
Graphical	Models	
Discrete	Inference	and	Learning	

MVA	
2022	–	2023	

http://thoth.inrialpes.fr/~alahari/disinflearn	
	

Recap	

2	

3	
Slide	courtesy:	http://cs224w.Stanford.edu		

4	
Slide	courtesy:	http://cs224w.Stanford.edu		1/11/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 2

5	
Slide	courtesy:	http://cs224w.Stanford.edu		1/11/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 3

Graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
1/11/2023

Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

6	
Slide	courtesy:	http://cs224w.Stanford.edu		

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Economic Networks

Citation Networks

Communication Networks

1/11/2023

Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

7	
Slide	courtesy:	http://cs224w.Stanford.edu		

8	
Slide	courtesy:	http://cs224w.Stanford.edu		

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

1/11/2023

9	
Slide	courtesy:	http://cs224w.Stanford.edu		

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 7

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

Main question:

How do we take advantage of
relational structure for better

prediction?

1/11/2023

10	
Slide	courtesy:	http://cs224w.Stanford.edu		

Complex domains have a rich relational
structure, which can be represented as a

relational graph

By explicitly modeling relationships we
achieve better performance!

1/11/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 8

What	have	we	seen?	

•  Inference	
– Belief	propagation	

– Graph	cuts	(to	be	completed)	

– Variational	inference	

– Simulation-based	inference	

11	

Outline

The st-mincut problem

What problems can we solve
using st-mincut?

st-mincut based Move algorithms

Connection between st-mincut
and energy minimization?

12

St-mincut and Energy Minimization

T

S st-mincut

E: {0,1}n → R

Minimizing a Qudratic
Pseudoboolean

function E(x)

Functions of boolean
variables

Pseudoboolean?

Polynomial time st-mincut algorithms
require non-negative edge weights

E(y) = ∑ ci yi + ∑ cij yi(1-yj) cij≥0
i,j i

13

So how does this work?

Construct a graph such that:
1. Any st-cut corresponds to an assignment of x

2. The cost of the cut is equal to the energy of x :
E(x)

Solution
T

S st-mincut

E(y)

14

Graph Construction

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2a1

2

15

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1

2

5

Sink (1)

Source (0)

16

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2

2

5

9

4
Sink (1)

Source (0)

17

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2

2

5

9

4
2

Sink (1)

Source (0)

18

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)

19

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

5 4
2

1 a1 = 1 a2 = 1

E (1,1) = 11

Cost of cut = 11

Sink (1)

Source (0)

2 9

20

Graph Construction

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)

a1 = 1 a2 = 0

E (1,0) = 8

st-mincut cost = 8

21

Energy Function Reparameterization

Two functions E1 and E2 are reparameterizations if

E1 (x) = E2 (x) for all x

For instance:

E1 (a1) = 1+ 2a1 + 3ā1

E2 (a1) = 3 + ā1

a1 ā1 1+ 2a1 + 3ā1 3 + ā1

0 1 4 4

1 0 3 3

22

Flow and Reparametrization

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4
2

1

Sink (1)

Source (0)

2a1 + 5ā1

 = 2(a1+ā1) + 3ā1

 = 2 + 3ā1

23

Flow and Reparametrization

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

0

3

9

4
2

1
2a1 + 5ā1

 = 2(a1+ā1) + 3ā1

 = 2 + 3ā1

24

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

0

3

9

4
2

1

Flow and Reparametrization

9a2 + 4ā2

 = 4(a2+ā2) + 5ā2

 = 4 + 5ā2

25

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2 + 3ā1+ 5a2 + 4 + 2a1ā2 + ā1a2

0

3

5

0
2

1
9a2 + 4ā2

 = 4(a2+ā2) + 5ā2

 = 4 + 5ā2

Flow and Reparametrization

26

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2

0

3

5

0
2

1

Flow and Reparametrization

3ā1+ 5a2 + 2a1ā2

= 2(ā1+a2+a1ā2) +ā1+3a2

= 2(1+ā1a2) +ā1+3a2

a1 a2 F1 F2
0 0 1 1
0 1 2 2
1 0 1 1
1 1 1 1

F1 = ā1+a2+a1ā2

F2 = 1+ā1a2

27

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

0

1

3

0
0

3

Flow and Reparametrization

3ā1+ 5a2 + 2a1ā2

= 2(ā1+a2+a1ā2) +ā1+3a2

= 2(1+ā1a2) +ā1+3a2

a1 a2 F1 F2
0 0 1 1
0 1 2 2
1 0 1 1
1 1 1 1

F1 = ā1+a2+a1ā2

F2 = 1+ā1a2

28

Sink (1)

Source (0)

a1 a2

0

1

3

0
0

3

Flow and Reparametrization

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

No more
augmenting paths

possible

29

Sink (1)

a1 a2

0

1

3

0
0

3

Flow and Reparametrization

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

a1 = 1 a2 = 0

E (1,0) = 8

st-mincut cost = 8

Total Flow
bound on the

optimal solution

Inference of the optimal solution becomes
trivial because the bound is tight

Residual Graph
(positive coefficients)

Source (0)

30

Example: Image Segmentation

E(y) = ∑ ci yi + ∑ cij yi(1-yj)
E: {0,1}n → R

0 → fg
 1 → bg i i,j

Global Minimum (y*)

y* = arg min E(y)
y

How to minimize
E(x)?

31

How does the code look like?

Sink (1)

Graph	*g;	

For	all	pixels	p	

	
	/*	Add	a	node	to	the	graph	*/
	nodeID(p)	=	g->add_node();	

	/*	Set	cost	of	terminal	edges	*/
	set_weights(nodeID(p),	fgCost(p),	bgCost(p));	

end
	
for	all	adjacent	pixels	p,q

	add_weights(nodeID(p),	nodeID(q),		cost);
end
	
g->compute_maxflow();
	
label_p	=	g->is_connected_to_source(nodeID(p)); 		
//	is	the	label	of	pixel	p	(0	or	1)

Source (0)

32

How does the code look like?

Graph	*g;	

For	all	pixels	p	

	
	/*	Add	a	node	to	the	graph	*/
	nodeID(p)	=	g->add_node();	

	/*	Set	cost	of	terminal	edges	*/
	set_weights(nodeID(p),	fgCost(p),	bgCost(p));	

end
	
for	all	adjacent	pixels	p,q

	add_weights(nodeID(p),	nodeID(q),		cost);
end
	
g->compute_maxflow();
	
label_p	=	g->is_connected_to_source(nodeID(p)); 		
//	is	the	label	of	pixel	p	(0	or	1)

a1 a2

fgCost(a1)

Sink (1)

Source (0)

fgCost(a2)

bgCost(a1) bgCost(a2)

33

Graph	*g;	

For	all	pixels	p	

	
	/*	Add	a	node	to	the	graph	*/
	nodeID(p)	=	g->add_node();	

	/*	Set	cost	of	terminal	edges	*/
	set_weights(nodeID(p),	fgCost(p),	bgCost(p));	

end
	
for	all	adjacent	pixels	p,q

	add_weights(nodeID(p),	nodeID(q),		cost(p,q));
end
	
g->compute_maxflow();
	
label_p	=	g->is_connected_to_source(nodeID(p)); 		
//	is	the	label	of	pixel	p	(0	or	1)

How does the code look like?

a1 a2

fgCost(a1)

Sink (1)

Source (0)

fgCost(a2)

bgCost(a1) bgCost(a2)

cost(p,q)

34

Graph	*g;	

For	all	pixels	p	

	
	/*	Add	a	node	to	the	graph	*/
	nodeID(p)	=	g->add_node();	

	/*	Set	cost	of	terminal	edges	*/
	set_weights(nodeID(p),	fgCost(p),	bgCost(p));	

end
	
for	all	adjacent	pixels	p,q

	add_weights(nodeID(p),	nodeID(q),		cost(p,q));
end
	
g->compute_maxflow();
	
label_p	=	g->is_connected_to_source(nodeID(p)); 		
//	is	the	label	of	pixel	p	(0	or	1)

How does the code look like?

a1 a2

fgCost(a1)

Sink (1)

fgCost(a2)

bgCost(a1) bgCost(a2)

cost(p,q)

a1 = bg a2 = fg

Source (0)

35

Outline

The st-mincut problem

What problems can we solve
using st-mincut?

st-mincut based Move algorithms

Connection between st-mincut
and energy minimization?

36

Minimizing Energy Functions

Space of Function
Minimization Problems

Submodular
Functions

NP-Hard

•  General Energy Functions
–  NP-hard to minimize
–  Only approximate minimization

possible

•  Easy energy functions
–  Solvable in polynomial time
–  Submodular ~ O(n6)

MAXCUT

Functions defined on trees

37

Minimizing Submodular Functions

•  Minimizing general submodular functions
–  O(n5 Q + n6) where Q is function evaluation time

 [Orlin, IPCO 2007]

•  Symmetric submodular functions
–  E (y) = E (1 - y)
–  O(n3) [Queyranne 1998]

•  Quadratic pseudoboolean
–  Can be transformed to st-mincut
–  One node per variable (O(n3) complexity)
–  Very low empirical running time

38

Submodular Pseudoboolean Functions

•  All functions for one boolean variable (f: {0,1} à ℝ) are submodular

•  A function of two boolean variables (f: {0,1}2 à ℝ) is submodular if

f(0,1) + f(1,0) ≥ f(0,0) + f(1,1)

•  A general pseudoboolean function f : 2n → ℝ is submodular if all its
projections fp are submodular i.e.

fp(0,1) + fp(1,0) ≥ fp(0,0) + fp(1,1)

Function defined over boolean vectors y = {y1,y2, yn}

Definition

39

E(y) = ∑ θi (yi) + ∑ θij (yi,yj)
i,j i

Quadratic Submodular Pseudoboolean
Functions

θij(0,1) + θij
 (1,0) ≥ θij

 (0,0) + θij
 (1,1) For all ij

E(y) = ∑ ci yi + ∑ cij yi(1-yj) cij≥0
i,j i

Equivalent (transformable)

i.e. all submodular QPBFs are st-mincut solvable
40

A B

C D

0 1

0

1
yi

yj

= A +
0 0

C-A C-A

0 1

0

1

0 D-C

0 D-C

0 1

0

1

0 B+C-
A-D

0 0

0 1

0

1
+ +

if yi=1 add C-A if yj = 1 add D-C

B+C-A-D ≥ 0 is true from the submodularity of θij

How are they equivalent?

A = θij
 (0,0) B = θij(0,1) C = θij

 (1,0) D = θij
 (1,1)

θij (yi,yj) = θij(0,0)

 + (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj

 + (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj

A B

C D

0 1

0

1
yi

yj

= A +
0 0

C-A C-A

0 1

0

1

0 D-C

0 D-C

0 1

0

1

0 1

0

1
+ +

B+C-A-D ≥ 0 is true from the submodularity of θij

How are they equivalent?

A = θij
 (0,0) B = θij(0,1) C = θij

 (1,0) D = θij
 (1,1)

if yi=1 add C-A if yj = 1 add D-C

0 B+C-
A-D

0 0

θij (yi,yj) = θij(0,0)

 + (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj

 + (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj

A B

C D

0 1

0

1
= A +

0 0

C-A C-A

0 1

0

1

0 D-C

0 D-C

0 1

0

1

0 1

0

1
+ +

B+C-A-D ≥ 0 is true from the submodularity of θij

How are they equivalent?

A = θij
 (0,0) B = θij(0,1) C = θij

 (1,0) D = θij
 (1,1)

0 B+C-
A-D

0 0
yi

yj

if yi=1 add C-A if yj = 1 add D-C

θij (yi,yj) = θij(0,0)

 + (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj

 + (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj

A B

C D

0 1

0

1
= A +

0 0

C-A C-A

0 1

0

1

0 D-C

0 D-C

0 1

0

1

0 1

0

1
+ +

B+C-A-D ≥ 0 is true from the submodularity of θij

How are they equivalent?

A = θij
 (0,0) B = θij(0,1) C = θij

 (1,0) D = θij
 (1,1)

0 B+C-
A-D

0 0
yi

yj

if yi=1 add C-A if yj = 1 add D-C

θij (yi,yj) = θij(0,0)

 + (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj

 + (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj

A B

C D

0 1

0

1
= A +

0 0

C-A C-A

0 1

0

1

0 D-C

0 D-C

0 1

0

1

0 1

0

1
+ +

B+C-A-D ≥ 0 is true from the submodularity of θij

How are they equivalent?

A = θij
 (0,0) B = θij(0,1) C = θij

 (1,0) D = θij
 (1,1)

0 B+C-
A-D

0 0
yi

yj

if yi=1 add C-A if yj = 1 add D-C

θij (yi,yj) = θij(0,0)

 + (θij(1,0)-θij(0,0)) yi + (θij(1,0)-θij(0,0)) yj

 + (θij(1,0) + θij(0,1) - θij(0,0) - θij(1,1)) (1-yi) yj

E(y) = ∑ θi (yi) + ∑ θij (yi,yj)
i,j i

Quadratic Submodular Pseudoboolean
Functions

θij(0,1) + θij
 (1,0) ≥ θij

 (0,0) + θij
 (1,1) For all ij

Equivalent (transformable)

T

S
st-mincut

y in {0,1}n

46

Recap

•  Exact minimization of Submodular QBFs
using graph cuts

•  Obtaining partially optimal solutions of non-
submodular QBFs using graph cuts

47

Outline

The st-mincut problem

What problems can we solve
using st-mincut?

st-mincut based Move algorithms

Connection between st-mincut
and energy minimization?

48

St-mincut based Move algorithms

•  Commonly used for solving non-submodular
multi-label problems

•  Extremely efficient and produce good
solutions

•  Not Exact: Produce local optima

E(y) = ∑ θi (yi) + ∑ θij (yi,yj)
 i,j i

y ϵ Labels L = {l1, l2, … , lk}

49

Move Making Algorithms

Search
Neighbourhood

Current Solution

Optimal Move

Solution Space

E
ne

rg
y

50

Move Making Algorithms

Search
Neighbourhood

Current Solution

Optimal Move

Solution Space

E
ne

rg
y

51

Move Making Algorithms

Search
Neighbourhood

Current Solution

Optimal Move

Solution Space

E
ne

rg
y

52

Move Making Algorithms

Search
Neighbourhood

Current Solution

Optimal Move

Solution Space

E
ne

rg
y

53

Move Making Algorithms

Search
Neighbourhood

Current Solution

Optimal Move

Solution Space

E
ne

rg
y

54

Computing the Optimal Move

Search
Neighbourhood

Current Solution

Optimal Move

yc
(t) Key Property

Move Space

Bigger move
space

Solution Space

E
ne

rg
y

•  Better solutions
•  Finding the optimal move hard

55

Moves using Graph Cuts

Expansion and Swap move algorithms
[Boykov Veksler and Zabih, PAMI 2001]

•  Makes a series of changes to the solution (moves)
•  Each move results in a solution with smaller energy

Space of Solutions (y) : LN

Move Space (t) : 2N

Search
Neighbourhood

Current Solution

N Number of
Variables

L Number of
Labels

56

Moves using Graph Cuts

Expansion and Swap move algorithms
[Boykov Veksler and Zabih, PAMI 2001]

•  Makes a series of changes to the solution (moves)
•  Each move results in a solution with smaller energy

Current Solution

Construct a move
function

Minimize move function
to get optimal move

Move to new
solution

How to
minimize

move
functions?

57

General Binary Moves

Minimize over move variables t to get the
optimal move

y = t y1 + (1- t) y2
New

solution
Current
Solution

Second
solution

Em(t) = E(t y1 + (1- t) y2)

Boykov, Veksler and Zabih, PAMI 2001

Move energy is a submodular QPBF
(Exact Minimization Possible)

58

Expansion Move

Sky
House

Tree
Ground

Initialize with Tree Status:

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih]

•  Variables take label α or retain current label

59

Expansion Move

Sky
House

Tree
Ground

Status: Expand Ground

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih]

•  Variables take label α or retain current label

60

Expansion Move

Sky
House

Tree
Ground

Status: Expand House

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih]

•  Variables take label α or retain current label

61

Expansion Move

Sky
House

Tree
Ground

Status: Expand Sky

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih]

•  Variables take label α or retain current label

62

Expansion Move

•  Move energy is submodular if:
–  Unary Potentials: Arbitrary
–  Pairwise potentials: Metric

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih]

Semi metric

•  Variables take label α or retain current label

Examples: Potts model, Truncated linear
Cannot solve truncated quadratic

θij (la,lb) ≥ 0

θij (la,lb) = 0 iff a = b

63

Expansion Move

•  Move energy is submodular if:
–  Unary Potentials: Arbitrary
–  Pairwise potentials: Metric

[Boykov, Veksler, Zabih] [Boykov, Veksler, Zabih]

θij (la,lb) + θij (lb,lc) ≥ θij (la,lc)
Triangle

Inequality

•  Variables take label α or retain current label

Examples: Potts model, Truncated linear
Cannot solve truncated quadratic

64

Exact
Transformation

(global optimum)

Or Relaxed
transformation

(partially optimal)

Summary

T

S
st-mincut

Labelling
Problem

Submodular Quadratic
Pseudoboolean Function

Move making algorithms

Sub-problem

65

Where do we stand ?

Chain/Tree, 2/multi-label: Use BP

Grid graph -
 “submodular”: Use graph cuts
 “metric”: Use expansion

 otherwise: Use TRW,
 dual decomposition,
 relaxation

66

What have we seen?

•  Inference
–  Belief propagation

–  Graph cuts

–  Variational inference

–  Simulation-based inference

•  Learning

67

•  Supervised	Learning	

•  Probabilistic	Methods	

•  Loss-based	Methods	

Outline	

68	

Image	Classification	

Which	city	is	this?	

Input:	d	 Output:	x	∈	{1,2,…,h}	
69	

CRF	training	
•  Stereo	matching:	

•  Z:	left,	right	image	
•  X:	disparity	map	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
estimate	proper	

w	

70	

CRF	training	
•  Denoising:	

•  Z:	noisy	input	image	
•  X:	denoised	output	image	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
estimate	proper	

w	

71	

CRF	training	(some	further	notation)	

vector	valued	feature	
functions	

72	

Learning	formulations	

Risk	minimization	

K	training	samples		

74	

Regularized	Risk	minimization	

75	

Regularized	Risk	minimization	

Replace	Δ(.)	with	easier	to	handle	upper	bound	LG	
(e.g.,	convex	w.r.t.	w)	

76	

Choice	1:	Hinge	loss	

§  Upper	bounds	Δ(.)	

§  Leads	to	max-margin	learning	

77	

Max-margin	learning	

subject	to	the	constraints:	

energy	of	
ground	truth	

any	other	
energy		

desired	
margin	

slack	

78	

Max-margin	learning	

subject	to	the	constraints:	

or	equivalently	

CONSTRAINED	

UNCONSTRAINED	

79	

Choice	2:	logistic	loss		

§  Can	be	shown	to	lead	to	maximum	likelihood	learning	
	

partition	function		

80	

Max-margin	vs	Maximum-likelihood	
max-margin	

maximum	likelihood	

81	

Max-margin	vs	Maximum-likelihood	
max-margin	

maximum	likelihood	

soft-max	

82	

Solving	the	learning	
formulations	

Maximum-likelihood	learning	

§  Differentiable	&	convex	
	

partition	function		

§  Global	optimum	via	gradient	descent,	for	example	
	

84	

Maximum-likelihood	learning	

gradient	

Recall	that:	

85	

Maximum-likelihood	learning	

gradient	

§  Requires	MRF	probabilistic	inference		
	
§  NP-hard	(exponentially	many	x):	approximation	via	loopy-BP	?	
	 86	

Max-margin	learning	(UNCONSTRAINED)	

§  Convex	but	non-differentiable	
	
§  Global	optimum	via	subgradient	method	

87	

Max-margin	learning	(CONSTRAINED)	

subject	to	the	constraints:	

linear	in	w

•  Quadratic	program	(great!)	
•  But	exponentially	many	constraints	(not	so	great)	

88	

•  What	if	we	use	only	a	small	number	of	constraints?	

•  Resulting	QP	can	be	solved	
•  But	solution	may	be	infeasible	

Max-margin	learning	(CONSTRAINED)	

•  only	few	constraints	active	at	optimal	
solution	!!	
(variables	much	fewer	than	constraints)	

•  Constraint	generation	to	the	rescue	

•  Given	the	active	constraints,	rest	can	be	ignored	
•  Then	let	us	try	to	find	them!	

89	

What	have	we	seen?	
•  Inference	

–  Belief	propagation	

– Graph	cuts	

–  Variational	inference	

–  Simulation-based	inference	

•  Learning	

90	

91	
9Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Images

Text/Speech

Modern deep learning toolbox is designed
for simple sequences & grids

1/11/2023

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 10

Modern
deep learning toolbox

is designed for
sequences & grids

1/11/2023

92	
Slide	courtesy:	http://cs224w.Stanford.edu		

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 11

Not everything
can be represented as
a sequence or a grid

How can we develop neural
networks that are much more

broadly applicable?

New frontiers beyond classic neural
networks that only learn on images

and sequences
1/11/2023

93	
Slide	courtesy:	http://cs224w.Stanford.edu		

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13
1/11/2023

IC
LR

 2
02

2
ke

yw
or

ds

94	
Slide	courtesy:	http://cs224w.Stanford.edu		

95	
Slide	courtesy:	http://cs224w.Stanford.edu		

Networks are complex.
� Arbitrary size and complex topological

structure (i.e., no spatial locality like grids)

� No fixed node ordering or reference point
� Often dynamic and have multimodal features

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 14

vs.

Networks Images

Text

1/11/2023

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 16

…
z

Input: Network

Predictions: Node labels,
New links, Generated
graphs and subgraphs

1/11/2023

96	
Slide	courtesy:	http://cs224w.Stanford.edu		

17Jure Leskovec, Stanford University

Each node defines a computation graph
▪ Each edge in this graph is a

transformation/aggregation function

Scarselli et al. 2005. The Graph Neural Network Model. IEEE Transactions on Neural Networks. 97	

Slide	courtesy:	http://cs224w.Stanford.edu		

18Jure Leskovec, Stanford University

Intuition: Nodes aggregate information from their
neighbors using neural networks

Neural networks

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.
98	Slide	courtesy:	http://cs224w.Stanford.edu		

(Supervised) Machine Learning Lifecycle:
This feature, that feature. Every single time!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 20

Raw
Data

Graph
Data

Learning
Algorithm Model

Downstream
prediction task

Feature
Engineering

Representation
Learning --

Automatically
learn the features

1/11/2023

99	
Slide	courtesy:	http://cs224w.Stanford.edu		

Map nodes to d-dimensional
embeddings such that similar nodes in

the network are embedded close
together

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

representationnode

𝒇: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation,
embedding

u
Learn a neural network

1/11/2023

100	
Slide	courtesy:	http://cs224w.Stanford.edu		

ML	for	Graph	data	

•  Traditional	methods	

•  Node	embeddings	

•  Graph	neural	networks	

•  Applications	

101	

102	
Slide	courtesy:	http://cs224w.Stanford.edu		1/11/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

Node level

Edge-level

Community
(subgraph)
level

Graph-level
prediction,
Graph
generation

� Node classification: Predict a property of a node
▪ Example: Categorize online users / items

� Link prediction: Predict whether there are missing
links between two nodes
▪ Example: Knowledge graph completion

� Graph classification: Categorize different graphs
▪ Example: Molecule property prediction

� Clustering: Detect if nodes form a community
▪ Example: Social circle detection

� Other tasks:
▪ Graph generation: Drug discovery
▪ Graph evolution: Physical simulation

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 261/11/2023

103	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Design features for nodes/links/graphs
� Obtain features for all training data

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 7

C

A

B

D E

H

F

G

Node features

Graph featuresLink features

∈ ℝ𝐷
∈ ℝ𝐷

∈ ℝ𝐷

104	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Train an ML model:
▪ Logistic Regression
▪ Random forest
▪ Neural network, etc.

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

𝒙𝑵 𝑦𝑁

� Apply the model:
▪ Given a new

node/link/graph, obtain
its features and make a
prediction

𝒙 𝑦

105	
Slide	courtesy:	http://cs224w.Stanford.edu		

106	
Slide	courtesy:	http://cs224w.Stanford.edu		

Goal: Make predictions for a set of objects

Design choices:
� Features: d-dimensional vectors 𝒙
� Objects: Nodes, edges, sets of nodes,

entire graphs
� Objective function:

▪ What task are we aiming to solve?

101/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

107	
Slide	courtesy:	http://cs224w.Stanford.edu		 13

? ?

?
?

?
Machine
Learning

Node classification

ML needs features.

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Goal: Characterize the structure and position of
a node in the network:

▪ Node degree
▪ Node centrality
▪ Clustering coefficient
▪ Graphlets

1/12/2023 14Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Node feature

108	
Slide	courtesy:	http://cs224w.Stanford.edu		

� The task is to predict new links based on the
existing links.

� At test time, node pairs (with no existing links)
are ranked, and top 𝐾 node pairs are predicted.

� The key is to design features for a pair of nodes.

1/12/2023 33Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

?

?
109	

Slide	courtesy:	http://cs224w.Stanford.edu		

Two formulations of the link prediction task:
� 1) Links missing at random:

▪ Remove a random set of links and then
aim to predict them

� 2) Links over time:
▪ Given 𝐺[𝑡0, 𝑡0′] a graph defined by edges

up to time 𝑡0′ , output a ranked list L
of edges (not in 𝐺[𝑡0, 𝑡0′]) that are
predicted to appear in time 𝐺[𝑡1, 𝑡1′]

▪ Evaluation:
▪ n = |Enew|: # new edges that appear during

the test period [𝑡1, 𝑡1′]
▪ Take top n elements of L and count correct edges

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

𝐺[𝑡0, 𝑡0′]
𝐺[𝑡1, 𝑡1′]

110	

Slide	courtesy:	http://cs224w.Stanford.edu		

111	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Methodology:
▪ For each pair of nodes (x,y) compute score c(x,y)

▪ For example, c(x,y) could be the # of common neighbors
of x and y

▪ Sort pairs (x,y) by the decreasing score c(x,y)
▪ Predict top n pairs as new links
▪ See which of these links actually

appear in 𝐺[𝑡1, 𝑡1′]

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

X

112	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Distance-based feature
� Local neighborhood overlap
� Global neighborhood overlap

1/12/2023 36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Link feature

� Distance-based features:
▪ Uses the shortest path length between two nodes

but does not capture how neighborhood overlaps.
� Local neighborhood overlap:

▪ Captures how many neighboring nodes are shared
by two nodes.

▪ Becomes zero when no neighbor nodes are shared.
� Global neighborhood overlap:

▪ Uses global graph structure to score two nodes.
▪ Katz index counts #walks of all lengths between two

nodes.
1/12/2023 45Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

113	
Slide	courtesy:	http://cs224w.Stanford.edu		

114	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Goal: We want features that characterize the
structure of an entire graph.

� For example:

1/12/2023 47Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

� Kernel methods are widely-used for traditional
ML for graph-level prediction.

� Idea: Design kernels instead of feature vectors.
� A quick introduction to Kernels:

▪ Kernel 𝐾 𝐺,𝐺′ ∈ ℝ measures similarity b/w data
▪ Kernel matrix 𝑲 = 𝐾 𝐺,𝐺′

𝐺,𝐺′
must always be

positive semidefinite (i.e., has positive eigenvalues)
▪ There exists a feature representation 𝜙(∙) such that
𝐾 𝐺, 𝐺′ = 𝜙 G T𝜙 𝐺′

▪ Once the kernel is defined, off-the-shelf ML model,
such as kernel SVM, can be used to make predictions.

1/12/2023 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

115	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Graph Kernels: Measure similarity between
two graphs:
▪ Graphlet Kernel [1]
▪ Weisfeiler-Lehman Kernel [2]
▪ Other kernels are also proposed in the literature

(beyond the scope of this lecture)
▪ Random-walk kernel
▪ Shortest-path graph kernel
▪ And many more…

1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 49

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.
[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

116	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Graphlet Kernel
▪ Graph is represented as Bag-of-graphlets
▪ Computationally expensive

� Weisfeiler-Lehman Kernel
▪ Apply 𝐾-step color refinement algorithm to enrich

node colors
▪ Different colors capture different 𝐾-hop neighborhood

structures
▪ Graph is represented as Bag-of-colors
▪ Computationally efficient
▪ Closely related to Graph Neural Networks (as we

will see!)
1/12/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

117	
Slide	courtesy:	http://cs224w.Stanford.edu		

118	
Slide	courtesy:	http://cs224w.Stanford.edu		 3

Input
Graph

Structured
Features

Learning
Algorithm Prediction

Downstream
prediction task

Feature
Engineering

Representation Learning --
Automatically

learn the features

Graph Representation Learning alleviates
the need to do feature engineering every
single time.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu1/17/2023

119	
Slide	courtesy:	http://cs224w.Stanford.edu		

Goal: Efficient task-independent feature
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

vectornode

𝑓: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation,
embedding

𝑢

1/17/2023

� Task: Map nodes into an embedding space
▪ Similarity of embeddings between nodes indicates

their similarity in the network. For example:
▪ Both nodes are close to each other (connected by an edge)

▪ Encode network information
▪ Potentially used for many downstream predictions

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Vec

ℝ𝑑embeddings

• Node classification
• Link prediction
• Graph classification
• Anomalous node detection
• Clustering
• ….

Tasks

120	
Slide	courtesy:	http://cs224w.Stanford.edu		

� 2D embedding of nodes of the Zachary’s
Karate Club network:

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 6

Example

• Zachary’s Karate Network:

18

Image from: Perozzi et al. DeepWalk: Online Learning of Social Representations. KDD 2014. 121	
Slide	courtesy:	http://cs224w.Stanford.edu		

122	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Assume we have a graph G:
▪ V is the vertex set.
▪ A is the adjacency matrix (assume binary).
▪ For simplicity: No node features or extra

information is used

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 81/17/2023

1

4
3

2

¸̧
¸
¸
¸

¹

·

¨̈
¨
¨
¨

©

§

=

0111
1000
1001
1010

AV: {1, 2, 3, 4}

� Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 91/17/2023

123	
Slide	courtesy:	http://cs224w.Stanford.edu		

124	
Slide	courtesy:	http://cs224w.Stanford.edu		Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Goal:

Need to define!

1/17/2023

in the original network Similarity of the embedding
similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢

125	
Slide	courtesy:	http://cs224w.Stanford.edu		

1. Encoder maps from nodes to embeddings
2. Define a node similarity function (i.e., a

measure of similarity in the original network)
3. Decoder𝐃𝐄𝐂 maps from embeddings to the

similarity score
4. Optimize the parameters of the encoder so

that:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 111/17/2023

in the original network Similarity of the embedding

similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢
𝐃𝐄𝐂(𝐳𝑣Τ𝐳𝑢)

� Encoder: maps each node to a low-dimensional
vector

� Similarity function: specifies how the
relationships in vector space map to the
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of 𝑢 and 𝑣 in
the original network

dot product between node
embeddings

1/17/2023

Decoder

ENC 𝑣 = 𝐳𝑣

similarity 𝑢, 𝑣 ≈ 𝐳𝑣Τ𝐳𝑢

node in the input graph

d-dimensional
embedding

126	
Slide	courtesy:	http://cs224w.Stanford.edu		

127	
Slide	courtesy:	http://cs224w.Stanford.edu		

Simplest encoding approach: Encoder is just an
embedding-lookup

Each node is assigned a unique
embedding vector

(i.e., we directly optimize
the embedding of each node)

Many methods: DeepWalk, node2vec

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

128	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Encoder + Decoder Framework
▪ Shallow encoder: embedding lookup
▪ Parameters to optimize: 𝐙 which contains node

embeddings 𝐳𝑢 for all nodes 𝑢 ∈ 𝑉
▪ We will cover deep encoders (GNNs) in Lecture 6

▪ Decoder: based on node similarity.
▪ Objective: maximize 𝐳𝑣Τ𝐳𝑢 for node pairs (𝑢, 𝑣)

that are similar

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

129	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Key choice of methods is how they define node
similarity.

� Should two nodes have a similar embedding if
they…
▪ are linked?
▪ share neighbors?
▪ have similar “structural roles”?

� We will now learn node similarity definition that uses
random walks, and how to optimize embeddings for
such a similarity measure.

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

There	are	also	random	walk	based	approaches	

� This is unsupervised/self-supervised way of
learning node embeddings.
▪ We are not utilizing node labels
▪ We are not utilizing node features
▪ The goal is to directly estimate a set of coordinates

(i.e., the embedding) of a node so that some aspect
of the network structure (captured by DEC) is
preserved.

� These embeddings are task independent
▪ They are not trained for a specific task but can be

used for any task.
1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

130	
Slide	courtesy:	http://cs224w.Stanford.edu		

131	
Slide	courtesy:	http://cs224w.Stanford.edu		Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

probability that u
and v co-occur on a
random walk over

the graph

1/17/2023

Slide	courtesy:	http://cs224w.Stanford.edu		

1. Estimate probability of visiting node 𝒗 on a
random walk starting from node 𝒖 using
some random walk strategy 𝑹

2. Optimize embeddings to encode these
random walk statistics:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 231/17/2023

Similarity in embedding space (Here:
dot product=cos(𝜃)) encodes random walk “similarity”

132	

133	
Slide	courtesy:	http://cs224w.Stanford.edu		

1. Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information
Idea: if random walk starting from node 𝑢
visits 𝑣 with high probability, 𝑢 and 𝑣 are
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 241/17/2023

134	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Intuition: Find embedding of nodes in
𝑑-dimensional space that preserves similarity

� Idea: Learn node embedding such that nearby
nodes are close together in the network

� Given a node 𝑢, how do we define nearby
nodes?
▪ 𝑁𝑅 𝑢 … neighbourhood of 𝑢 obtained by some

random walk strategy 𝑅

25Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu1/17/2023

� Given 𝐺 = (𝑉, 𝐸),
� Our goal is to learn a mapping 𝑓: 𝑢 → ℝ𝑑:
𝑓 𝑢 = 𝐳𝑢

� Log-likelihood objective:

▪ 𝑁𝑅(𝑢) is the neighborhood of node 𝑢 by strategy 𝑅

� Given node 𝑢, we want to learn feature
representations that are predictive of the nodes
in its random walk neighborhood 𝑁𝑅(𝑢).

1/17/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

135	
Slide	courtesy:	http://cs224w.Stanford.edu		

1. Run short fixed-length random walks
starting from each node 𝑢 in the graph using
some random walk strategy R.

2. For each node 𝑢 collect 𝑁𝑅(𝑢), the multiset*

of nodes visited on random walks starting
from 𝑢.

3. Optimize embeddings according to: Given
node 𝑢, predict its neighbors 𝑁R(𝑢).

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27
*𝑁𝑅(𝑢) can have repeat elements since nodes can be visited multiple times on random walks

1/17/2023

Maximum likelihood objective

136	

137	
Slide	courtesy:	http://cs224w.Stanford.edu		

� Core idea: Embed nodes so that distances in
embedding space reflect node similarities in
the original network.

� Different notions of node similarity:
▪ Naïve: similar if two nodes are connected
▪ Neighborhood overlap (covered in Lecture 2)
▪ Random walk approaches (covered today)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 481/17/2023

