z the observations

A second order information-theoretic model

$$D_{KL}(Q_{\theta}(X), P(X)) = \mathbb{E}_{X \sim Q_{\theta}} \left[ -\log \frac{P(X)}{Q_{\theta}(X)} \right] = -\int dQ_{\theta}(x) \log \frac{P(x)}{Q_{\theta}(x)}$$

 $\cdot Q_{\theta}(X): X \sim \mathcal{N}(\mu, \Sigma), \theta = (\mu, \Sigma)$ : This is called the Laplace approximation

### So Which D Should We Choose? Finding Bounds

$$D_{KL}(Q_{\theta}(X), P(X)) = \mathbb{E}_{X \sim Q_{\theta}} \left[ -\log \frac{P(X)}{Q_{\theta}(X)} \right] = -\int dQ_{\theta}(x) \log \frac{P(x)}{Q_{\theta}(x)}$$

And we know that  $\log P(X) = \log \mathbb{E}_Z[P(X,Z)] = \log \int dP(z)P(X,z)$ 

with Z being the observed data (O before) and X our latent variables (L)

then, 
$$P(Z) = \log \int dQ_{\theta}(X) \frac{P(Z, x)}{Q_{\theta}(x)} = \log \mathbb{E}_{X \sim Q_{\theta}} \left[ \frac{P(Z, X)}{Q_{\theta}(X)} \right]$$

$$\log \mathbb{E}_{X \sim Q_{\theta}} \left[ \frac{P(Z, X)}{Q_{\theta}(X)} \right] \ge \mathbb{E}_{X \sim Q_{\theta}} \left[ \log \frac{P(Z, X)}{Q_{\theta}(X)} \right] = \mathcal{L}(\theta)$$

Hence, it is enough to maximise the Evidence Lower Bound (ELBO):  $\mathscr{L}(\theta)$ 

## So Which D and Q Should We Choose?

$$Q^* = Q_{\theta^*} : \theta^* = \arg\min_{\theta} D(Q_{\theta}(X|Z), P(X|Z))$$

X the latent variables and Z the observations

A simplified second order information-theoretic model

$$\theta = \arg \max_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{X \sim Q_{\theta}} \left[ \log \frac{P(X, Z)}{Q_{\theta}(X)} \right]$$

 ${ullet} Q_{\theta}(X): X \sim \mathcal{N}(\mu, \Sigma), \theta = (\mu, \Sigma)$ : This is called the Laplace approximation

## But Laplace is Better (they use ELBO)

Journal of Machine Learning Research (2013)

Submitted 00/00; Published 00/00

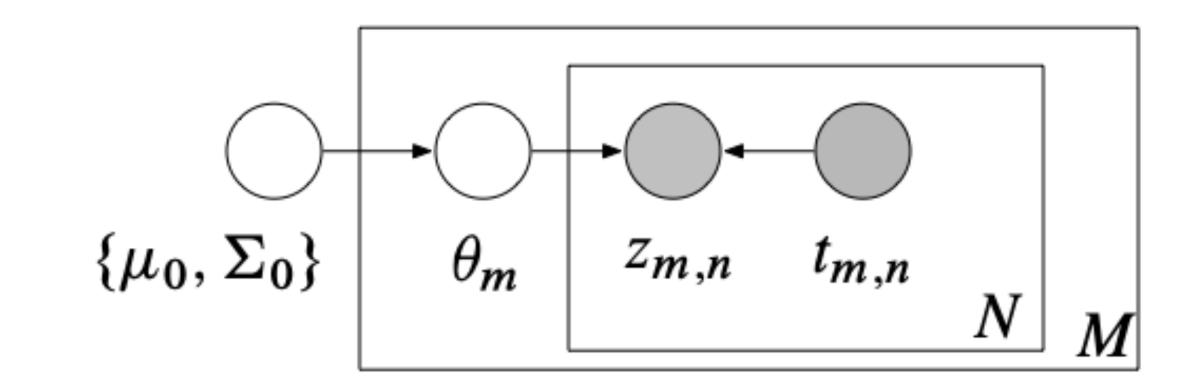
#### Variational Inference in Nonconjugate Models

#### **Chong Wang**

Machine Learning Department Carnegie Mellon University Pittsburgh, PA, 15213, USA

#### David M. Blei

Department of Computer Science Princeton University Princeton, NJ, 08540, USA










CHONGW@CS.CMU.EDU



BLEI@CS.PRINCETON.EDU

- 1. Draw coefficients  $\theta \sim \mathcal{N}(\mu_0, \Sigma_0)$ .
- 2. For each data point n and its covariates  $t_n$ , draw its class label from

$$z_n \mid \theta, t_n \sim \text{Bernoulli}\left(\sigma(\theta^\top t_n)^{z_{n,1}}\sigma(-\theta^\top t_n)^{z_{n,2}}\right),$$

|                            | Yeast    |                | Scene    |                |
|----------------------------|----------|----------------|----------|----------------|
|                            | Accuracy | Log Likelihood | Accuracy | Log Likelihood |
| Jaakkola and Jordan (1996) | 79.7%    | -0.678         | 87.4%    | -0.670         |
| Laplace inference          | 80.1%    | -0.449         | 89.4%    | -0.259         |

## More General $Q_{\theta}$

$$Q^* = Q_{\theta^*} : \theta^* = \arg\min_{\theta} D(Q_{\theta}(X|Z), P(X|Z))$$

X the latent variables and Z the observations

•Gaussian Processes: A measure over continuous functions where any discrete sample of the domain follows a Gaussian law.

$$P(f(x)): (f(x_1), ..., f(x_N)) \sim N(\mu_{x_1,...,x_N}, \Sigma_{x_1,...,x_N})$$

•Normalised Flows:  $Q_{\theta}(X) \triangleq \phi_{\theta}(X)$ 

 $X \sim \mathcal{N}(\mu, \Sigma), \phi_{\theta}$  a parametric mass-preserving diffeomorphism

### Current Problems in VI

- Scalability
- Amortization
- Preservation of dependencies
- Auto-regressive models

## Other Modern Bayesian Techniques

- Variational AutoEncoders
- Likelihood-free Inference