# Graphical Models Discrete Inference and Learning

MVA

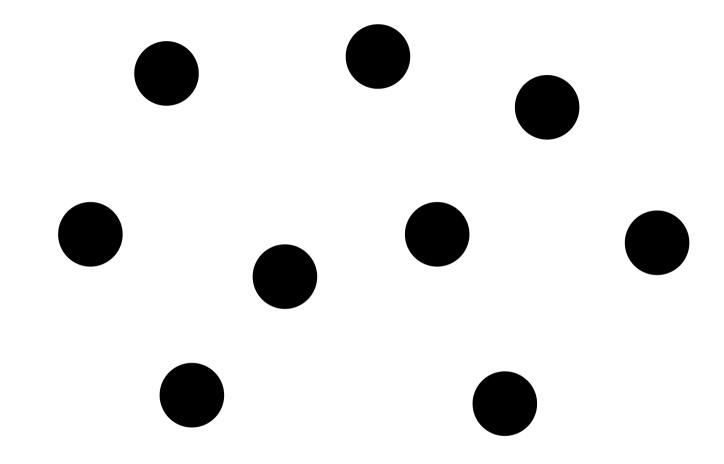
2023 - 2024

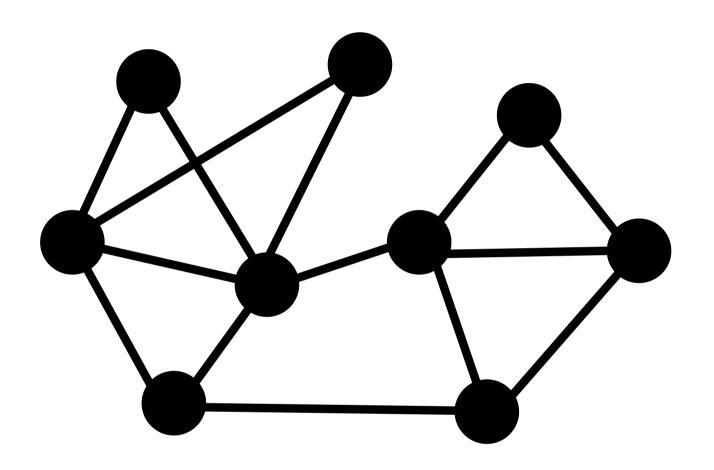
http://thoth.inrialpes.fr/~alahari/disinflearn

## Recap

# Why Graphs?

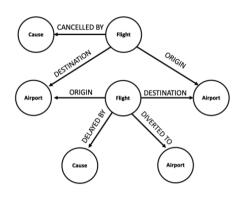
Graphs are a general language for describing and analyzing entities with relations/interactions





# Graph

# Many Types of Data are Graphs (1)



**Event Graphs** 

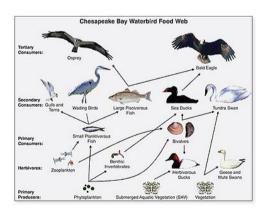


Image credit: Wikipedia

**Food Webs** 

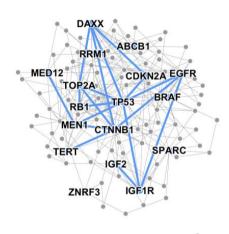


**Computer Networks** 



Image credit: Pinterest

**Particle Networks** 



**Disease Pathways** 



Image credit: visitlondon.com

**Underground Networks** 

# Many Types of Data are Graphs (2)



Image credit: Medium

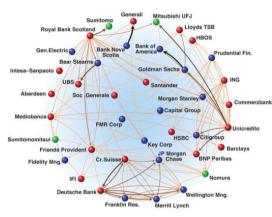
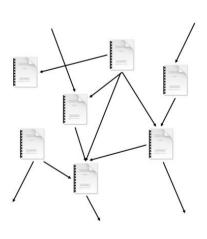


Image credit: Science



Image credit: <u>Lumen Learning</u>

#### **Social Networks**



**Citation Networks** 

#### **Economic Networks Communication Networks**



Image credit: Missoula Current News

Internet

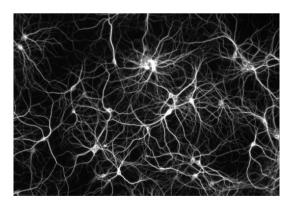
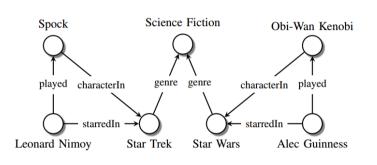
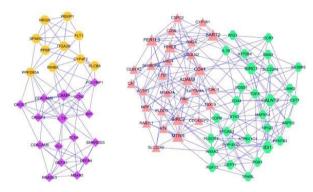


Image credit: The Conversation

**Networks of Neurons** 

# Many Types of Data are Graphs (3)





GROUND CIRCLE LINE FILED VANE

Image credit: ese.wustl.edu

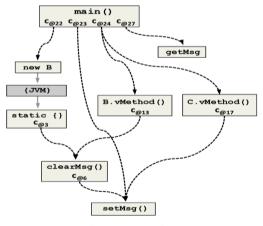
Image credit: math.hws.edu

#### **Knowledge Graphs**

Image credit: Maximilian Nickel et al

#### **Regulatory Networks**

#### **Scene Graphs**



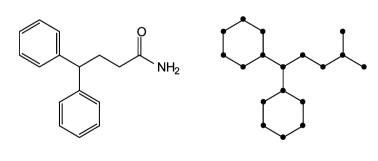


Image credit: ResearchGate

Image credit: MDPI

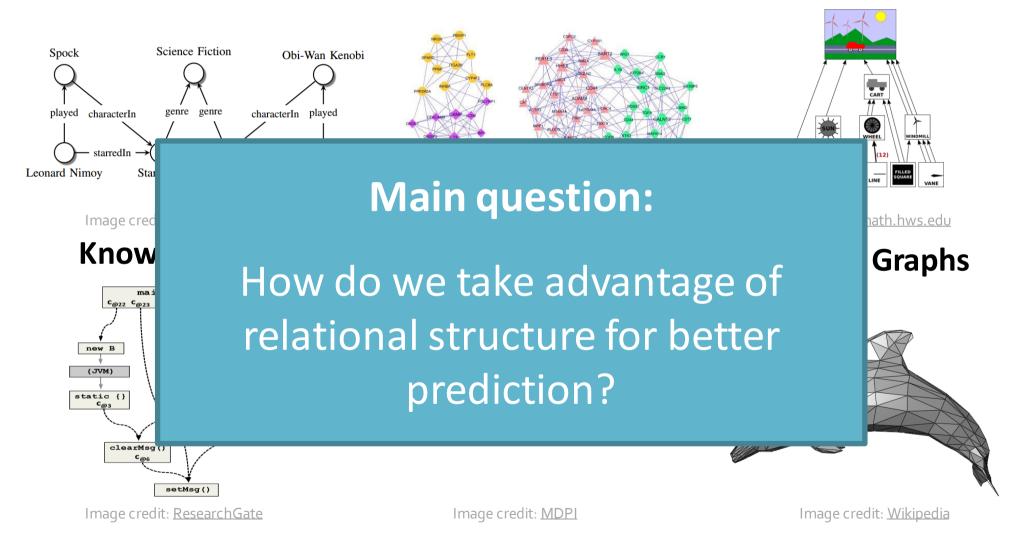
Image credit: Wikipedia

#### **Code Graphs**

**Molecules** 

#### **3D Shapes**

## **Graphs and Relational Data**



**Code Graphs** 

**Molecules** 

**3D Shapes** 

# **Graphs: Machine Learning**

Complex domains have a rich relational structure, which can be represented as a relational graph

By explicitly modeling relationships we achieve better performance!

#### What have we seen?

- Inference
  - Belief propagation
  - Graph cuts (to be completed)
  - Variational inference

Simulation-based inference

#### **Outline**

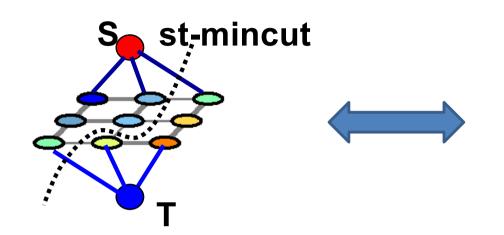
The st-mincut problem

Connection between st-mincut and energy minimization?

What problems can we solve using st-mincut?

st-mincut based Move algorithms

## St-mincut and Energy Minimization



Minimizing a Qudratic Pseudoboolean function E(x)

Functions of boolean variables

Pseudoboolean?



$$E(y) = \sum_{i} c_{i} y_{i} + \sum_{i,j} c_{ij} y_{i} (1-y_{j})$$

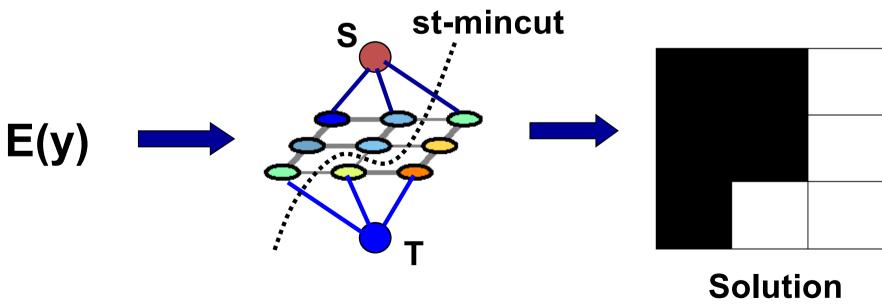
c<sub>ij</sub>≥0

Polynomial time st-mincut algorithms require non-negative edge weights

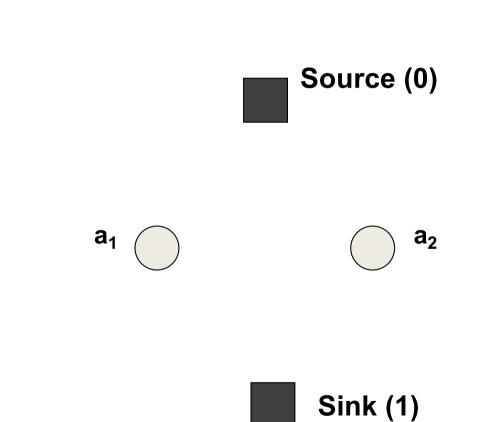
#### So how does this work?

#### Construct a graph such that:

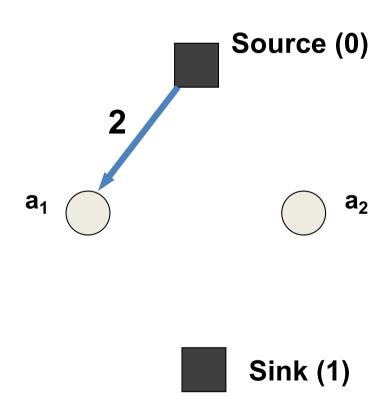
- 1. Any st-cut corresponds to an assignment of x
- 2.The cost of the cut is equal to the energy of x : E(x)



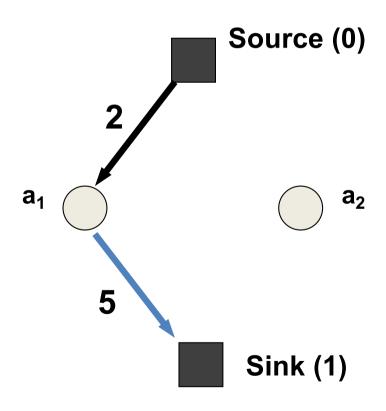
 $E(a_1,a_2)$ 



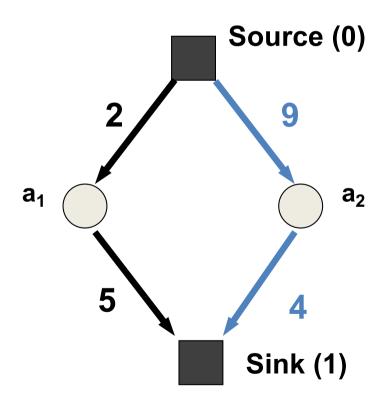
$$E(a_1,a_2) = 2a_1$$



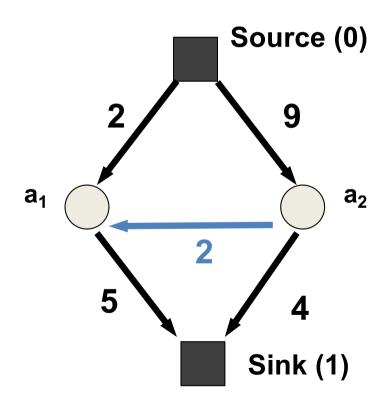
$$E(a_1,a_2) = 2a_1 + 5\bar{a}_1$$



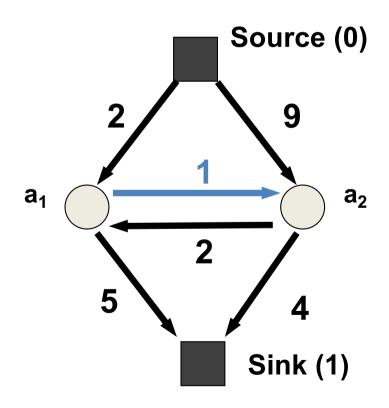
$$E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2$$



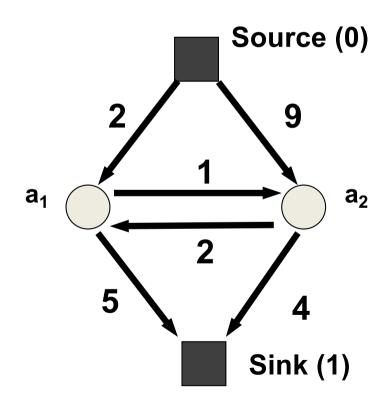
$$E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2$$



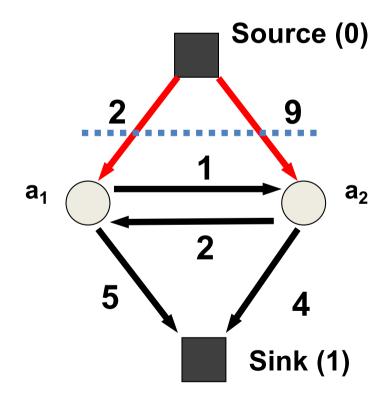
$$E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$



$$E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$



$$E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$

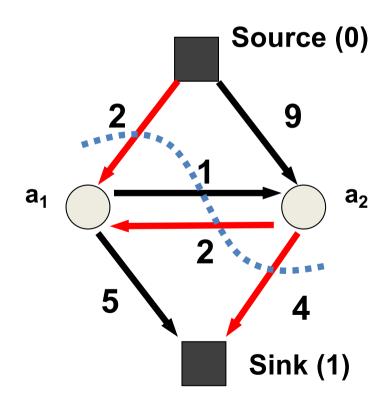


Cost of cut = 11

$$a_1 = 1 \ a_2 = 1$$

$$E(1,1) = 11$$

$$E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$



#### st-mincut cost = 8

$$a_1 = 1 \ a_2 = 0$$

$$E(1,0) = 8$$

## **Energy Function Reparameterization**

Two functions  $E_1$  and  $E_2$  are reparameterizations if

$$E_1(\mathbf{x}) = E_2(\mathbf{x})$$
 for all  $\mathbf{x}$ 

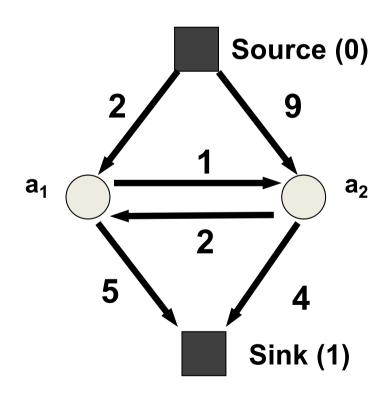
#### For instance:

$$E_1(a_1) = 1 + 2a_1 + 3\bar{a}_1$$

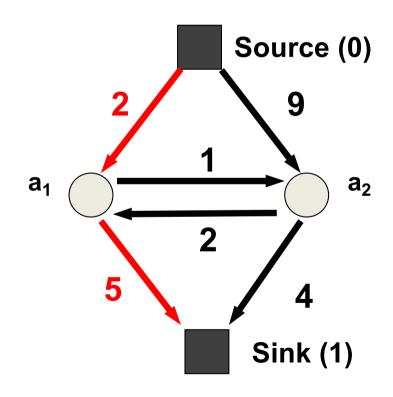
$$E_2(a_1) = 3 + \bar{a}_1$$

| $a_1$ | ā <sub>1</sub> | 1+ 2a <sub>1</sub> + 3ā <sub>1</sub> | 3 + ā <sub>1</sub> |
|-------|----------------|--------------------------------------|--------------------|
| 0     | 1              | 4                                    | 4                  |
| 1     | 0              | 3                                    | 3                  |

$$E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$

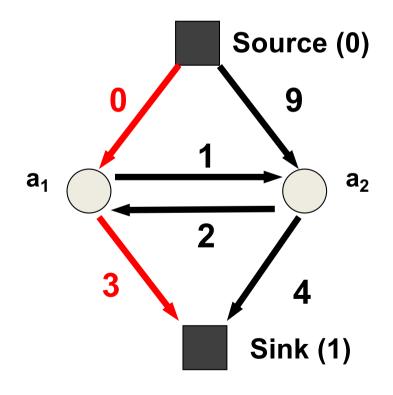


$$E(a_1,a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$



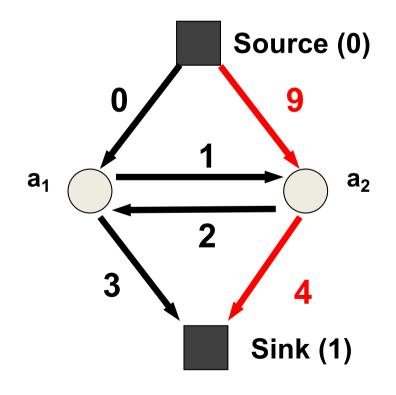
$$2a_1 + 5\bar{a}_1$$
  
=  $2(a_1 + \bar{a}_1) + 3\bar{a}_1$   
=  $2 + 3\bar{a}_1$ 

$$E(a_1,a_2) = 2 + 3\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$



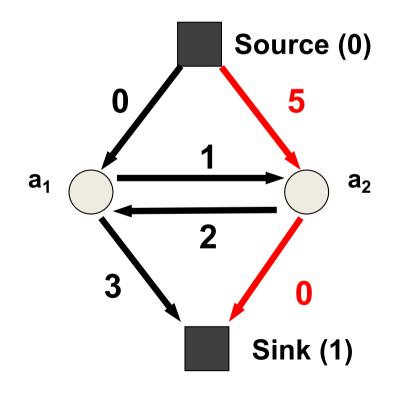
$$2a_1 + 5\bar{a}_1$$
  
=  $2(a_1+\bar{a}_1) + 3\bar{a}_1$   
=  $2 + 3\bar{a}_1$ 

$$E(a_1,a_2) = 2 + 3\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$



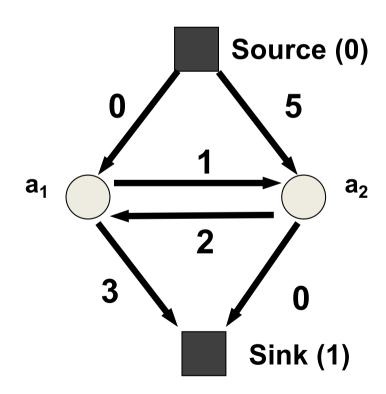
$$9a_2 + 4\bar{a}_2$$
  
=  $4(a_2+\bar{a}_2) + 5\bar{a}_2$   
=  $4 + 5\bar{a}_2$ 

$$E(a_1,a_2) = 2 + 3\bar{a}_1 + 5a_2 + 4 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$

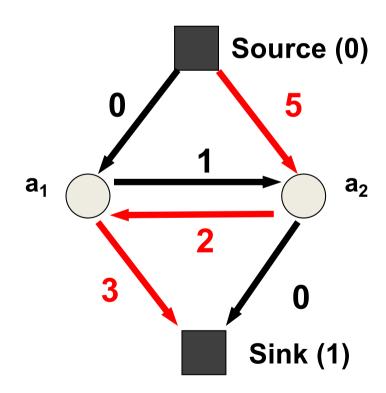


$$9a_2 + 4\bar{a}_2$$
  
=  $4(a_2+\bar{a}_2) + 5\bar{a}_2$   
=  $4 + 5\bar{a}_2$ 

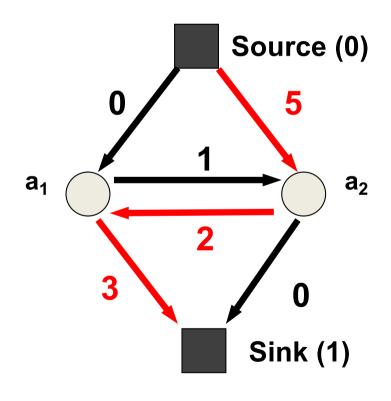
$$E(a_1,a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$



$$E(a_1,a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$



$$E(a_1,a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$$

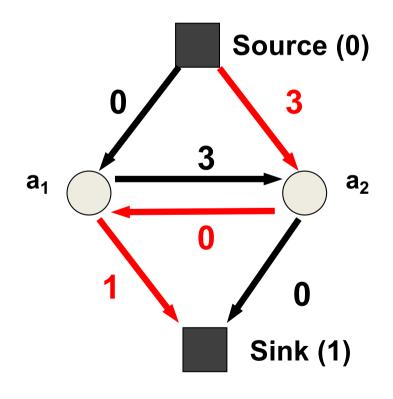


$$3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2$$
  
=  $2(\bar{a}_1 + a_2 + a_1\bar{a}_2) + \bar{a}_1 + 3a_2$   
=  $2(1 + \bar{a}_1a_2) + \bar{a}_1 + 3a_2$ 

F1 = 
$$\bar{a}_1 + a_2 + a_1 \bar{a}_2$$
  
F2 =  $1 + \bar{a}_1 a_2$ 

| $a_1$ | $\mathfrak{a}_2$ | F1 | F2 |
|-------|------------------|----|----|
| 0     | 0                | 1  | 1  |
| 0     | 1                | 2  | 2  |
| 1     | 0                | 1  | 1  |
| 1     | 1                | 1  | 1  |

$$E(a_1,a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2$$

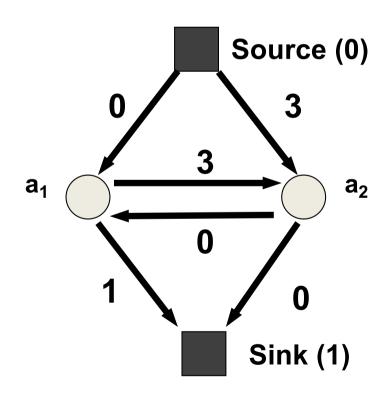


$$3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2$$
  
=  $2(\bar{a}_1 + a_2 + a_1\bar{a}_2) + \bar{a}_1 + 3a_2$   
=  $2(1 + \bar{a}_1a_2) + \bar{a}_1 + 3a_2$ 

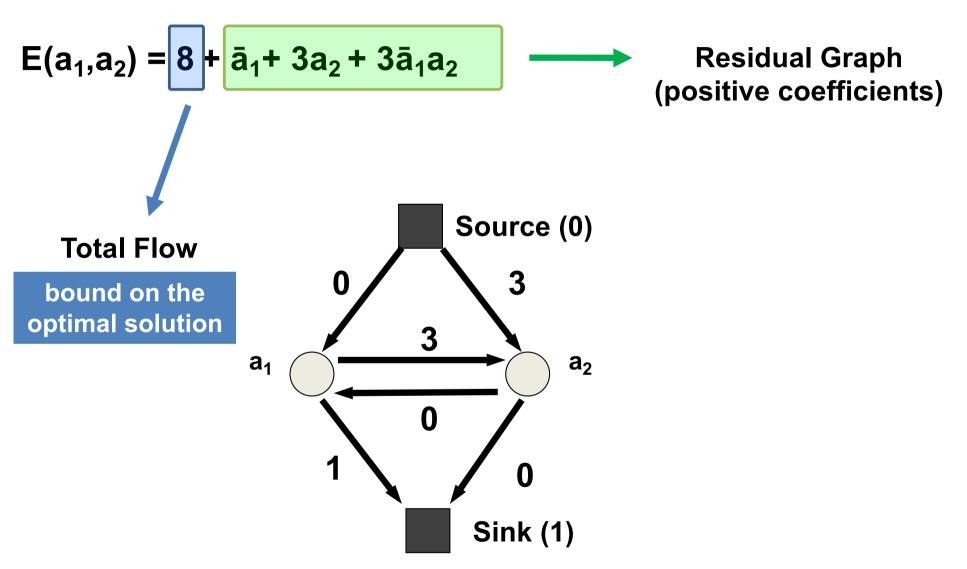
F1 = 
$$\bar{a}_1 + a_2 + a_1 \bar{a}_2$$
  
F2 =  $1 + \bar{a}_1 a_2$ 

| F1 | F2 |
|----|----|
| 1  | 1  |
| 2  | 2  |
|    | 1  |

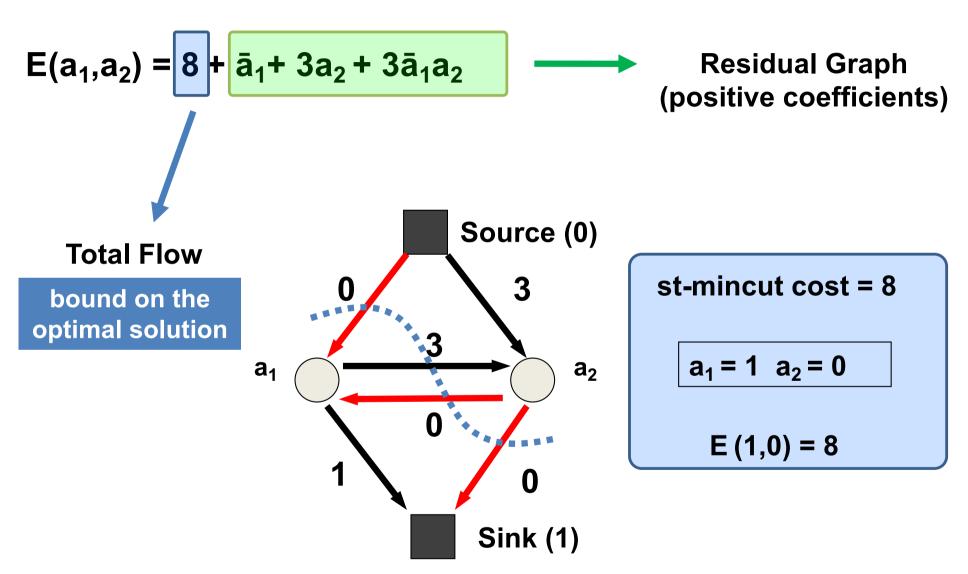
$$E(a_1,a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2$$



No more augmenting paths possible



Inference of the optimal solution becomes trivial because the bound is tight



Inference of the optimal solution becomes trivial because the bound is tight

## **Example: Image Segmentation**

$$E(y) = \sum_{i} c_{i} y_{i} + \sum_{i,j} c_{ij} y_{i} (1-y_{j})$$

E: 
$$\{0,1\}^n \to \mathbb{R}$$
  
 $0 \to fg$   
 $1 \to bg$ 



Global Minimum (y\*)

How to minimize E(x)?

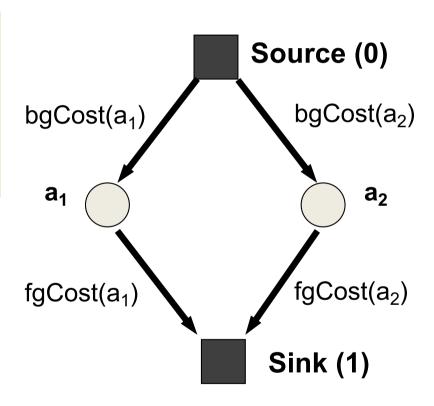
```
Graph *g;
For all pixels p
                                                                                      Source (0)
      /* Add a node to the graph */
      nodeID(p) = g->add_node();
      /* Set cost of terminal edges */
      set weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
      add_weights(nodeID(p), nodeID(q), cost);
end
g->compute_maxflow();
                                                                                        Sink (1)
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```

```
Graph *g;
```

```
For all pixels p

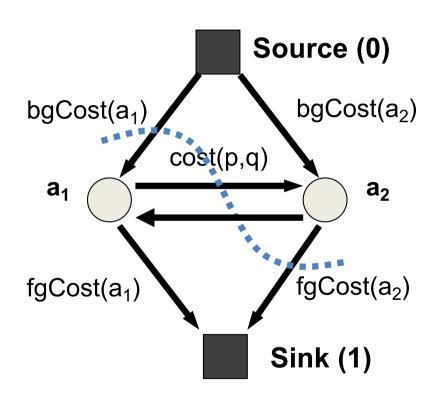
/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
end
```



```
Graph *g;
For all pixels p
                                                                                           Source (0)
      /* Add a node to the graph */
      nodeID(p) = g->add_node();
                                                               bgCost(a<sub>1</sub>)
                                                                                                 bgCost(a<sub>2</sub>)
      /* Set cost of terminal edges */
      set weights(nodeID(p), fgCost(p), bgCost(p));
                                                                                 cost(p,q)
                                                                                                          a_2
                                                                 a_1
end
for all adjacent pixels p,q
      add_weights(nodeID(p), nodeID(q), cost(p,q));
                                                                                                 fgCost(a<sub>2</sub>)
                                                               fgCost(a<sub>1</sub>)
end
g->compute_maxflow();
                                                                                              Sink (1)
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```

```
Graph *g;
For all pixels p
      /* Add a node to the graph */
      nodeID(p) = g->add_node();
      /* Set cost of terminal edges */
      set weights(nodeID(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q
      add_weights(nodeID(p), nodeID(q), cost(p,q));
end
g->compute_maxflow();
label_p = g->is_connected_to_source(nodeID(p));
// is the label of pixel p (0 or 1)
```



$$a_1 = bg a_2 = fg$$

#### **Outline**

The st-mincut problem

Connection between st-mincut and energy minimization?

What problems can we solve using st-mincut?

st-mincut based Move algorithms

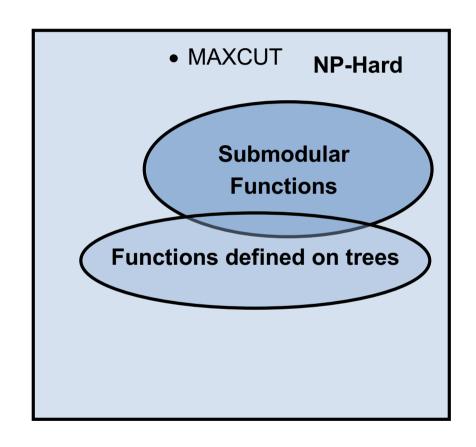
## Minimizing Energy Functions

#### General Energy Functions

- NP-hard to minimize
- Only approximate minimization possible

#### Easy energy functions

- Solvable in polynomial time
- Submodular ~ O(n<sup>6</sup>)



## Space of Function Minimization Problems

## Minimizing Submodular Functions

#### Minimizing general submodular functions

O(n<sup>5</sup> Q + n<sup>6</sup>) where Q is function evaluation time
 [Orlin, IPCO 2007]

#### Symmetric submodular functions

- E(y) = E(1 y)
- O(n<sup>3</sup>) [Queyranne 1998]

#### Quadratic pseudoboolean

- Can be transformed to st-mincut
- One node per variable  $(O(n^3))$  complexity
- Very low empirical running time

#### Submodular Pseudoboolean Functions

Function defined over boolean vectors  $\mathbf{y} = \{y_1, y_2, \dots, y_n\}$ 

#### **Definition**

- All functions for one boolean variable (f:  $\{0,1\} \rightarrow \mathbb{R}$ ) are submodular
- A function of two boolean variables (f:  $\{0,1\}^2 \rightarrow \mathbb{R}$ ) is submodular if  $f(0,1) + f(1,0) \geq f(0,0) + f(1,1)$
- A general pseudoboolean function  $f: 2^n \to \mathbb{R}$  is submodular if all its projections  $f^p$  are submodular i.e.

$$f^{p}(0,1) + f^{p}(1,0) \ge f^{p}(0,0) + f^{p}(1,1)$$

# Quadratic Submodular Pseudoboolean Functions

$$E(y) = \sum_{i} \theta_{i}(y_{i}) + \sum_{i,j} \theta_{ij}(y_{i},y_{j})$$

For all ij

$$\boldsymbol{\theta}_{ij}(0,1) + \boldsymbol{\theta}_{ij}(1,0) \geq \boldsymbol{\theta}_{ij}(0,0) + \boldsymbol{\theta}_{ij}(1,1)$$

#### Quadratic Submodular Pseudoboolean **Functions**

$$E(y) = \sum_{i} \theta_{i} (y_{i}) + \sum_{i,j} \theta_{ij} (y_{i},y_{j})$$
For all ij 
$$\theta_{ij}(0,1) + \theta_{ij} (1,0) \ge \theta_{ij} (0,0) + \theta_{ij} (1,1)$$

$$Equivalent (transformable)$$

$$E(y) = \sum_{i} c_{i} y_{i} + \sum_{i,j} c_{ij} y_{i} (1-y_{j}) \quad c_{ij} \ge 0$$

$$E(y) = \sum_{i} c_{i} y_{i} + \sum_{i,j} c_{ij} y_{i} (1-y_{j})$$

$$c_{ij} \ge 0$$

i.e. all submodular QPBFs are st-mincut solvable

$$A = \theta_{ij}(0,0) \qquad B = \theta_{ij}(0,1) \qquad C = \theta_{ij}(1,0) \qquad D = \theta_{ij}(1,1)$$

$$0 \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad 1$$

$$0 \qquad A \qquad B \qquad 0 \qquad 0$$

$$1 \qquad C - A \qquad C - A \qquad 1 \qquad 0 \qquad D - C \qquad 1 \qquad 0 \qquad 0$$

$$if \ y_i = 1 \ add \ C - A \qquad if \ y_j = 1 \ add \ D - C$$

$$\begin{aligned} \theta_{ij} (y_i, y_j) &= \theta_{ij}(0,0) \\ &+ (\theta_{ij}(1,0) - \theta_{ij}(0,0)) \ y_i + (\theta_{ij}(1,0) - \theta_{ij}(0,0)) \ y_j \\ &+ (\theta_{ij}(1,0) + \theta_{ij}(0,1) - \theta_{ij}(0,0) - \theta_{ij}(1,1)) \ (1-y_i) \ y_j \end{aligned}$$

 $B+C-A-D \ge 0$  is true from the submodularity of  $\theta_{ij}$ 

 $B+C-A-D \ge 0$  is true from the submodularity of  $\theta_{ij}$ 

+  $(\theta_{ij}(1,0)-\theta_{ij}(0,0)) y_i + (\theta_{ij}(1,0)-\theta_{ij}(0,0)) y_j$ 

+  $(\theta_{ij}(1,0) + \theta_{ij}(0,1) - \theta_{ij}(0,0) - \theta_{ij}(1,1)) (1-y_i) y_i$ 

$$\begin{aligned} \theta_{ij} \left( y_i, y_j \right) &= \theta_{ij}(0,0) \\ &+ \left( \theta_{ij}(1,0) - \theta_{ij}(0,0) \right) y_i + \left( \theta_{ij}(1,0) - \theta_{ij}(0,0) \right) y_j \\ &+ \left( \theta_{ij}(1,0) + \theta_{ij}(0,1) - \theta_{ij}(0,0) - \theta_{ij}(1,1) \right) (1-y_i) y_j \end{aligned}$$

 $B+C-A-D \ge 0$  is true from the submodularity of  $\theta_{ii}$ 

$$\begin{aligned} \theta_{ij} \left( y_i, y_j \right) &= \theta_{ij}(0,0) \\ &+ \left( \theta_{ij}(1,0) - \theta_{ij}(0,0) \right) y_i + \left( \theta_{ij}(1,0) - \theta_{ij}(0,0) \right) y_j \\ &+ \left( \theta_{ij}(1,0) + \theta_{ij}(0,1) - \theta_{ij}(0,0) - \theta_{ij}(1,1) \right) (1-y_i) y_i \end{aligned}$$

 $B+C-A-D \ge 0$  is true from the submodularity of  $\theta_{ij}$ 

$$A = \theta_{ij}(0,0) \qquad B = \theta_{ij}(0,1) \qquad C = \theta_{ij}(1,0) \qquad D = \theta_{ij}(1,1)$$

$$y_{i} \qquad 0 \qquad A \qquad B \qquad 0 \qquad 0 \qquad 0 \qquad 0 \qquad D-C \qquad 0 \qquad B+C-A-D \qquad 0 \qquad D-C \qquad 0 \qquad D-$$

$$\begin{aligned} \theta_{ij} \left( y_i, y_j \right) &= \theta_{ij} (0,0) \\ &+ \left( \theta_{ij} (1,0) - \theta_{ij} (0,0) \right) y_i + \left( \theta_{ij} (1,0) - \theta_{ij} (0,0) \right) y_j \\ &+ \left( \theta_{ij} (1,0) + \theta_{ij} (0,1) - \theta_{ij} (0,0) - \theta_{ij} (1,1) \right) (1-y_i) y_j \end{aligned}$$

 $B+C-A-D \ge 0$  is true from the submodularity of  $\theta_{ij}$ 

## Quadratic Submodular Pseudoboolean Functions

y in {0,1}<sup>n</sup>

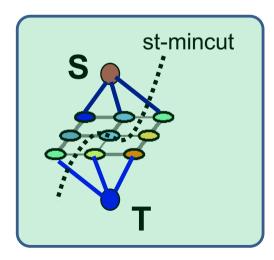
$$E(y) = \sum_{i} \theta_{i}(y_{i}) + \sum_{i,j} \theta_{ij}(y_{i},y_{j})$$

For all ij

$$\theta_{ij}(0,1) + \theta_{ij}(1,0) \ge \theta_{ij}(0,0) + \theta_{ij}(1,1)$$



**Equivalent (transformable)** 



#### Recap

Exact minimization of Submodular QBFs using graph cuts

 Obtaining partially optimal solutions of nonsubmodular QBFs using graph cuts

#### **Outline**

The st-mincut problem

Connection between st-mincut and energy minimization?

What problems can we solve using st-mincut?

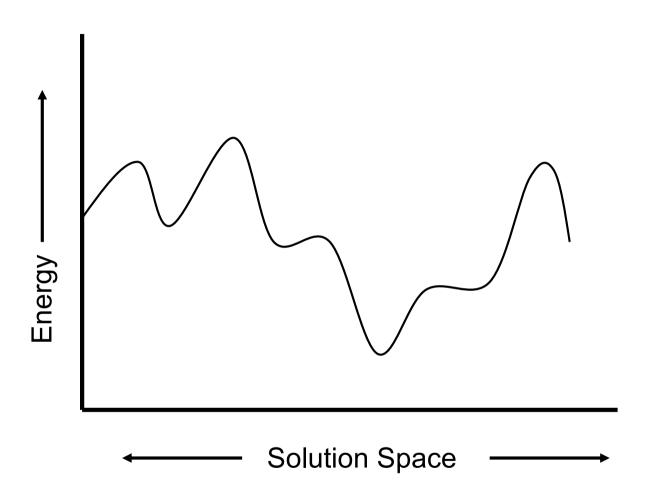
st-mincut based Move algorithms

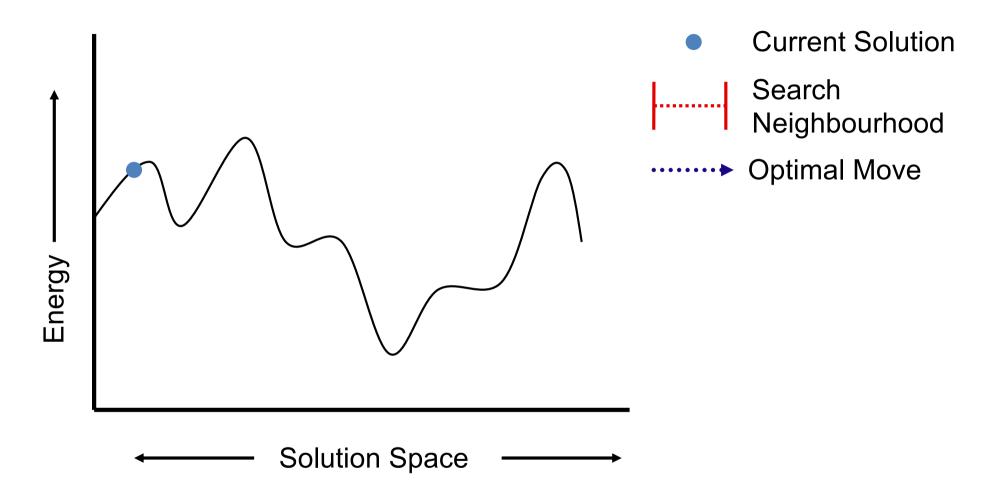
## St-mincut based Move algorithms

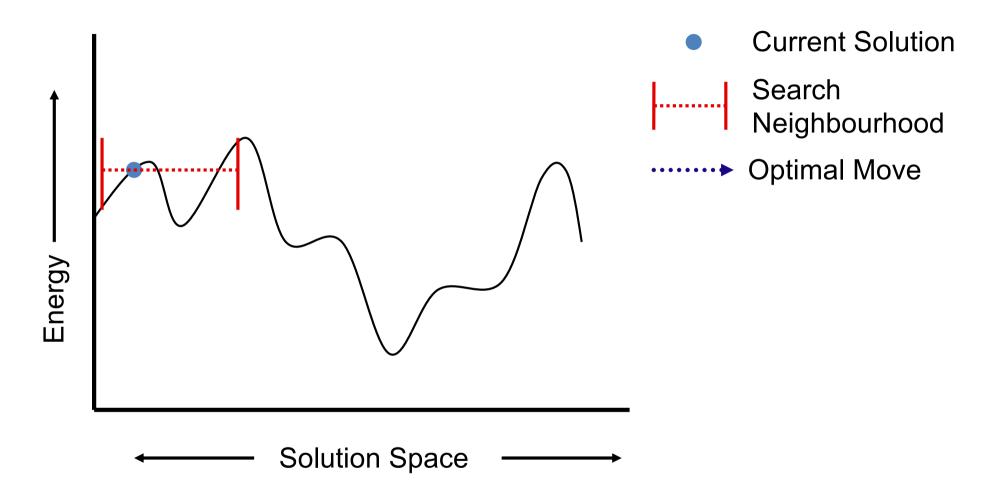
$$E(\mathbf{y}) = \sum_{i} \theta_{i}(y_{i}) + \sum_{i,j} \theta_{ij}(y_{i},y_{j})$$

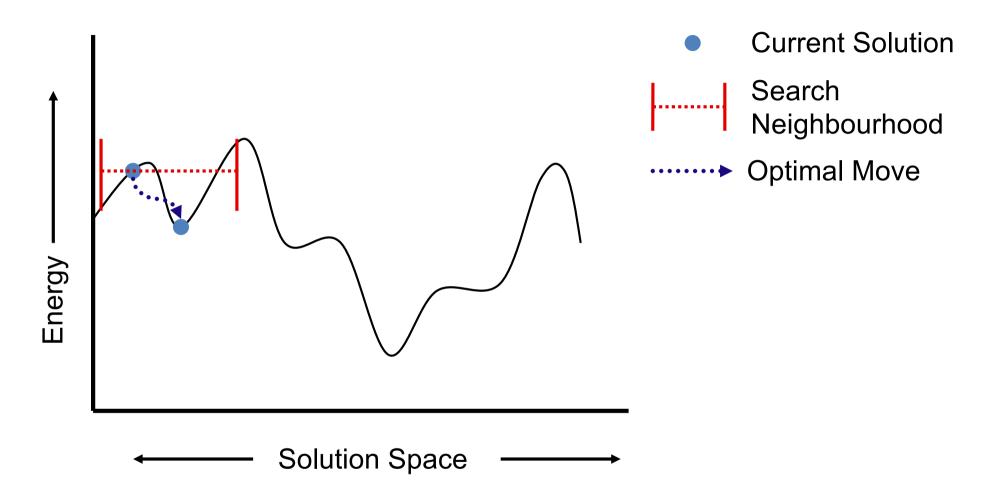
y  $\epsilon$  Labels L =  $\{I_1, I_2, \dots, I_k\}$ 

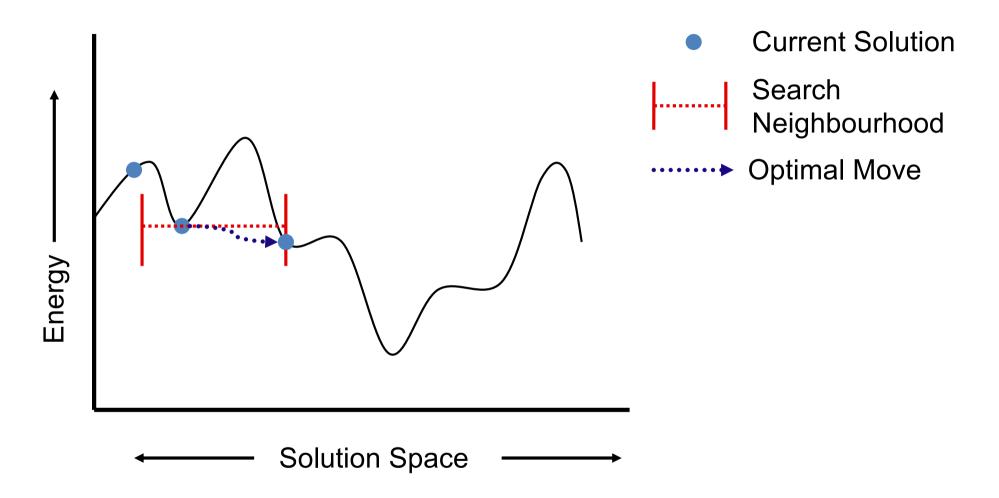
- Commonly used for solving non-submodular multi-label problems
- Extremely efficient and produce good solutions
- Not Exact: Produce local optima

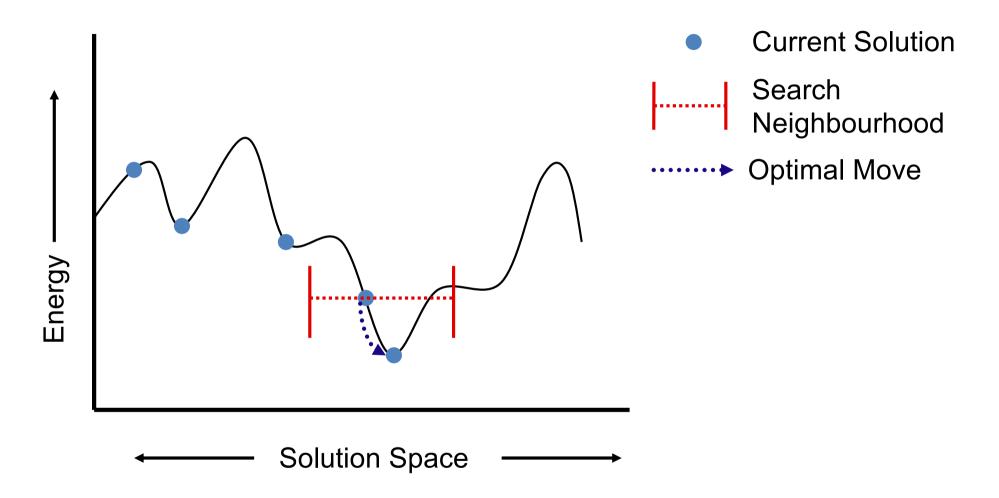


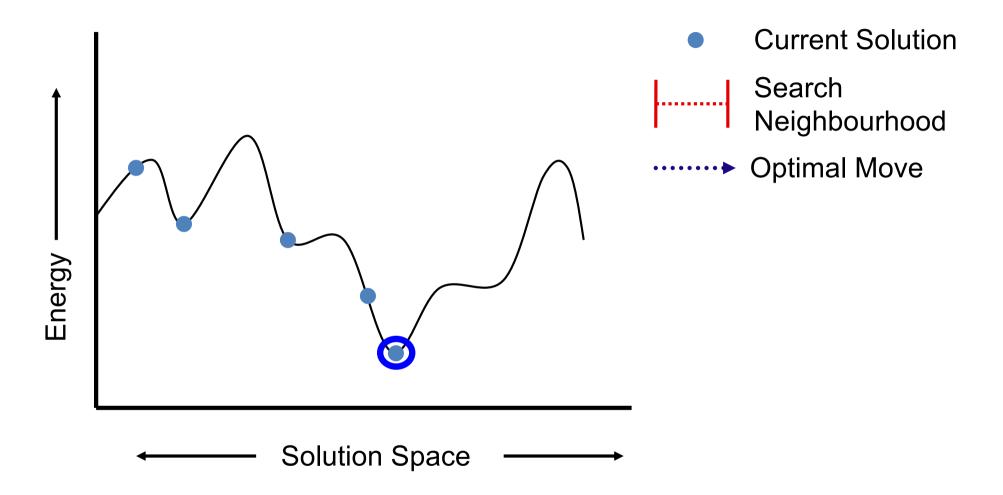




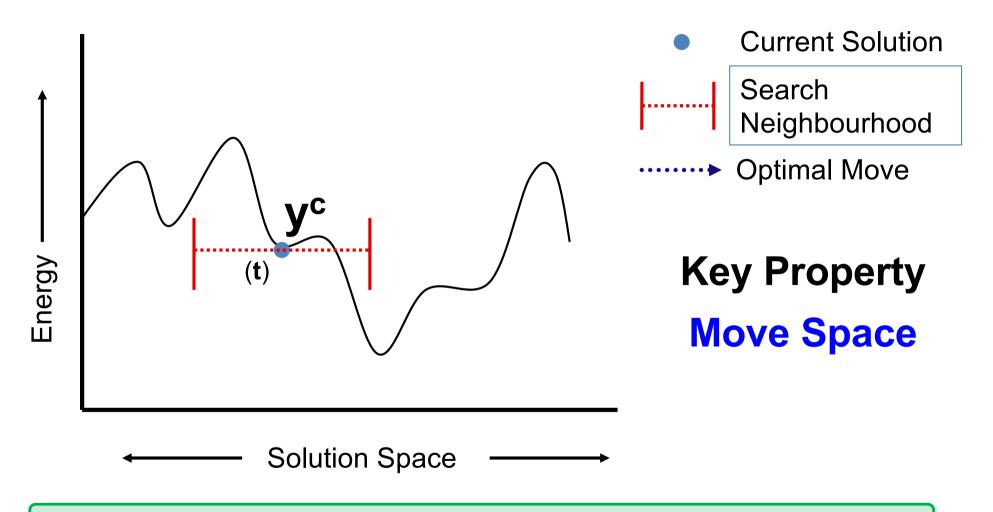








#### **Computing the Optimal Move**



Bigger move space



- Better solutions
- Finding the optimal move hard

### **Moves using Graph Cuts**

#### **Expansion and Swap move algorithms**

[Boykov Veksler and Zabih, PAMI 2001]

- Makes a series of changes to the solution (moves)
- Each move results in a solution with smaller energy

Move Space (t) : 2<sup>N</sup>

Space of Solutions (y) : L<sup>N</sup>

Current Solution

Search
Neighbourhood

N Number of Variables

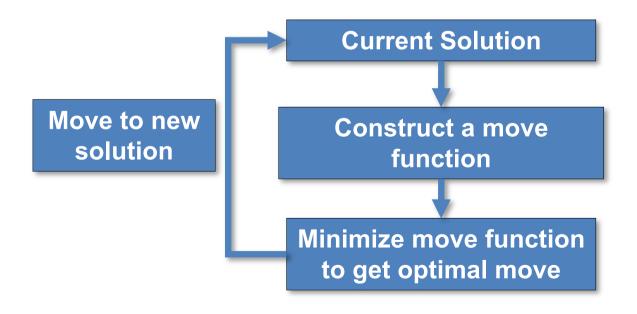
L Number of Labels

### **Moves using Graph Cuts**

#### **Expansion and Swap move algorithms**

[Boykov Veksler and Zabih, PAMI 2001]

- Makes a series of changes to the solution (moves)
- Each move results in a solution with smaller energy



How to minimize move functions?

### **General Binary Moves**

$$y = t y^1 + (1-t) y^2$$

New Current Second solution

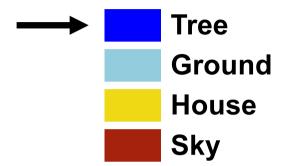
$$E_m(t) = E(t y^1 + (1-t) y^2)$$

Minimize over move variables t to get the optimal move

Move energy is a submodular QPBF (Exact Minimization Possible)

Variables take label α or retain current label

Variables take label α or retain current label



**Status:** Initialize with Tree





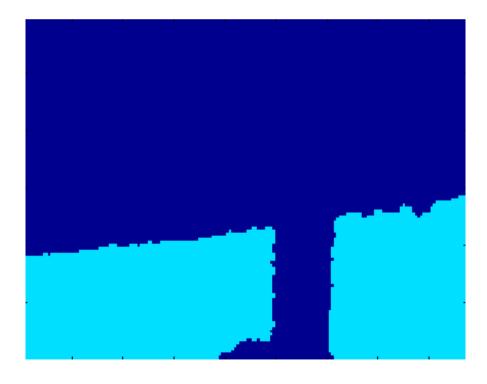
[Boykov, Veksler, Zabih]

Variables take label α or retain current label



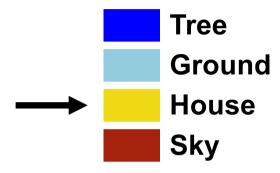
**Status:** Expand Ground





[Boykov, Veksler, Zabih]

Variables take label α or retain current label



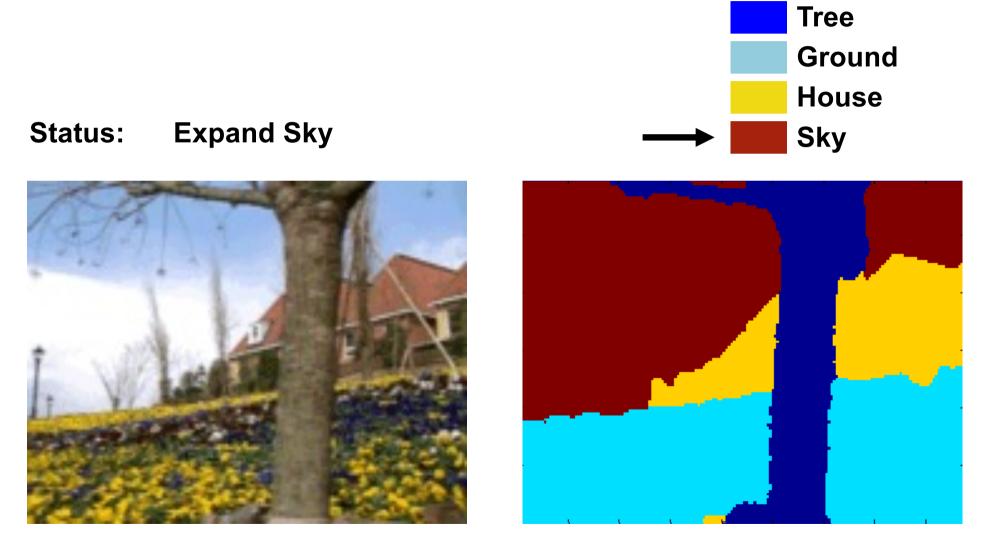
**Status:** Expand House





[Boykov, Veksler, Zabih]

Variables take label α or retain current label



[Boykov, Veksler, Zabih]

#### **Expansion Move**

Variables take label α or retain current label

- Move energy is submodular if:
  - Unary Potentials: Arbitrary
  - Pairwise potentials: Metric

$$\theta_{ij}(I_a,I_b) \ge 0$$
  
 $\theta_{ij}(I_a,I_b) = 0$  iff  $a = b$ 

**Semi metric** 

**Examples: Potts model, Truncated linear** 

**Cannot solve truncated quadratic** 

[Boykov, Veksler, Zabih]

#### **Expansion Move**

Variables take label α or retain current label

- Move energy is submodular if:
  - Unary Potentials: Arbitrary
  - Pairwise potentials: Metric

$$\theta_{ij}(I_a,I_b) + \theta_{ij}(I_b,I_c) \ge \theta_{ij}(I_a,I_c)$$

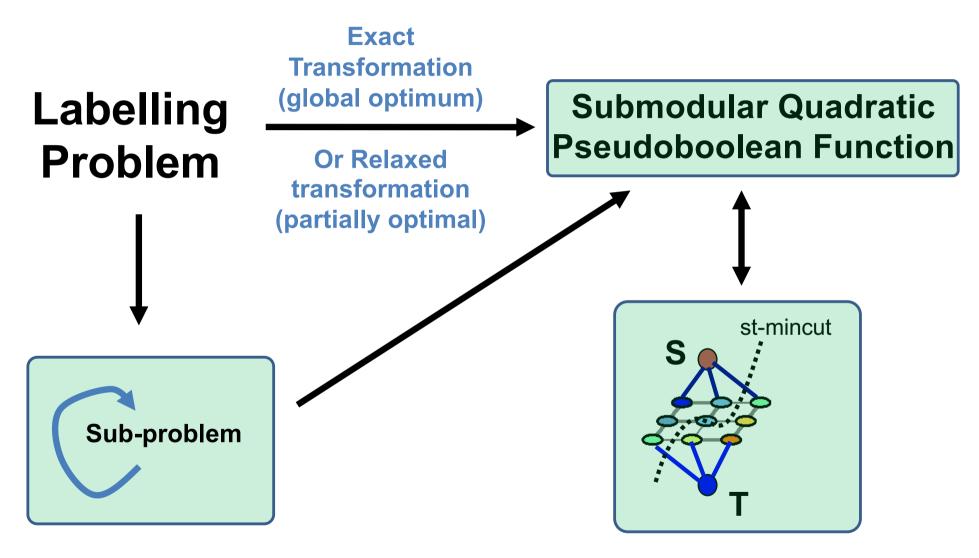
Triangle Inequality

**Examples: Potts model, Truncated linear** 

**Cannot solve truncated quadratic** 

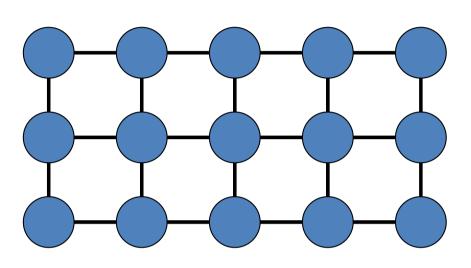
[Boykov, Veksler, Zabih]

#### **Summary**



Move making algorithms

#### Where do we stand?



Grid graph -

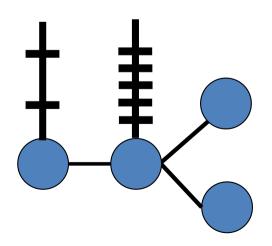
"submodular": Use graph cuts

"metric": Use expansion

otherwise: Use TRW,

dual decomposition,

relaxation



Chain/Tree, 2/multi-label: Use BP

#### What have we seen?

- Inference
  - Belief propagation
  - Graph cuts
  - Variational inference
  - Simulation-based inference

Learning

#### Outline

Supervised Learning

Probabilistic Methods

Loss-based Methods

## **Image Classification**



Which city is this?

Input: **d** Output:  $x \in \{1,2,...,h\}$ 

#### **CRF** training

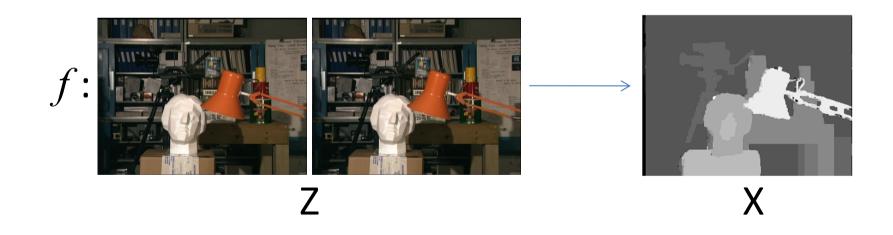
Stereo matching:

• Z: left, right image

X: disparity map

**Goal of training:** 

estimate proper w



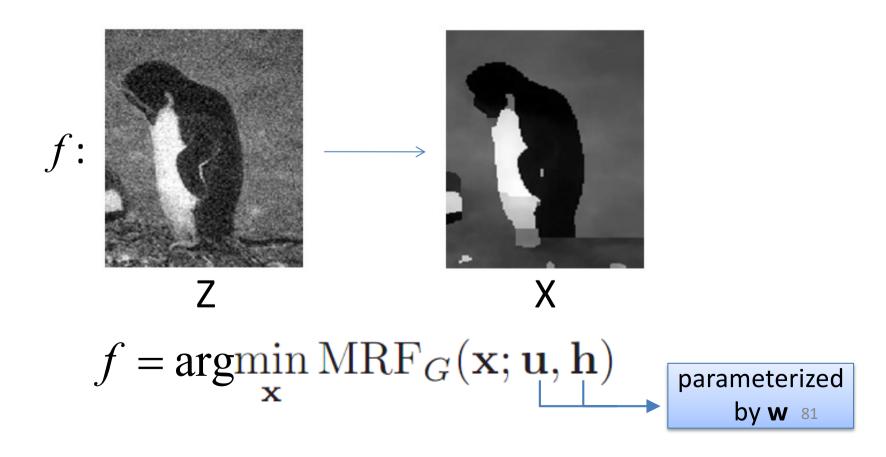
$$f = \underset{\mathbf{x}}{\operatorname{argmin}} \operatorname{MRF}_{G}(\mathbf{x}; \mathbf{u}, \mathbf{h})$$
 parameterized by  $\mathbf{w}$  80

#### **CRF** training

- Denoising:
  - Z: noisy input image
  - X: denoised output image

**Goal of training:** 

estimate proper w



#### **CRF** training (some further notation)

$$MRF_G(\mathbf{x}; \mathbf{u}^k, \mathbf{h}^k) = \sum_p u_p^k(x_p) + \sum_c h_c^k(\mathbf{x}_c)$$

$$u_p^k(x_p) = \mathbf{w}^T g_p(x_p, \mathbf{z}^k), \quad h_c^k(\mathbf{x}_c) = \mathbf{w}^T g_c(\mathbf{x}_c, \mathbf{z}^k)$$

vector valued feature functions

$$\mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) = \mathbf{w}^T \left( \sum_p g_p(x_p, \mathbf{z}^k) + \sum_c g_c(\mathbf{x}_c, \mathbf{z}^k) \right) = \mathbf{w}^T g(\mathbf{x}, \mathbf{z}^k)$$

## Learning formulations

#### **Risk minimization**

Risk minimization 
$$\hat{\mathbf{x}}^k = \arg\min_{\mathbf{x}} \mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k)$$

$$\min_{\mathbf{w}} \sum_{k=1}^K \Delta\left(\mathbf{x}^k, \hat{\mathbf{x}}^k\right)$$
\*\*Training samples  $\left\{\left(\mathbf{x}^k, \mathbf{z}^k\right)\right\}^K$ 

K training samples  $\{(\mathbf{x}^k, \mathbf{z}^k)\}_{k=1}^K$ 

#### Regularized Risk minimization

Regularized Risk minimization 
$$\hat{\mathbf{x}}^k = \arg\min_{\mathbf{x}} \mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k)$$

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k=1}^K \Delta\left(\mathbf{x}^k, \hat{\mathbf{x}}^k\right)$$

$$R(\mathbf{w}) = ||\mathbf{w}||^2, \ ||\mathbf{w}||_1, \ \mathrm{etc.}$$

## Regularized Risk minimization

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k=1}^{K} L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w})$$



Replace  $\Delta(.)$  with easier to handle upper bound  $L_G$  (e.g., convex w.r.t.  ${\bf w}$ )

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k=1}^{K} \Delta\left(\mathbf{x}^k, \hat{\mathbf{x}}^k\right)$$

## **Choice 1: Hinge loss**

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k=1}^{K} L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w})$$

$$L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}) = \text{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) - \min_{\mathbf{x}} \left( \text{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) \right)$$

- Upper bounds Δ(.)
- Leads to max-margin learning

$$MRF_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq MRF_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k)$$

$$\mathrm{MRF}_G(\mathbf{x}^k;\mathbf{w},\mathbf{z}^k) \leq \mathrm{MRF}_G(\mathbf{x};\mathbf{w},\mathbf{z}^k) - \Delta(\mathbf{x},\mathbf{x}^k)$$
 energy of ground truth

```
\mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq \mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) energy of any other ground truth energy
```

 $\mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq \mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k)$  energy of any other desired ground truth energy margin

$$\mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq \mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) + \xi_k$$
 energy of any other desired slack ground truth energy margin

$$\min_{\mathbf{w}} \qquad \sum_{k} \xi_k$$

$$\mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq \mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) + \xi_k$$
 energy of any other desired slack ground truth energy margin

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k} \xi_{k}$$

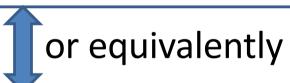
$$\mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq \mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) + \xi_k$$
 energy of any other desired slack ground truth energy margin

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k} \xi_{k}$$

$$MRF_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq MRF_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) + \xi_k$$

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k} \xi_{k}$$

$$MRF_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq MRF_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) + \xi_k$$



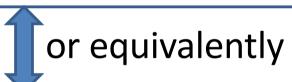
$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k} \xi_{k}$$

$$\xi_k = \text{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) - \min_{\mathbf{x}} \left( \text{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) \right)$$

**CONSTRAINED** 

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k} \xi_{k}$$

$$MRF_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq MRF_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) + \xi_k$$



$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k} \xi_k$$

$$\xi_k = \text{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) - \min_{\mathbf{x}} \left( \text{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) \right)$$

**CONSTRAINED** 

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k} \xi_{k}$$

subject to the constraints:

$$MRF_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) \leq MRF_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) + \xi_k$$



**UNCONSTRAINED** 

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k} \xi_k$$

$$\xi_k = \text{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) - \min_{\mathbf{x}} \left( \text{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) \right)$$

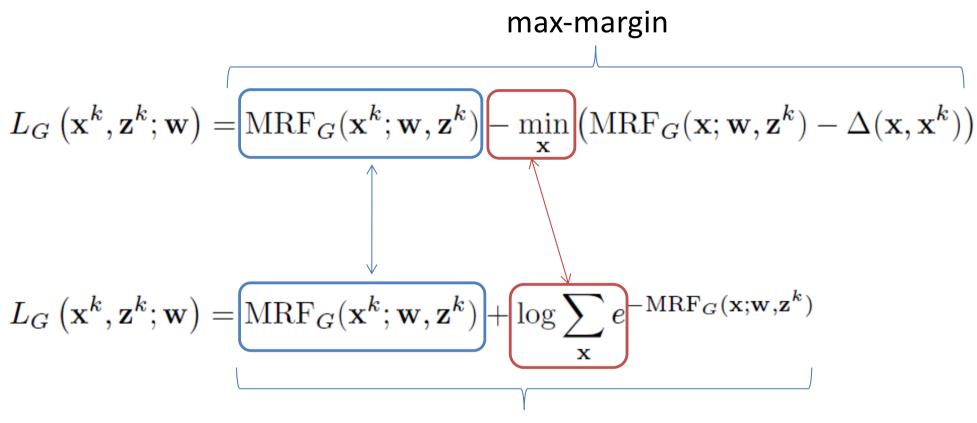
## **Choice 2: logistic loss**

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k=1}^{K} L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w})$$

$$L_G\left(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}\right) = \mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) + \log \sum_{\mathbf{x}} e^{-\mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k)}$$
partition function

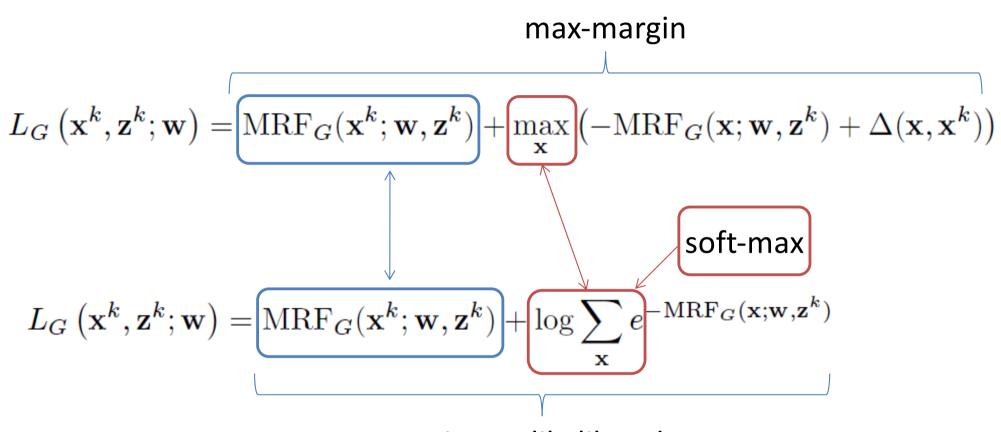
Can be shown to lead to maximum likelihood learning

#### Max-margin vs Maximum-likelihood



maximum likelihood

#### Max-margin vs Maximum-likelihood



maximum likelihood

# Solving the learning formulations

## Maximum-likelihood learning

$$\min_{\mathbf{w}} \frac{\mu}{2} ||\mathbf{w}||^2 + \sum_{k=1}^K L_G\left(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}\right)$$

$$L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}) = \text{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) + \log \sum_{\mathbf{x}} e^{-\text{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k)}$$
partition function

- Differentiable & convex
- Global optimum via gradient descent, for example

## **Maximum-likelihood learning**

$$\min_{\mathbf{w}} \frac{\mu}{2} ||\mathbf{w}||^2 + \sum_{k=1}^K L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w})$$

$$L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}) = \text{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) + \log \sum_{\mathbf{x}} e^{-\text{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k)}$$

$$\mathbf{gradient} \longrightarrow \nabla_{\mathbf{w}} = \mathbf{w} + \sum_k \left( g(\mathbf{x}^k, \mathbf{z}^k) - \sum_{\mathbf{x}} p(\mathbf{x}|w, \mathbf{z}^k) g(\mathbf{x}, \mathbf{z}^k) \right)$$
 Recall that:  $\mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) = \mathbf{w}^T g(\mathbf{x}, \mathbf{z}^k)$ 

## Maximum-likelihood learning

$$\min_{\mathbf{w}} \frac{\mu}{2} ||\mathbf{w}||^2 + \sum_{k=1}^K L_G\left(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}\right)$$

$$L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}) = \text{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) + \log \sum_{\mathbf{x}} e^{-\text{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k)}$$

$$\mathbf{gradient} \longrightarrow \nabla_{\mathbf{w}} = \mathbf{w} + \sum_k \left( g(\mathbf{x}^k, \mathbf{z}^k) - \sum_{\mathbf{x}} p(\mathbf{x}|w, \mathbf{z}^k) g(\mathbf{x}, \mathbf{z}^k) \right)$$

- Requires MRF probabilistic inference
- **NP-hard** (exponentially many x): approximation via loopy-BP?

#### Max-margin learning (UNCONSTRAINED)

$$\min_{\mathbf{w}} R(\mathbf{w}) + \sum_{k=1}^{K} L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w})$$

$$L_G(\mathbf{x}^k, \mathbf{z}^k; \mathbf{w}) = \mathrm{MRF}_G(\mathbf{x}^k; \mathbf{w}, \mathbf{z}^k) - \min_{\mathbf{x}} \left( \mathrm{MRF}_G(\mathbf{x}; \mathbf{w}, \mathbf{z}^k) - \Delta(\mathbf{x}, \mathbf{x}^k) \right)$$

- Convex but non-differentiable
- Global optimum via subgradient method

#### Max-margin learning (CONSTRAINED)

$$\min_{\mathbf{w}} \frac{\mu}{2} ||\mathbf{w}||^2 + \sum_{k} \xi_k$$

subject to the constraints:

$$\mathrm{MRF}_{G}(\mathbf{x}^{k}; \mathbf{w}, \mathbf{z}^{k}) \leq \mathrm{MRF}_{G}(\mathbf{x}; \mathbf{w}, \mathbf{z}^{k}) - \Delta(\mathbf{x}, \mathbf{x}^{k}) + \xi_{k}$$

linear in w

- Quadratic program (great!)
- But exponentially many constraints (not so great)

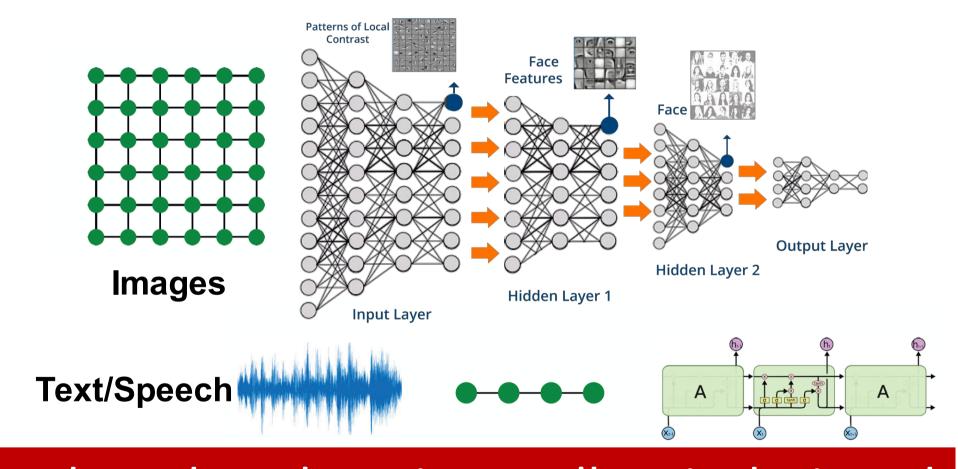
#### Max-margin learning (constrained)

- What if we use only a small number of constraints?
  - Resulting QP can be solved
  - But solution may be infeasible
- Constraint generation to the rescue
  - only few constraints active at optimal solution !!
     (variables much fewer than constraints)
  - Given the active constraints, rest can be ignored
  - Then let us try to find them!

#### What have we seen?

- Inference
  - Belief propagation
  - Graph cuts
  - Variational inference
  - Simulation-based inference
- Learning

# Today: Modern ML Toolbox



Modern deep learning toolbox is designed for simple sequences & grids

Doubt thou the stars are fire, Doubt that the sun doth move, Doubt truth to be a liar, But never doubt I love...

#### Text



Audio signals



**Images** 

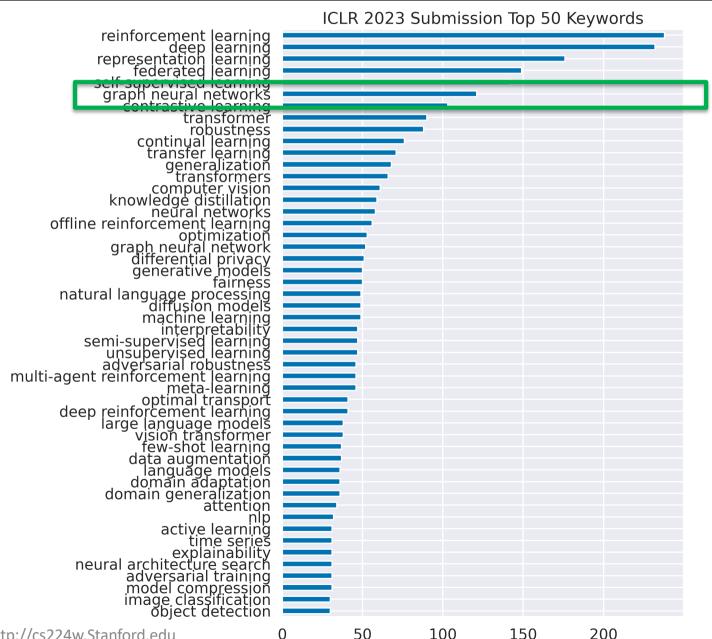
Modern
deep learning toolbox
is designed for
sequences & grids

# Not everything can be represented as a sequence or a grid

How can we develop neural networks that are much more broadly applicable?

New frontiers beyond classic neural networks that only learn on images and sequences

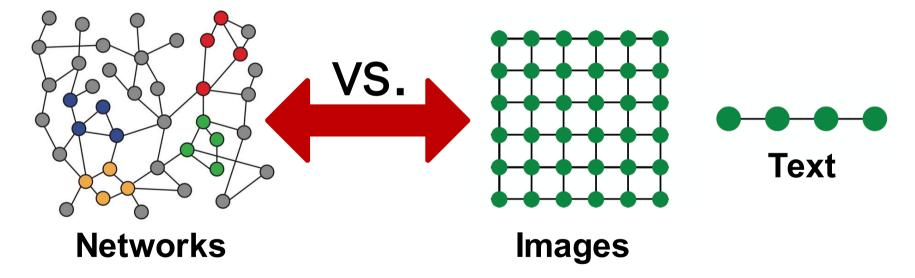
# Hot subfield in ML



# Why is Graph Deep Learning Hard?

#### Networks are complex.

 Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

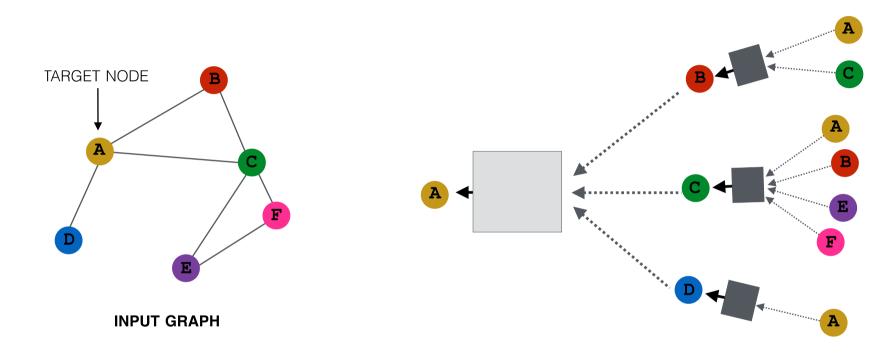


- No fixed node ordering or reference point
- Often dynamic and have multimodal features

# ML with Graphs



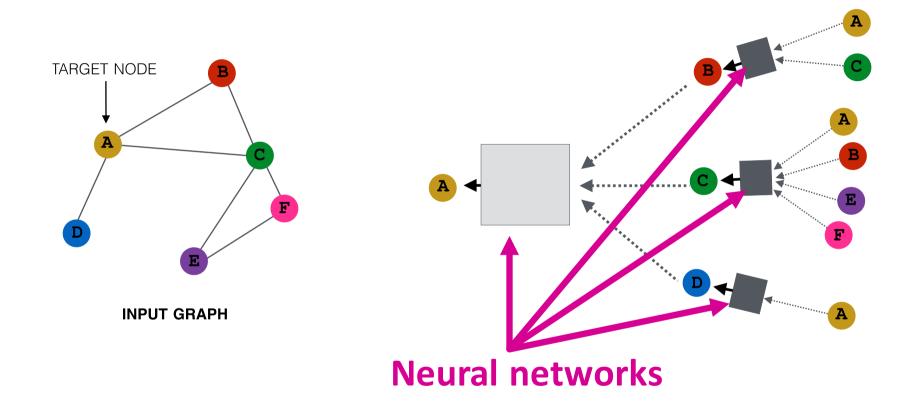
## **Graph Neural Networks**



#### Each node defines a computation graph

 Each edge in this graph is a transformation/aggregation function

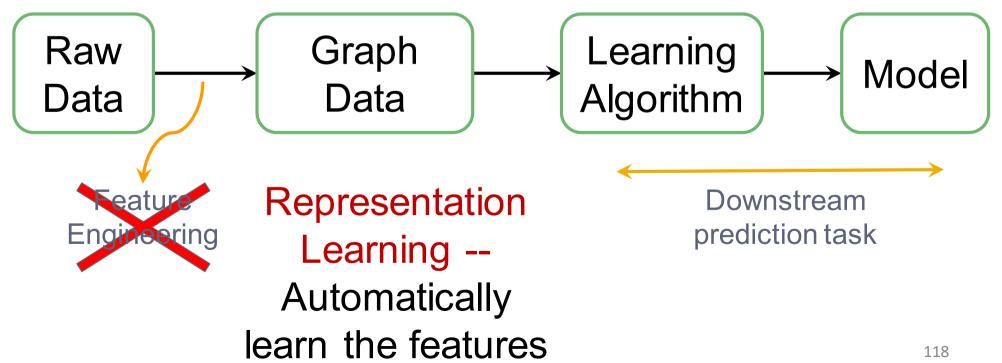
## **Graph Neural Networks**



Intuition: Nodes aggregate information from their neighbors using neural networks

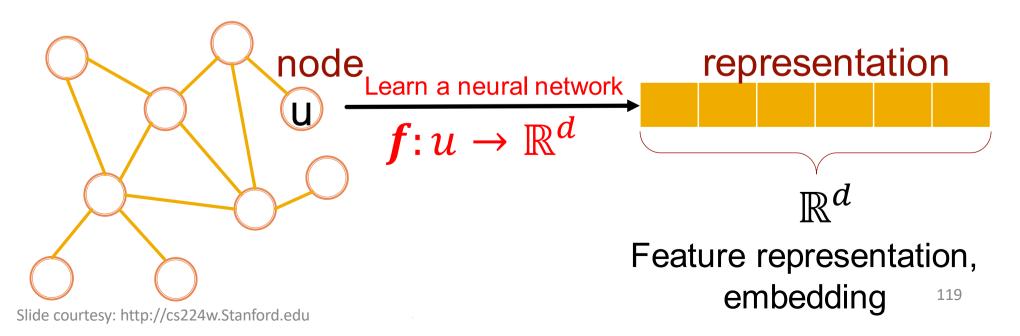
## Representation Learning

(Supervised) Machine Learning Lifecycle: This feature, that feature. Every single time!



## Representation Learning

Map nodes to d-dimensional embeddings such that similar nodes in the network are embedded close together



## ML for Graph data

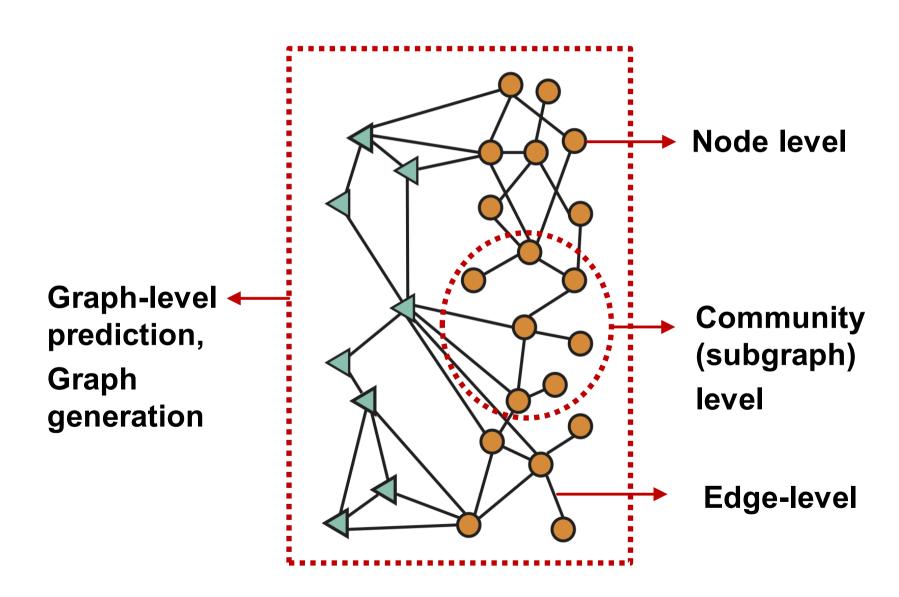
Traditional methods

Node embeddings

Graph neural networks

Applications

# Different Types of Tasks

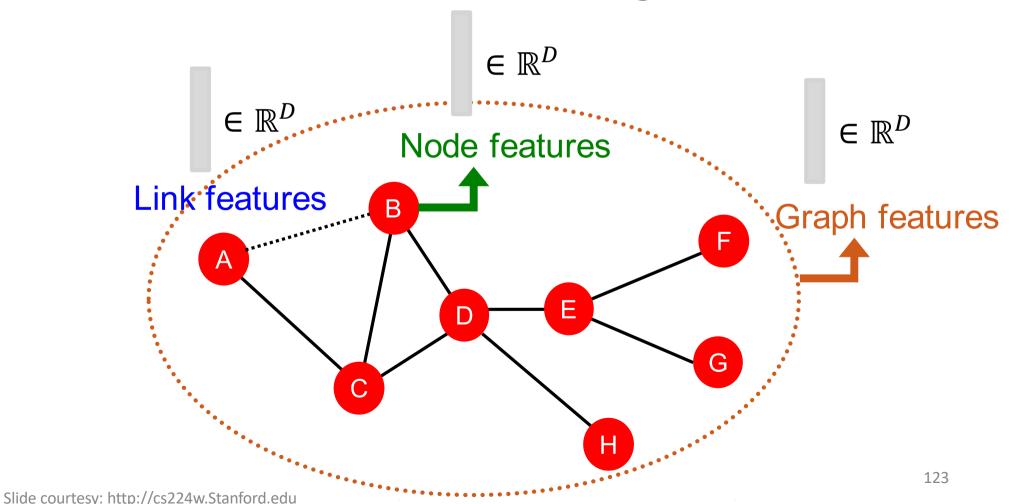


# Classic Graph ML Tasks

- Node classification: Predict a property of a node
  - **Example:** Categorize online users / items
- Link prediction: Predict whether there are missing links between two nodes
  - Example: Knowledge graph completion
- Graph classification: Categorize different graphs
  - Example: Molecule property prediction
- Clustering: Detect if nodes form a community
  - Example: Social circle detection
- Other tasks:
  - Graph generation: Drug discovery
  - Graph evolution: Physical simulation

# **Traditional ML Pipeline**

- Design features for nodes/links/graphs
- Obtain features for all training data



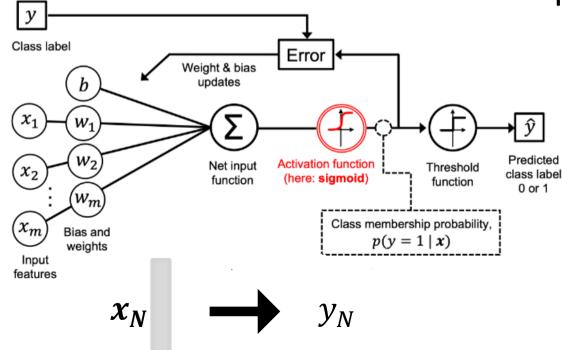
## **Traditional ML Pipeline**

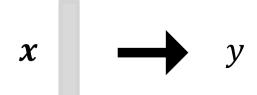
#### Train an ML model:

- Logistic Regression
- Random forest
- Neural network, etc.

#### Apply the model:

 Given a new node/link/graph, obtain its features and make a prediction





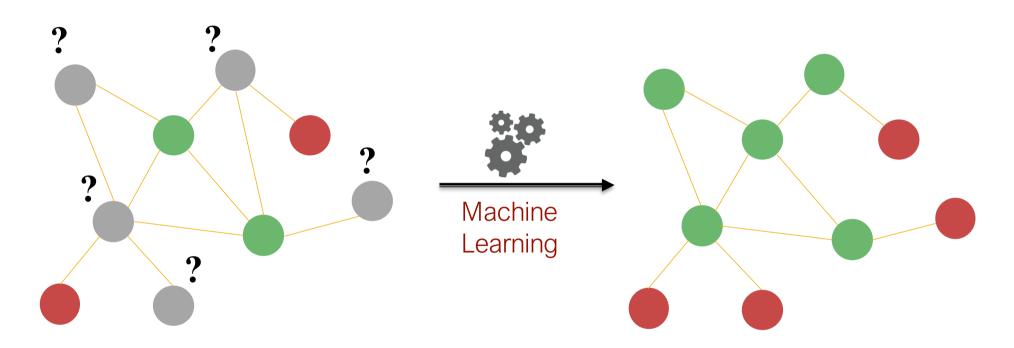
# Machine Learning in Graphs

Goal: Make predictions for a set of objects

#### **Design choices:**

- Features: d-dimensional vectors x
- Objects: Nodes, edges, sets of nodes, entire graphs
- Objective function:
  - What task are we aiming to solve?

# Node-Level Tasks



Node classification

ML needs features.

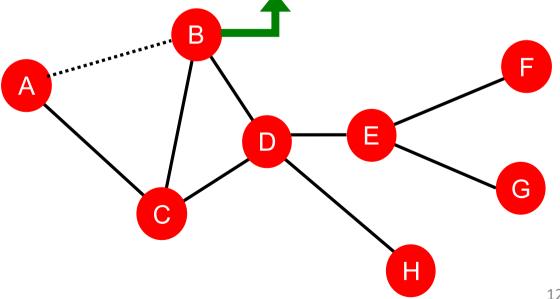
## Node-Level Features: Overview

**Goal:** Characterize the structure and position of a node in the network:

- Node degree
- Node centrality

Clustering coefficient

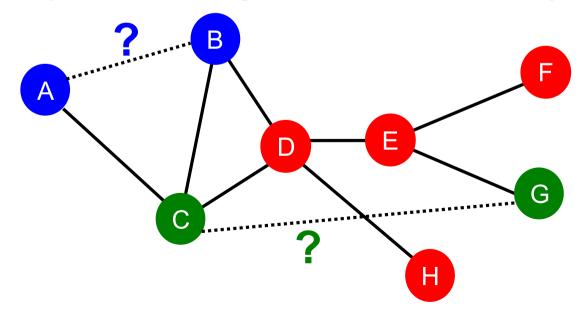
Graphlets



Node feature

## Link-Level Prediction Task: Recap

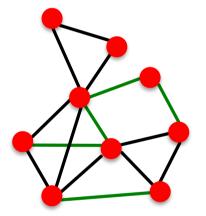
- The task is to predict new links based on the existing links.
- At test time, node pairs (with no existing links)
   are ranked, and top K node pairs are predicted.
- The key is to design features for a pair of nodes.



## Link Prediction as a Task

#### Two formulations of the link prediction task:

- 1) Links missing at random:
  - Remove a random set of links and then aim to predict them
- 2) Links over time:
  - Given  $G[t_0, t'_0]$  a graph defined by edges up to time  $t'_0$ , output a ranked list Lof edges (not in  $G[t_0, t'_0]$ ) that are predicted to appear in time  $G[t_1, t'_1]$



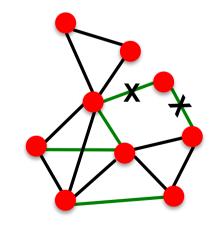
 $G[t_0,t'_0]$  $G[t_1,t_1']$ 

- Evaluation:
  - $\blacksquare n = |E_{new}|$ : # new edges that appear during the test period  $[t_1, t_1']$

# **Link Prediction via Proximity**

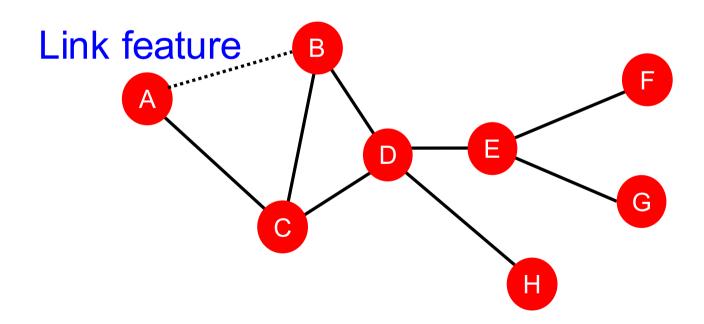
#### Methodology:

- For each pair of nodes (x,y) compute score c(x,y)
  - For example, c(x,y) could be the # of common neighbors of x and y
- Sort pairs (x,y) by the decreasing score c(x,y)
- Predict top n pairs as new links
- See which of these links actually appear in  $G[t_1, t_1']$



## Link-Level Features: Overview

- Distance-based feature
- Local neighborhood overlap
- Global neighborhood overlap



# Link-Level Features: Summary

#### Distance-based features:

 Uses the shortest path length between two nodes but does not capture how neighborhood overlaps.

#### Local neighborhood overlap:

- Captures how many neighboring nodes are shared by two nodes.
- Becomes zero when no neighbor nodes are shared.

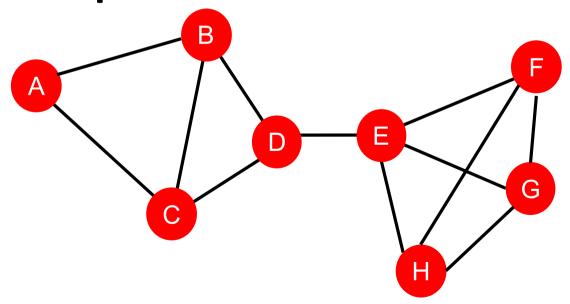
#### Global neighborhood overlap:

- Uses global graph structure to score two nodes.
- Katz index counts #walks of all lengths between two nodes.

## **Graph-Level Features**

Goal: We want features that characterize the structure of an entire graph.

#### For example:



## Background: Kernel Methods

- Kernel methods are widely-used for traditional ML for graph-level prediction.
- Idea: Design kernels instead of feature vectors.
- A quick introduction to Kernels:
  - Kernel  $K(G,G') \in \mathbb{R}$  measures similarity b/w data
  - Kernel matrix  $K = (K(G, G'))_{G,G'}$  must always be positive semidefinite (i.e., has positive eigenvalues)
  - There exists a feature representation  $\phi(\cdot)$  such that  $K(G, G') = \phi(G)^{T}\phi(G')$
  - Once the kernel is defined, off-the-shelf ML model, such as kernel SVM, can be used to make predictions.

## **Graph-Level Features: Overview**

- Graph Kernels: Measure similarity between two graphs:
  - Graphlet Kernel [1]
  - Weisfeiler-Lehman Kernel [2]
  - Other kernels are also proposed in the literature (beyond the scope of this lecture)
    - Random-walk kernel
    - Shortest-path graph kernel
    - And many more...

<sup>[1]</sup> Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.

<sup>[2]</sup> Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

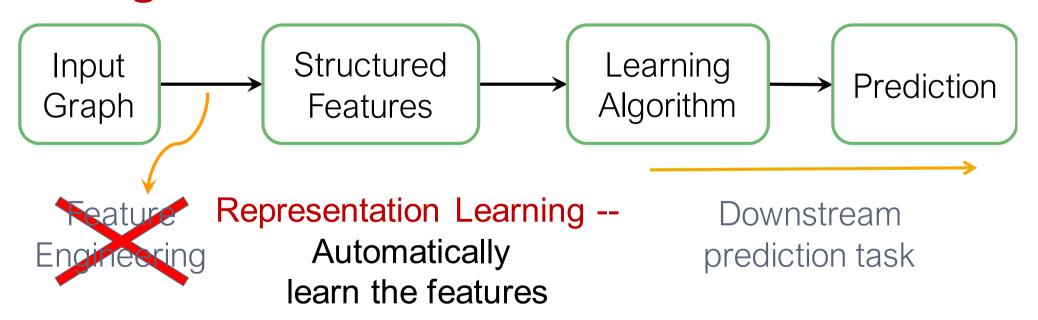
# **Graph-Level Features: Summary**

#### Graphlet Kernel

- Graph is represented as Bag-of-graphlets
- Computationally expensive
- Weisfeiler-Lehman Kernel
  - Apply K-step color refinement algorithm to enrich node colors
    - Different colors capture different K-hop neighborhood structures
  - Graph is represented as Bag-of-colors
  - Computationally efficient
  - Closely related to Graph Neural Networks (as we will see!)

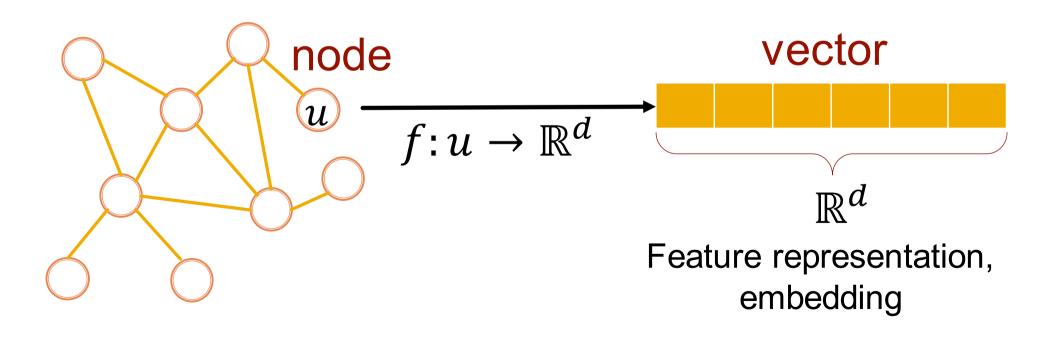
# **Graph Representation Learning**

Graph Representation Learning alleviates the need to do feature engineering every single time.



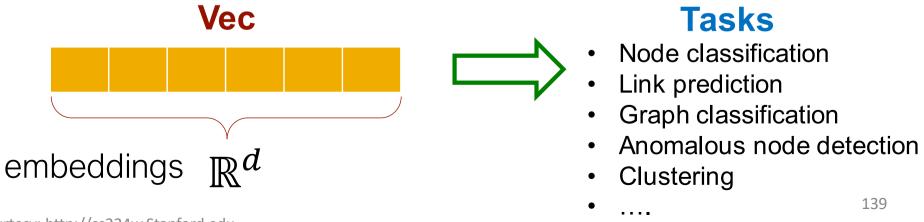
# **Graph Representation Learning**

Goal: Efficient task-independent feature learning for machine learning with graphs!



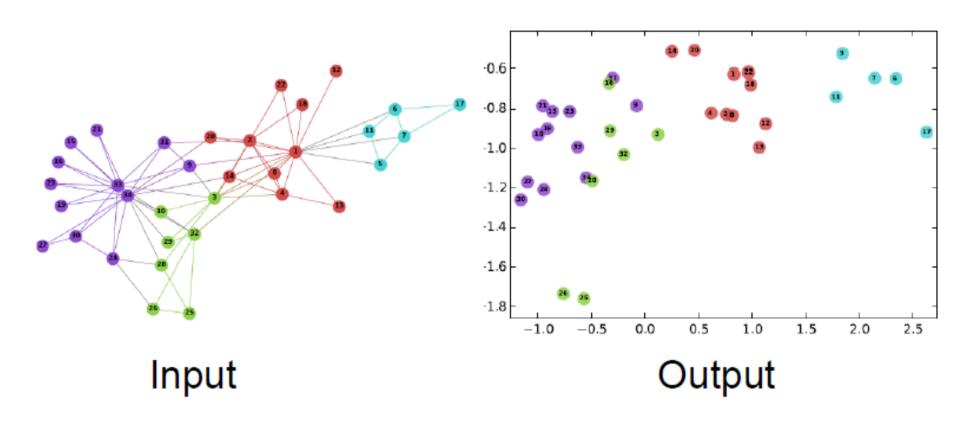
# Why Embedding?

- Task: Map nodes into an embedding space
  - Similarity of embeddings between nodes indicates their similarity in the network. For example:
    - Both nodes are close to each other (connected by an edge)
  - Encode network information
  - Potentially used for many downstream predictions



# Example Node Embedding

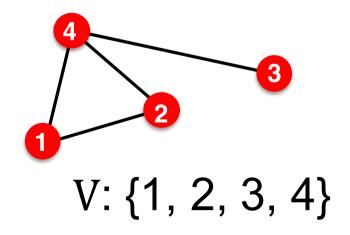
2D embedding of nodes of the Zachary's Karate Club network:



## Setup

#### Assume we have a graph G:

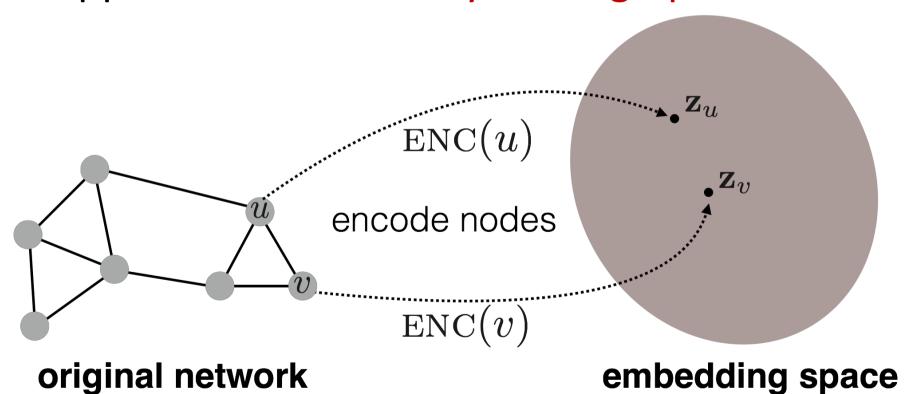
- V is the vertex set.
- A is the adjacency matrix (assume binary).
- For simplicity: No node features or extra information is used



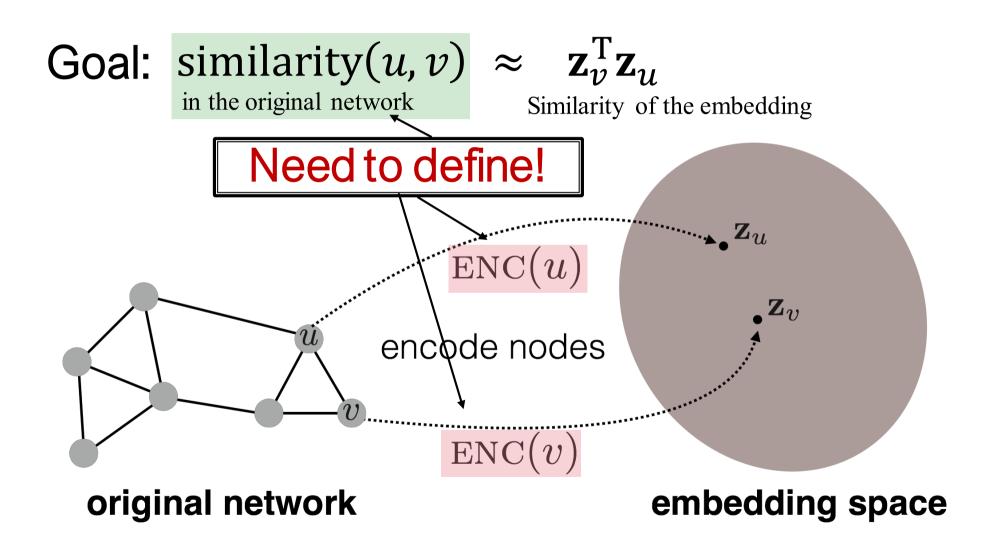
$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

# **Embedding Nodes**

 Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph



# **Embedding Nodes**



# Learning Node Embeddings

- Encoder maps from nodes to embeddings
- Define a node similarity function (i.e., a measure of similarity in the original network)
- Decoder DEC maps from embeddings to the similarity score
- 4. Optimize the parameters of the encoder so that:  $DEC(\mathbf{z}_{v}^{T}\mathbf{z}_{u})$

similarity
$$(u, v) \approx \mathbf{z}_v^{\mathrm{T}} \mathbf{z}_u$$

in the original network

Similarity of the embedding

### **Two Key Components**

Encoder: maps each node to a low-dimensional vector

d-dimensional

$$ENC(v) = \mathbf{z}_v \quad \text{embedding}$$

node in the input graph

Similarity of u and v in the original network

dot product between node embeddings 145

# "Shallow" Encoding

Simplest encoding approach: Encoder is just an embedding-lookup

Each node is assigned a unique embedding vector

(i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, node2vec

### Framework Summary

#### Encoder + Decoder Framework

- Shallow encoder: embedding lookup
- Parameters to optimize:  $\mathbf{Z}$  which contains node embeddings  $\mathbf{z}_u$  for all nodes  $u \in V$
- We will cover deep encoders (GNNs) later

- Decoder: based on node similarity.
- Objective: maximize  $\mathbf{z}_v^{\mathrm{T}}\mathbf{z}_u$  for node pairs (u, v) that are similar

# How to Define Node Similarity?

- Key choice of methods is how they define node similarity.
- Should two nodes have a similar embedding if they...
  - are linked?
  - share neighbors?
  - have similar "structural roles"?
- There are also random walk based approaches

# Note on Node Embeddings

- This is unsupervised/self-supervised way of learning node embeddings.
  - We are **not** utilizing node labels
  - We are **not** utilizing node features
  - The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved.
- These embeddings are task independent
  - They are not trained for a specific task but can be used for any task.

# Random-Walk Embeddings

 $\mathbf{z}_{u}^{\mathrm{T}}\mathbf{z}_{v} \approx$ 

and vco-occur on a random walk over the graph

# Random-Walk Embeddings

1. Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R

2. Optimize embeddings to encode these random walk statistics:  $z_i$ 

Similarity in embedding space (Here: dot product= $cos(\theta)$ ) encodes random walk "similarity"

 $\propto P_R(v|u)$ 

 $P_B(v|u)$ 

# Why Random Walks?

- 1. Expressivity: Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information Idea: if random walk starting from node u visits v with high probability, u and v are similar (high-order multi-hop information)
- Efficiency: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks

# Unsupervised Feature Learning

- Intuition: Find embedding of nodes in
   d-dimensional space that preserves similarity
- Idea: Learn node embedding such that nearby nodes are close together in the network
- Given a node u, how do we define nearby nodes?
  - $N_R(u)$  ... neighbourhood of u obtained by some random walk strategy R

### Feature Learning as Optimization

- Given G = (V, E),
- Our goal is to learn a mapping  $f: u \to \mathbb{R}^d$ :  $f(u) = \mathbf{z}_u$
- Log-likelihood objective:

$$\max_{f} \sum_{u \in V} \log P(N_{R}(u) | \mathbf{z}_{u})$$

- $lackbr{N}_R(u)$  is the neighborhood of node u by strategy R
- Given node u, we want to learn feature representations that are predictive of the nodes in its random walk neighborhood  $N_R(u)$ . 154

# Random Walk Optimization

- 1. Run **short fixed-length random walks** starting from each node u in the graph using some random walk strategy R.
- 2. For each node u collect  $N_R(u)$ , the multiset\* of nodes visited on random walks starting from u.
- Optimize embeddings according to: Given node u, predict its neighbors  $N_{\rm R}(u)$ .

$$\max_{f} \sum_{u \in V} \log P(N_{R}(u) | \mathbf{z}_{u}) \implies \text{Maximum likelihood objective}$$

 ${}^*N_R(u)$  can have repeat elements since nodes can be visited multiple times on random walks Slide courtesy: http://cs224w.Stanford.edu

# Summary so far

- Core idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.
- Different notions of node similarity:
  - Naïve: similar if two nodes are connected
  - Neighborhood overlap
  - Random walk approaches