Graphical Models Discrete Inference and Learning

MVA

2022 - 2023

http://thoth.inrialpes.fr/~alahari/disinflearn

Lecturers

Karteek Alahari

Demian Wassermann

Email: <firstname>.lastname@inria.fr

Organization

7 lectures of 3 hours each

- Today + 24/1, 31/1, 7/2, 28/2, 7/3, 14/3

 13:45 – 17:00 (except today) with a short break or two

Last lecture: 14th March

http://thoth.inrialpes.fr/~alahari/disinflearn

Requirements

- Solid understanding of mathematical models
 - Linear algebra
 - Integral transforms
 - Differential equations

Ideally, a basic course in discrete optimization

Topics covered

- Basic concepts, Bayesian networks, Markov random fields
- Inference algorithms: belief propagation, treereweighted message passing, graph cuts, movemaking algorithms, Parameter learning
- Deep learning in graphical models, graph neural networks, other recent advances
- Causality

Evaluation

Projects

In groups of at most 3 people

Report and presentation – Date TBD

Topics: your own or see list on 25/1

Bonus points for excellent class participation

What you will learn?

Fundamental methods

Real-world applications

Also, pointers to using these methods in your work

Your tasks

Following the lectures and participating actively

Reading the literature

Doing well in the project

Graphical Models Discrete Inference and Learning Lecture 1

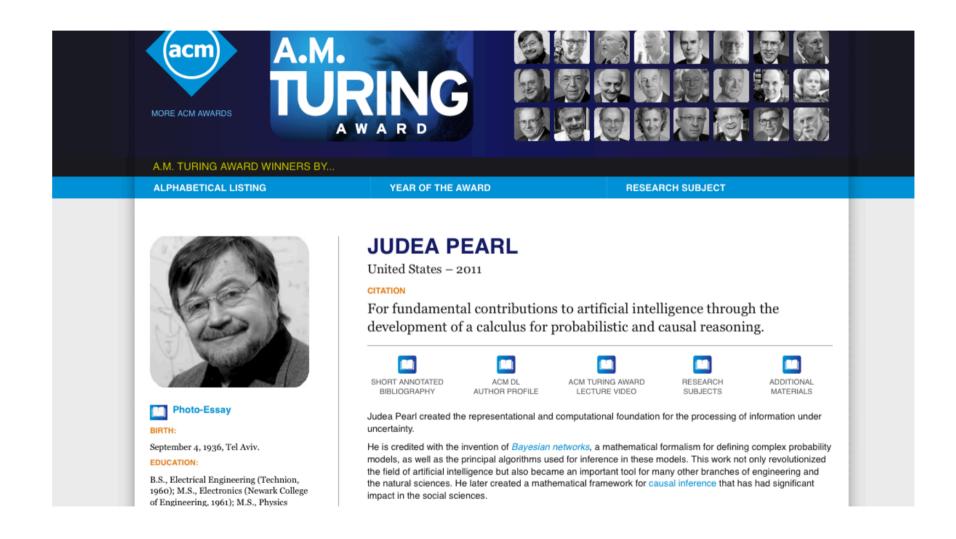
MVA

2022 - 2023

http://thoth.inrialpes.fr/~alahari/disinflearn

Slides based on material from Stephen Gould, Pushmeet Kohli, Nikos Komodakis, M. Pawan Kumar, Carsten Rother, Daphne Koller, Dhruv Batra

Graphical Models?



What this class is about?

Making global predictions from local observations

Inference

 Learning such models from large quantities of data

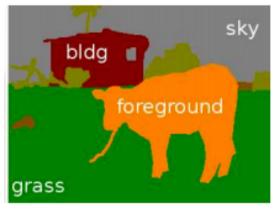
Learning

Consider the example of medical diagnosis

Predisposing factors
Symptoms
Test results

Diseases
Treatment outcomes

A very different example: image segmentation

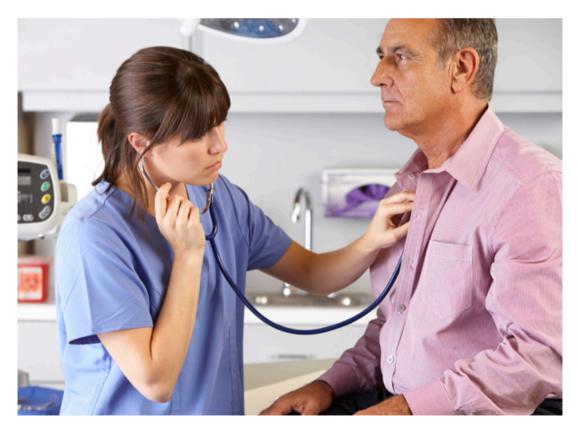


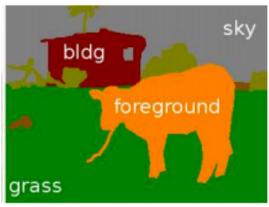
Millions of pixels
Colours / features

Pixel labels {building, grass, cow, sky}

e.g., [He et al., 2004; Shotton et al., 2006; Gould et al., 2009] Slide inspired by PGM course, Daphne Koller

• What do these two problems have in common?





Slide inspired by PGM course, Daphne Koller

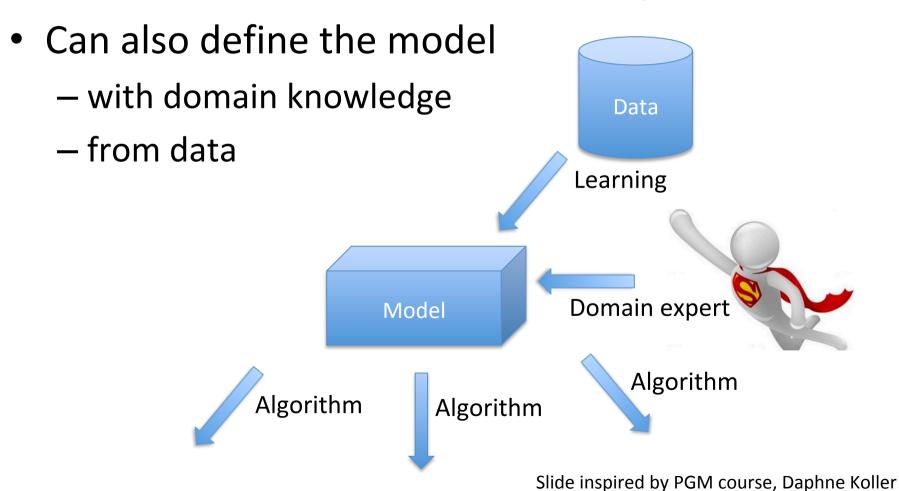
What do these two problems have in common?

Many variables

Uncertainty about the correct answer

Graphical Models (or Probabilistic Graphical Models) provide a framework to address these problems

• First, it is a model: a declarative representation



- Why probabilistic ?
- To model uncertainty
- Uncertainty due to:
 - Partial knowledge of state of the world
 - Noisy observations
 - Phenomena not observed by the model
 - Inherent stochasticity

Probability theory provides

Standalone representation with clear semantics

Reasoning patterns (conditioning, decision making)

Learning methods

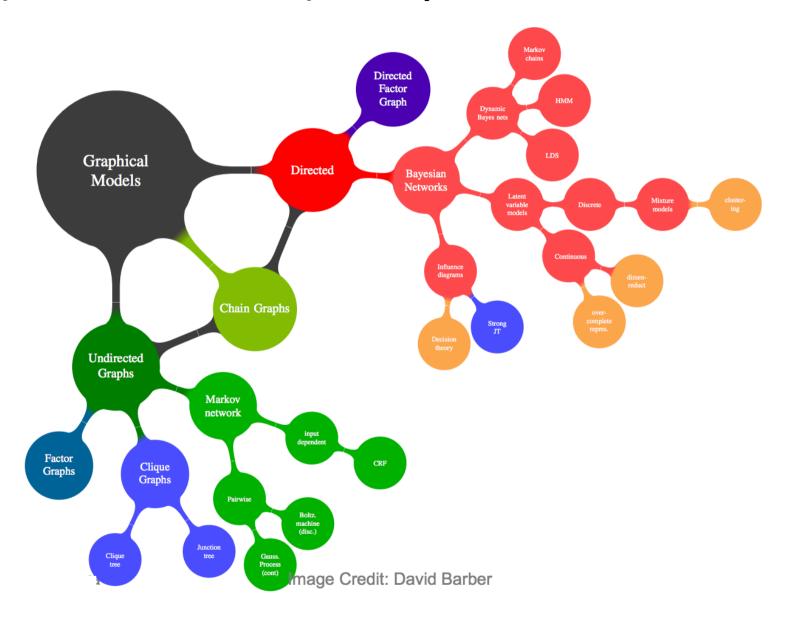
- Why graphical ?
- Intersection of ideas from probability theory and computer science
 - To represent large number of variables

Predisposing factors
Symptoms
Test results

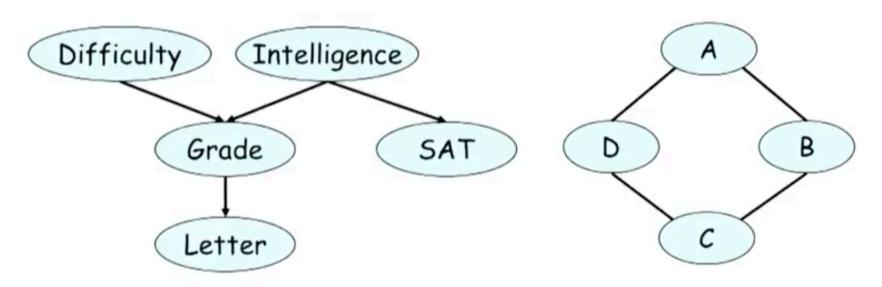
Millions of pixels Colours / features

Random variables Y₁, Y₂, ..., Y_n

Goal: capture uncertainty through joint distribution $P(Y_1,...,Y_n)$



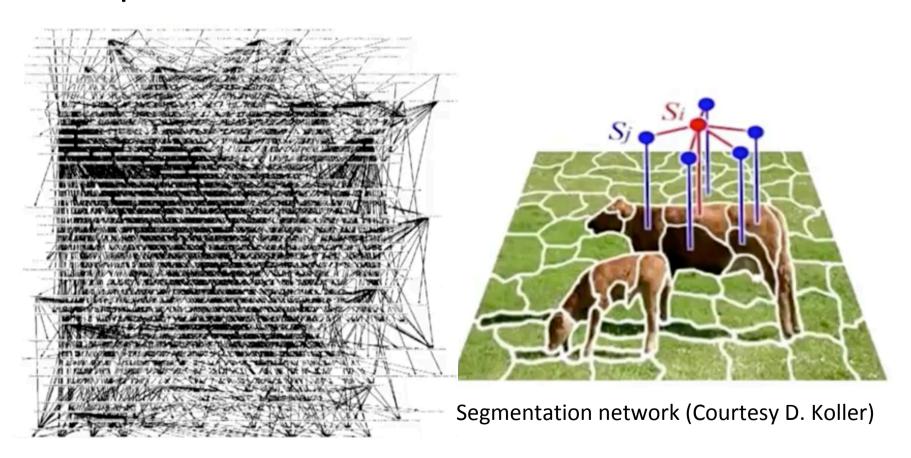
Examples



Bayesian network (directed graph)

Markov network (undirected graph)

Examples



Diagnosis network: Pradhan et al., UAI'94

Intuitive & compact data structure

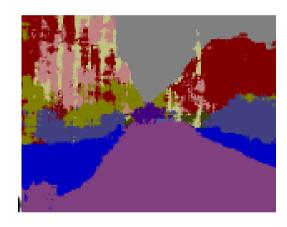
 Efficient reasoning through general-purpose algorithms

- Sparse parameterization
 - Through expert knowledge, or
 - Learning from data

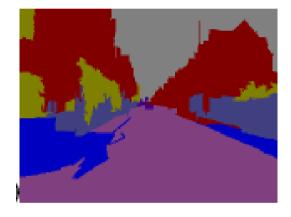
- Many many applications
 - Medical diagnosis
 - Fault diagnosis
 - Natural language processing
 - Traffic analysis
 - Social network models
 - Message decoding
 - Computer vision: segmentation, 3D, pose estimation
 - Speech recognition
 - Robot localization & mapping

Image segmentation

Image



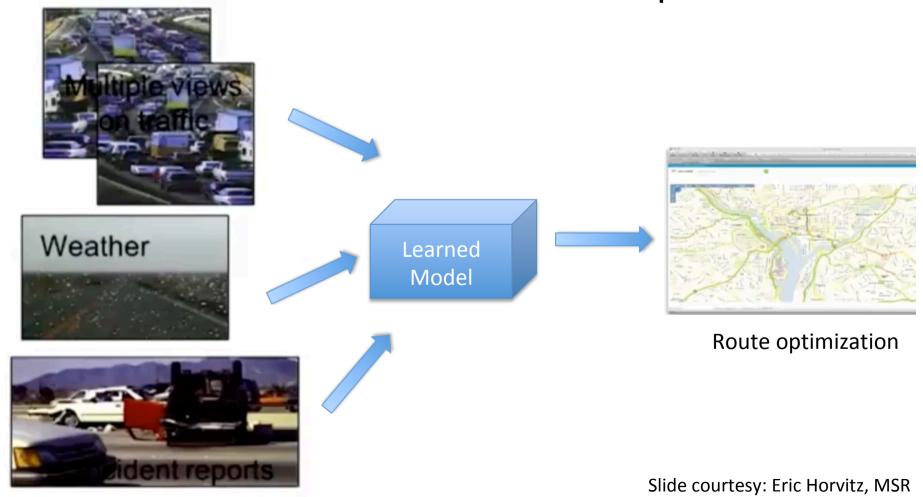
No graphical model



With graphical model

Multi-sensor integration: Traffic

Learn from historical data to make predictions



Going global: Local ambiguity

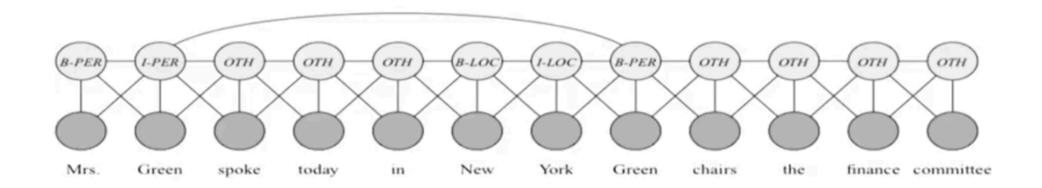
Text recognition

Smyth et al., 1994

Going global: Local ambiguity

Textual information extraction

e.g., Mrs. Green spoke today in New York. Green chairs the financial committee.



Overview

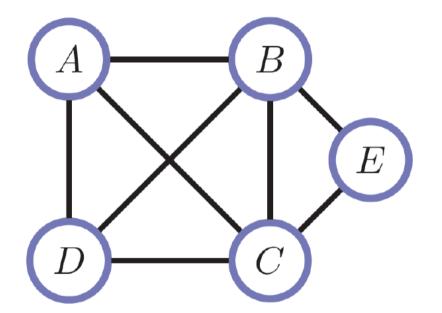
- Representation
 - How do we store $P(Y_1,...Y_n)$
 - Directed and undirected (model implications/assumptions)
- Inference
 - Answer questions with the model
 - Exact and approximate (marginal/most probable estimate)
- Learning
 - What model is right for data
 - Parameters and structure

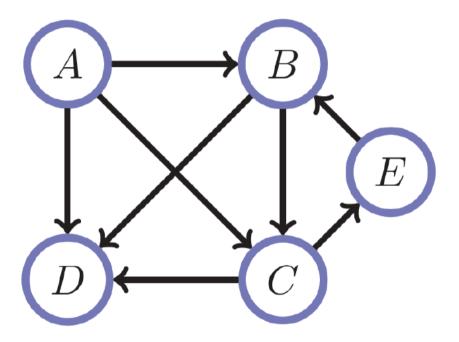
First, a recap of basics

Graphs

- Concepts
 - Definition of G
 - Vertices/Nodes
 - Edges
 - Directed vs Undirected
 - Neighbours vs Parent/Child
 - Degree vs In/Out degree
 - Walk vs Path vs Cycle

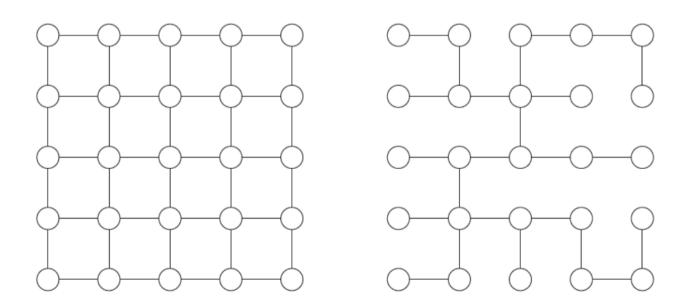
Graphs



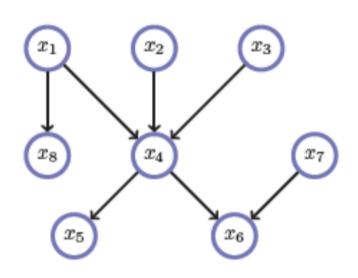


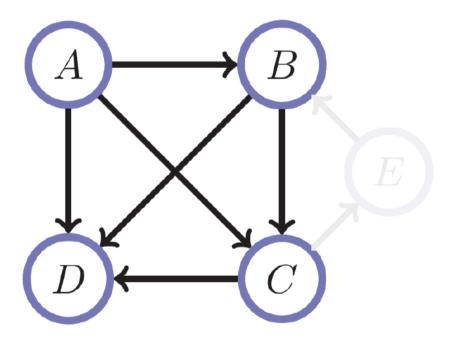
Special graphs

- Trees: undirected graph, no cycles
- Spanning tree: Same set of vertices, but subset of edges, connected and no cycles



Directed acyclic graphs (DAGs)





Joint distribution

- 3 variables
 - Intelligence (I)
 - Difficulty (D)
 - Grade (G)

Independent parameters?

I	D	G	Prob.
i ₀	ď°	g^1	0.126
io	ď°	g ²	0.168
io	ď°	g ³	0.126
io	d^1	9 ¹	0.009
io	d¹	g²	0.045
io	d^1	g ³	0.126
i ¹	ď°	g ¹	0.252
i ¹	ď°	g ²	0.0224
i ¹	ď°	g ³	0.0056
i ¹	d¹	g ¹	0.06
i ¹	d¹	g²	0.036
· i ¹	d¹	g ³	0.024

Conditioning

• Condition on g^1

I	D	G	Prob.
io	ďº	9 ¹	0.126
io	ď°	g ²	0.168
io	d⁰	g ³	0.126
io	d¹	9 ¹	0.009
io	d¹	g²	0.045
io	d¹	g ³	0.126
i ¹	ď°	g ¹	0.252
i ¹	ď°	g ²	0.0224
i ¹	ď°	g ³	0.0056
i ¹	d¹	g ¹	0.06
i ¹	d¹	g²	0.036
· i¹	d^1	g ³	0.024

Conditioning

- P(Y = y | X = x)
- Informally,
 - What do you believe about Y=y when I tell you X=x?

- P(France wins a football tournament in 2023)?
- What if I tell you:
 - France almost won the world cup 2022
 - − Hasn't had catastrophic results since ☺

Conditioning: Reduction

• Condition on g^1

I	D	G	Prob.
io	ďº	g¹	0.126
i ⁰	d¹	g^1	0.009
i ¹	d⁰	g^1	0.252
i ¹	d¹	g^1	0.06
•			

Conditioning: Renormalization

I	D	G	Prob.
io	d⁰	g^1	0.126
i ⁰	d¹	9 ¹	0.009
i ¹	ď°	g ¹	0.252
i ¹	d¹	g ¹	0.06

I	D	Prob.
i ^o	d⁰	0.282
i ^o	d^1	0.02
i ¹	d⁰	0.564
i ¹	d¹	0.134

 $P(I, D \mid g^1)$

 $P(I, D, g^1)$

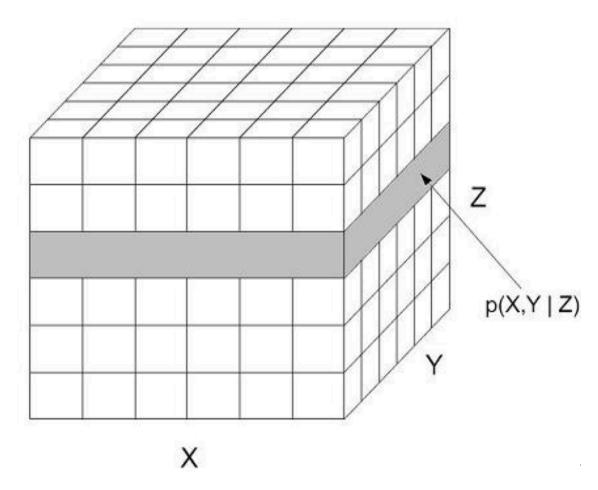
Unnormalized measure

Conditional probability distribution

• Example $P(G \mid I, D)$

	g ¹	g ²	g ³
i ⁰ ,d ⁰	0.3	0.4	0.3
i ⁰ ,d ¹	0.05	0.25	0.7
i ¹ ,d ⁰	0.9	0.08	0.02
i ¹ ,d ¹	0.5	0.3	0.2

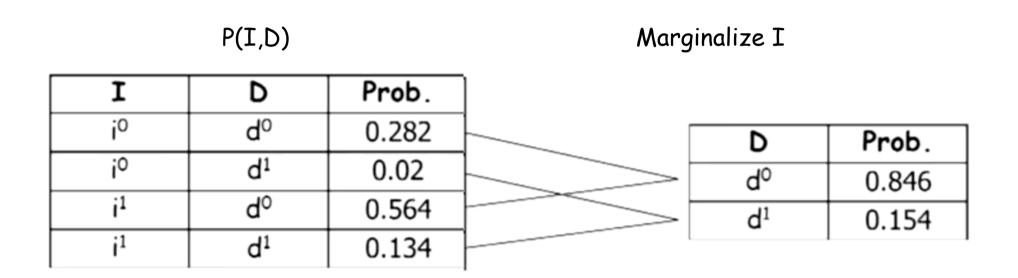
Conditional probability distribution



$$p(x, y \mid Z = z) = \frac{p(x, y, z)}{p(z)}$$

Slide courtesy: Erik Sudderth

Marginalization



Marginalization

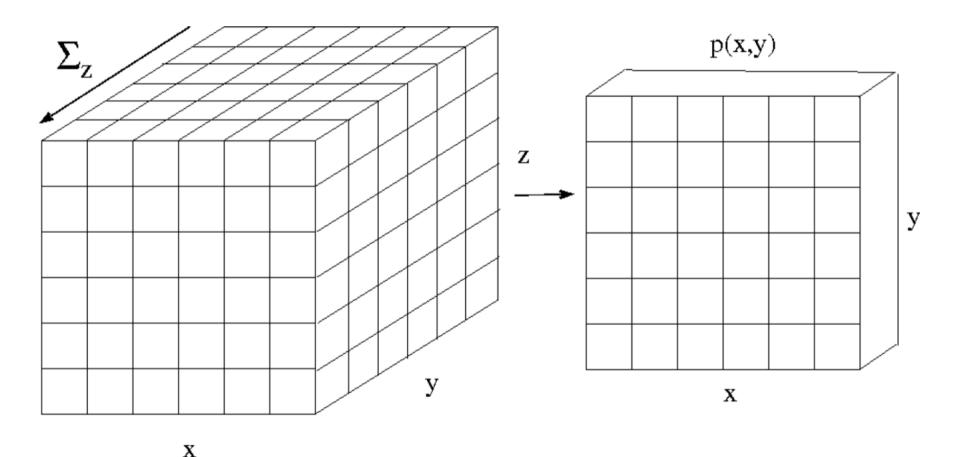
Events

$$-P(A) = P(A \text{ and } B) + P(A \text{ and not } B)$$

Random variables

$$- P(X = x) = \sum_{y} P(X = x, Y = y)$$

Marginalization



$$p(x,y) = \sum_{z \in \mathcal{Z}} p(x,y,z)$$

$$p(x) = \sum_{y \in \mathcal{Y}} p(x, y)$$

Slide courtesy: Erik Sudderth

Factors

• A factor $\Phi(Y_1,...,Y_k)$

$$\Phi: Val(Y_1,...,Y_k) \rightarrow R$$

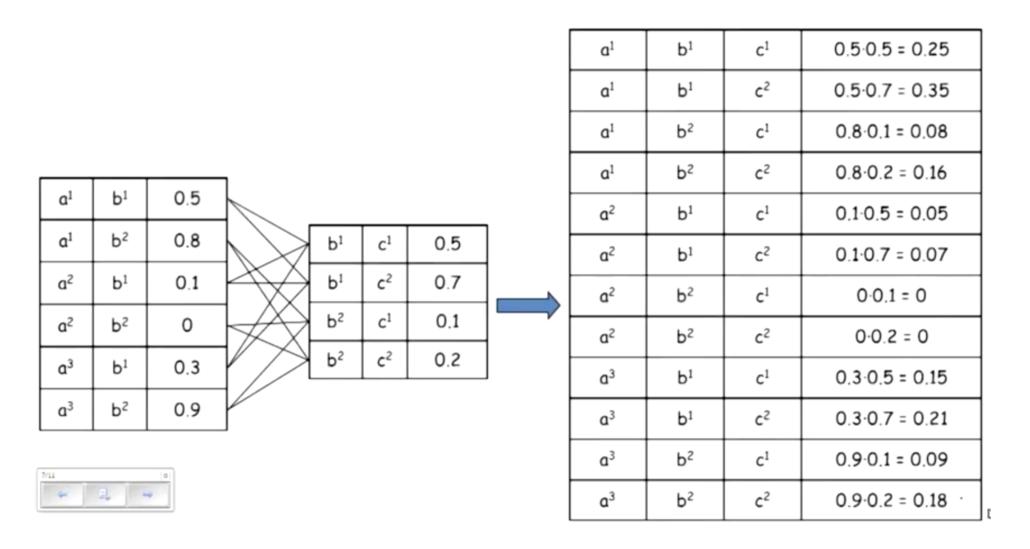
• Scope = $\{Y_1, ..., Y_k\}$

General factors

Not necessarily for probabilities

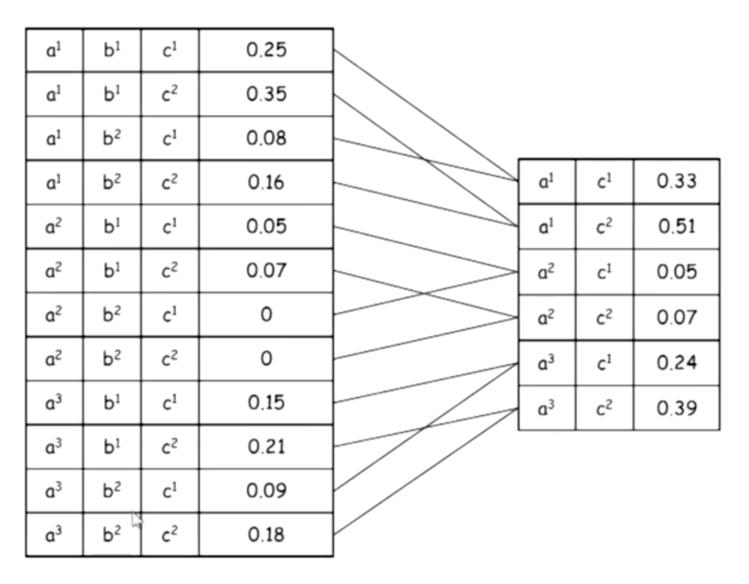
A	В	ф
aº	b⁰	30
ao	b¹	5
a ¹	b⁰	1
a ¹	b ¹	10

Factor product



Example courtesy: PGM course, Daphne Koller

Factor marginalization



Factor reduction

a ¹	b ¹	C ¹	0.25
a¹	b¹	c ²	0.35
a ¹	b ²	c ¹	0.08
a ¹	b²	c²	0.16
a ²	b¹	c ¹	0.05
a²	b¹	c²	0.07
a ²	b ²	c ¹	0
a²	b²	c²	0
a ³	b¹	c ¹	0.15
a³	b¹	c²	0.21
a ³	b²	c ¹	0.09
a ³	b ²	c ²	0.18

a ¹	b ¹	c ¹	0.25
a ¹	b ²	c ¹	0.08
a ²	b¹	c ¹	0.05
a ²	b ²	c ¹	0
a ³	b¹	c ¹	0.15
a ³	b ²	c¹	0.09

Why factors?

 Building blocks for defining distributions in high-dimensional spaces

Set of basic operations for manipulating these distributions

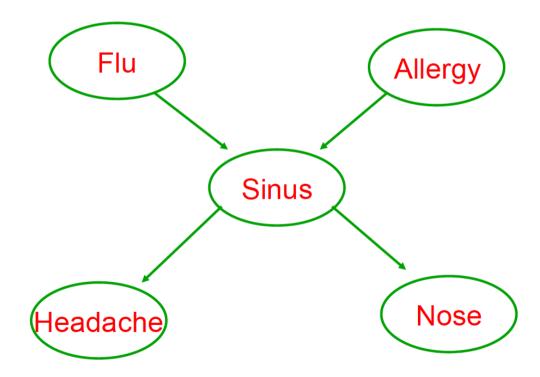
DAGs

- nodes represent variables in the Bayesian sense
- edges represent conditional dependencies

Example

- Suppose that we know the following:
 - The flu causes sinus inflammation
 - Allergies cause sinus inflammation
 - Sinus inflammation causes a runny nose
 - Sinus inflammation causes headaches
- How are these connected ?

Example



- A general Bayes net
 - Set of random variables
 - DAG: encodes independence assumptions
 - Conditional probability trees
 - Joint distribution

$$P(Y_1,...,Y_n) = \prod_{i=1}^n P(Y_i \mid Pa_{Y_i})$$

- A general Bayes net
 - How many parameters ?
 - Discrete variables Y₁,...,Y_n
 - Graph: Defines parents of Y_i, i.e., (Pa_{Yi})
 - CPTs: P(Y_i | Pa_{Yi})

Markov nets

Set of random variables

- Undirected graph
 - Encodes independence assumptions

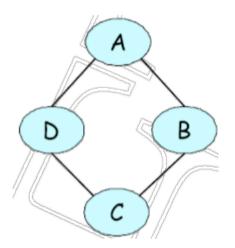
Factors

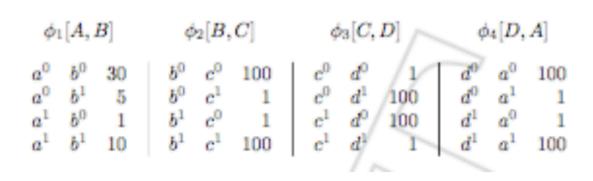
Comparison to Bayesian Nets?

Pairwise MRFs

- Composed of pairwise factors
 - A function of two variables
 - Can also have unary terms

Example





Markov Nets: Computing probabilities

Can only compute ratio of probabilities directly

- Need to normalize with a partition function
 - Hard! (sum over all possible assignments)
- In Bayesian Nets, can do by multiplying CPTs

Markov nets $\leftarrow \rightarrow$ Factorization

- Given an undirected graph H over variables
 Y={Y₁,...,Y_n}
- A distribution P factorizes over H if there exist
 - Subsets of variables $S^i \subseteq Y$ s.t. S^i are fully-connected in H
 - Non-negative potentials (factors) $\Phi_1(S^1),...,$ $\Phi_m(S^m)$: clique potentials
 - Such that $P(Y_1,...,Y_n) = \frac{1}{Z} \prod_{i=1}^{m} \Phi_i(S^i)$

Conditional Markov Random Fields

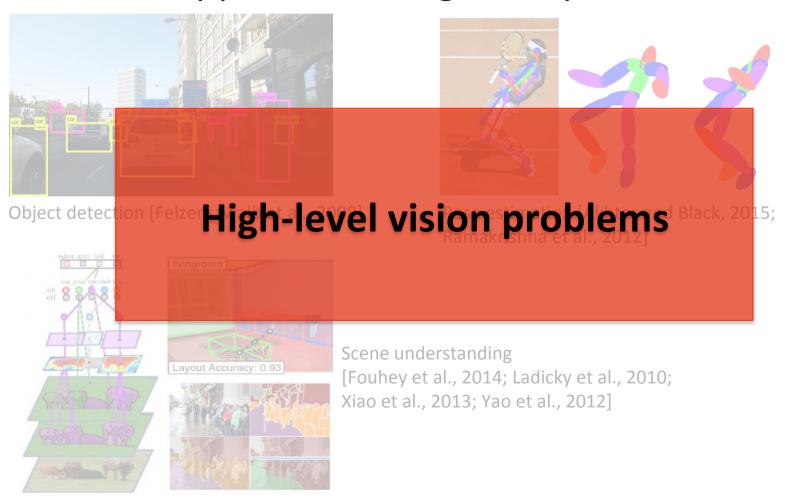
- Also known as: Markov networks, undirected graphical models, MRFs
- Note: Not making a distinction between CRFs and MRFs
- $\mathbf{X} \in \mathcal{X}$: observed random variables
- $\mathbf{Y} = (Y_1, \dots, Y_n) \in \mathcal{Y}$: output random variables
- \mathbf{Y}_c are subset of variables for clique $c \subseteq \{1, \ldots, n\}$
- Define a factored probability distribution

$$P(\mathbf{Y} \mid \mathbf{X}) = \frac{1}{Z(\mathbf{X})} \prod_{c} \Psi_{c}(\mathbf{Y}_{c}; \mathbf{X})$$

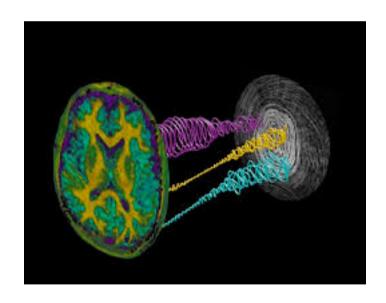
$$Partition function = \sum_{\mathbf{Y} \in \mathcal{Y}} \prod_{c} \Psi_{c}(\mathbf{Y}_{c}; \mathbf{X}) \quad \begin{array}{c} \text{Exponential number} \\ \text{of configurations} \end{array} !$$

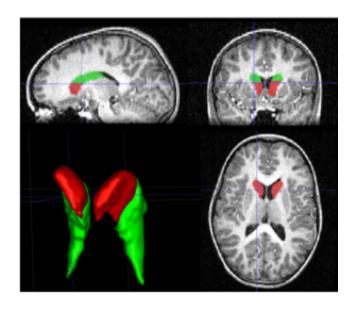
• Several applications, e.g., computer vision

• Several applications, e.g., computer vision

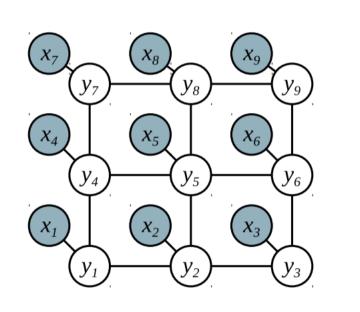


• Several applications, e.g., medical imaging

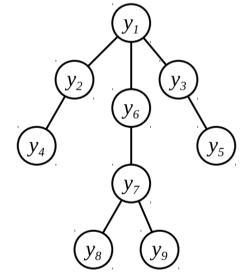




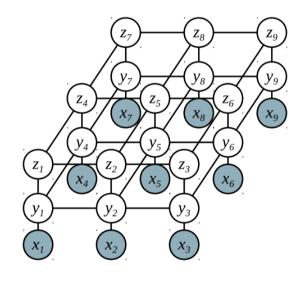
Inherent in all these problems are graphical models



Pixel labeling



Object detection Pose estimation



Scene understanding

Maximum a posteriori (MAP) inference

$$\mathbf{y}^{\star} = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} P(\mathbf{y} \mid \mathbf{x})$$

$$= \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z(\mathbf{X})} \prod_{c} \Psi_{c}(\mathbf{Y}_{c}; \mathbf{X})$$

$$= \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \log \left(\frac{1}{Z(\mathbf{X})} \prod_{c} \Psi_{c}(\mathbf{Y}_{c}; \mathbf{X}) \right)$$

$$= \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \sum_{c} \log \Psi_{c}(\mathbf{Y}_{c}; \mathbf{X}) - \log Z(\mathbf{X})$$

$$= \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \sum_{c} \log \Psi_{c}(\mathbf{Y}_{c}; \mathbf{X})$$

$$-E(\mathbf{Y}; \mathbf{X})$$

Maximum a posteriori (MAP) inference

$$\mathbf{y}^* = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} P(\mathbf{y} \mid \mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \sum_{c} \log \Psi_c(\mathbf{Y}_c; \mathbf{X})$$
$$= \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmin}} E(\mathbf{y}; \mathbf{x})$$
$$= \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmin}} E(\mathbf{y}; \mathbf{x})$$

MAP inference \Leftrightarrow Energy minimization

The energy function is
$$E(\mathbf{Y};\mathbf{X}) = \sum_c \psi_c(\mathbf{Y}_c;\mathbf{X})$$
 where $\psi_c(\cdot) = -\log \Psi_c(\cdot)$

Clique potentials

 Defines a mapping from an assignment of random variables to a real number

$$\psi_{\mathbf{c}}: \mathcal{Y}_{\mathbf{c}} \times \mathcal{X} \to \mathbb{R}$$

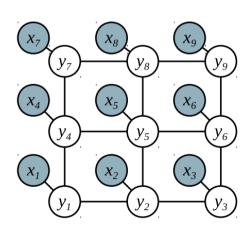
 Encodes a preference for assignments to the random variables (lower is better)

• Parameterized as $\psi_c(\mathbf{y}_c; \mathbf{x}) = \mathbf{w}_c^T \phi_c(\mathbf{y}_c; \mathbf{x})$

Clique potentials

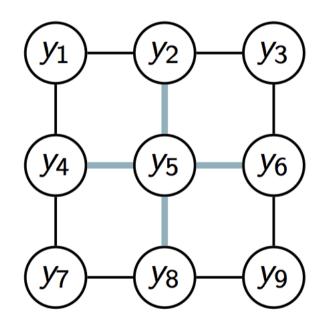
Arity

$$\begin{split} E\left(\mathbf{y};\mathbf{x}\right) &= \sum_{c} \psi_{c}(\mathbf{y}_{c};\mathbf{x}) \\ &= \sum_{i \in \mathcal{V}} \psi_{i}^{U}(y_{i};\mathbf{x}) + \sum_{ij \in \mathcal{E}} \psi_{ij}^{P}(y_{i},y_{j};\mathbf{x}) + \sum_{c \in \mathcal{C}} \psi_{c}^{H}(\mathbf{y}_{c};\mathbf{x}). \end{split}$$

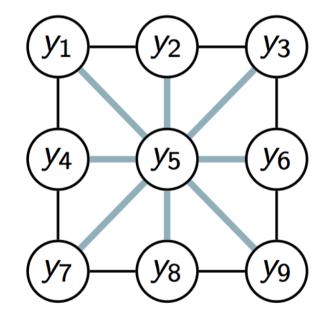


Clique potentials

Arity

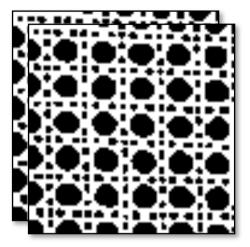


4-connected, \mathcal{N}_4

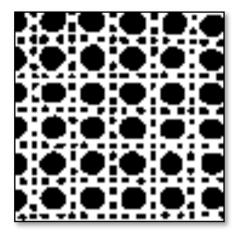


8-connected, \mathcal{N}_8

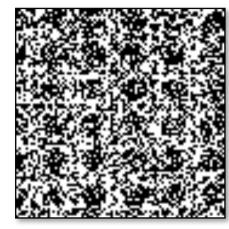
Reason 1: Texture modelling



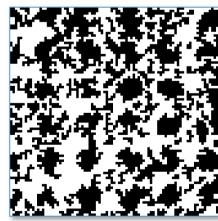
Training images



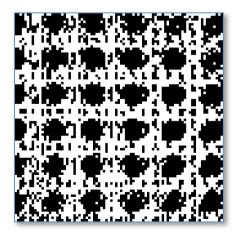
Test image



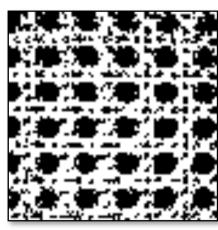
Test image (60% Noise)



Result MRF 4-connected (neighbours)

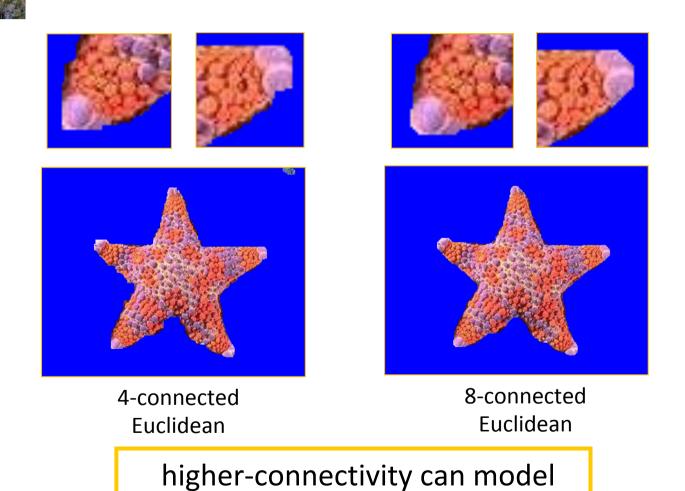


Result MRF 4-connected



Result MRF 9-connected (7 attractive; 2 repulsive)

Reason2: Discretization artefacts



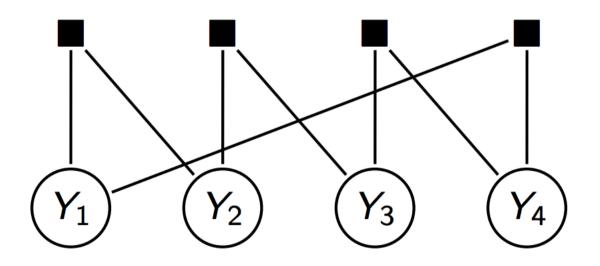
true Euclidean length

[Boykov et al. '03; '05]

Graphical representation

Example

$$E(\mathbf{y}) = \psi(y_1, y_2) + \psi(y_2, y_3) + \psi(y_3, y_4) + \psi(y_4, y_1)$$

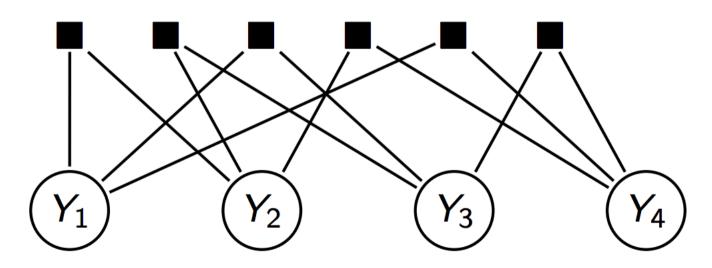


factor graph

Graphical representation

Example

$$E(\mathbf{y}) = \sum_{i,j} \psi(y_i, y_j)$$

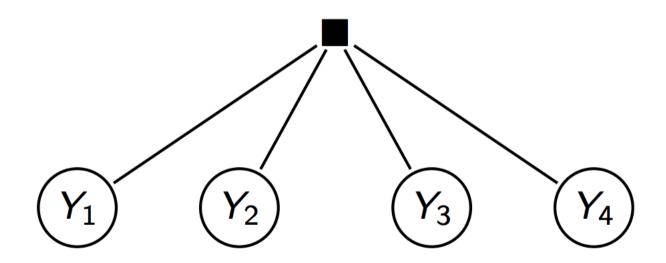


factor graph

Graphical representation

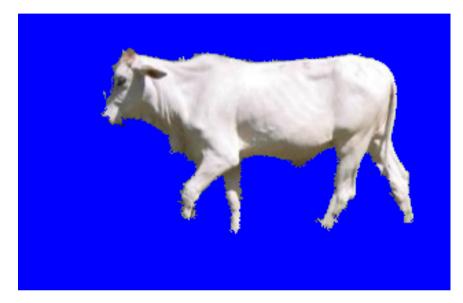
Example

$$E(\mathbf{y}) = \psi(y_1, y_2, y_3, y_4)$$



factor graph

Binary Image Segmentation

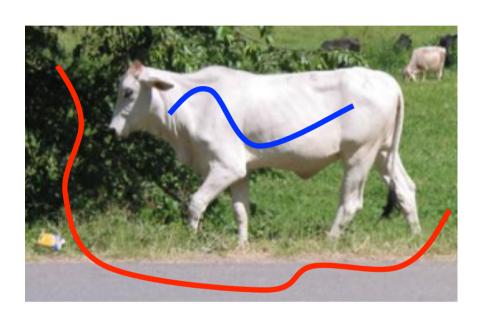


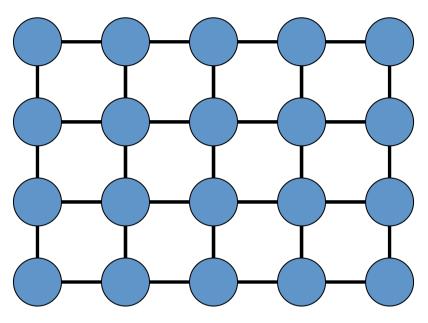
How?

Cost function Models *our* knowledge about natural images

Optimize cost function to obtain the segmentation

Binary Image Segmentation





Object - white, Background - green/grey

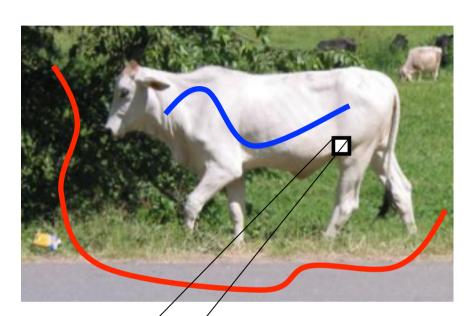
Graph
$$G = (V,E)$$

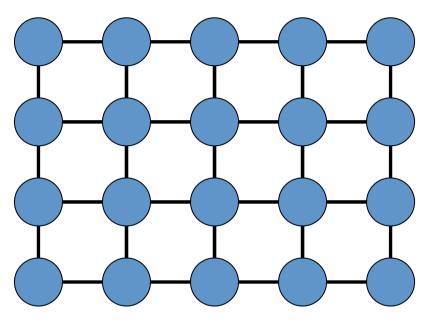
Each vertex corresponds to a pixel

Edges define a 4-neighbourhood grid graph

Assign a label to each vertex from L = {obj,bkg}

Binary Image Segmentation





Object - white, Background - green/grey

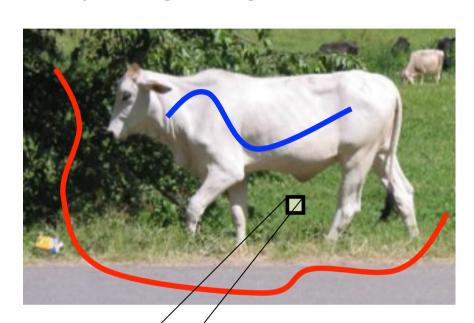
Graph G = (V,E)

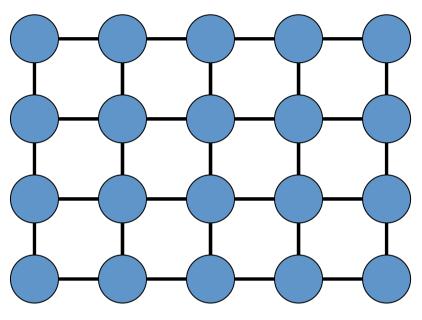
Cost of a labelling f : V → L

Per Vertex Cost

Cost of label 'obj' low Cost of label 'bkg' high

Binary Image Segmentation





Object - white, Background - green/grey

Graph G = (V,E)

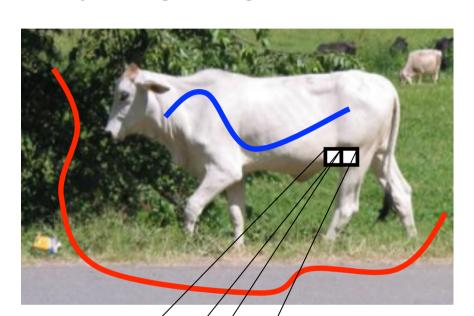
Cost of a labelling f: V → L

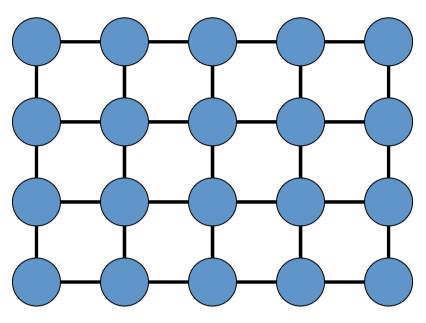
Per Vertex Cost

Cost of label 'obj' high Cost of label 'bkg' low

UNARY COST

Binary Image Segmentation





Object - white, Background - green/grey

Graph G = (V,E)

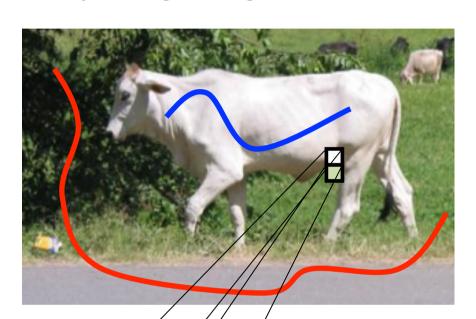
Cost of a labelling f: V → L

Per Edge Cost

Cost of same label low

Cost of different labels high

Binary Image Segmentation



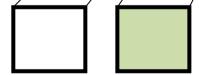


Object - white, Background - green/grey

Graph G = (V,E)

Cost of a labelling f: V → L

Per Edge Cost

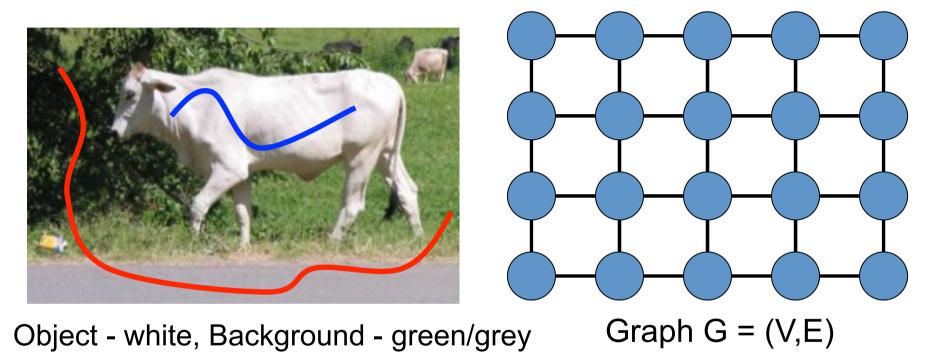


Cost of same label high

Cost of different labels low

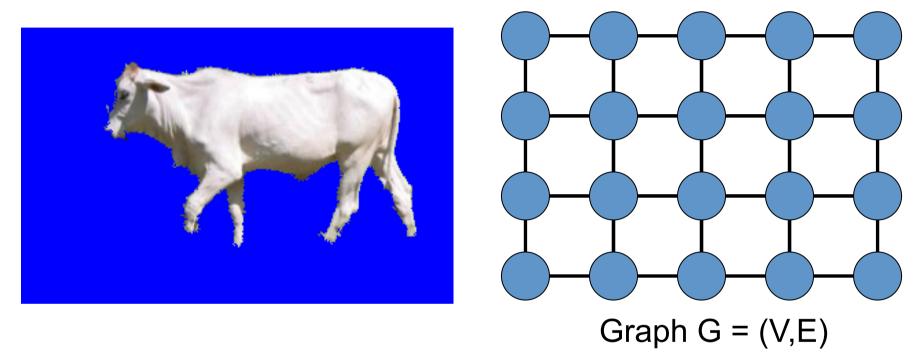
PAIRWISE COST

Binary Image Segmentation



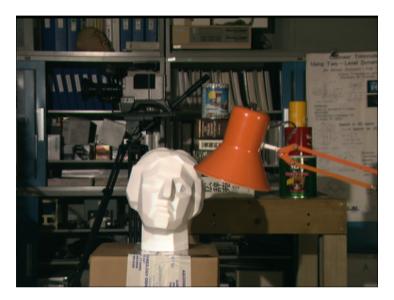
Problem: Find the labelling with minimum cost f*

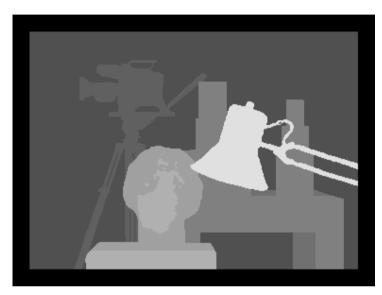
Binary Image Segmentation



Problem: Find the labelling with minimum cost f*

Stereo Correspondence





Disparity Map

How?

Minimizing a cost function

Stereo Correspondence





Vertex corresponds to a pixel

Edges define grid graph

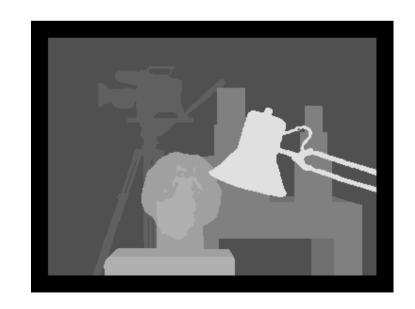
L = {disparities}

Stereo Correspondence

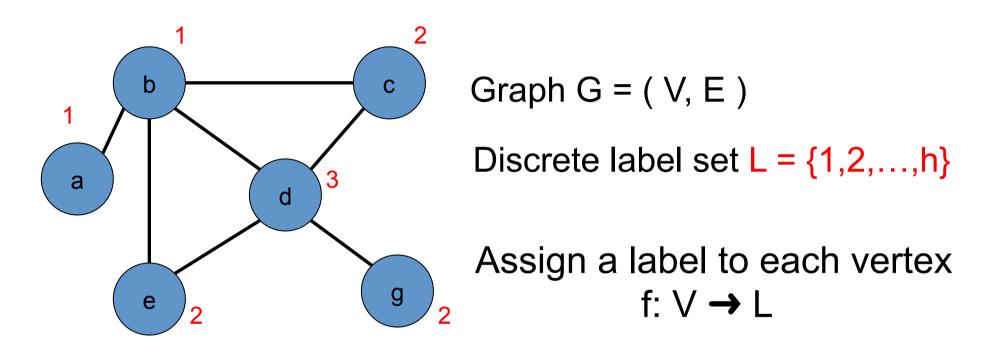
Cost of labelling f:

Unary cost + Pairwise Cost

Find minimum cost f*



The General Problem



Cost of a labelling Q(f)

Unary Cost Pairwise Cost

Find $f^* = arg min Q(f)$

Overview

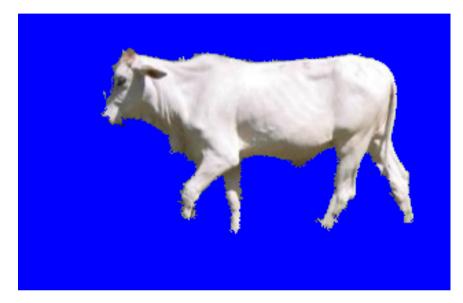
- Basics: problem formulation
 - Energy Function
 - MAP Estimation
 - Computing min-marginals
 - Reparameterization
- Solutions
 - Belief Propagation and related methods
 - Graph cuts

Remainder of today's lecture

- Belief propagation
- TRW
- Graph cuts

Belief Propagation

Binary Image Segmentation

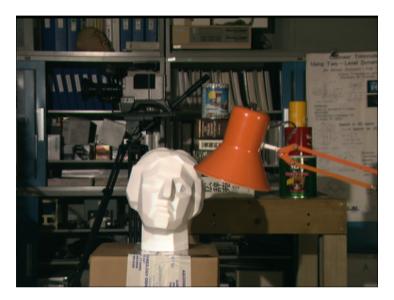


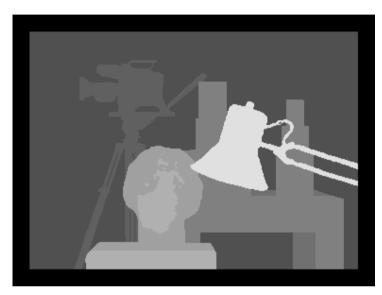
How?

Cost function Models *our* knowledge about natural images

Optimize cost function to obtain the segmentation

Stereo Correspondence



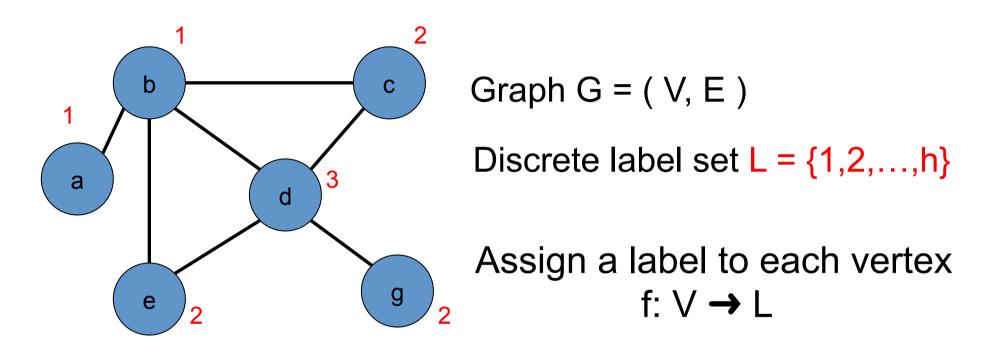


Disparity Map

How?

Minimizing a cost function

The General Problem



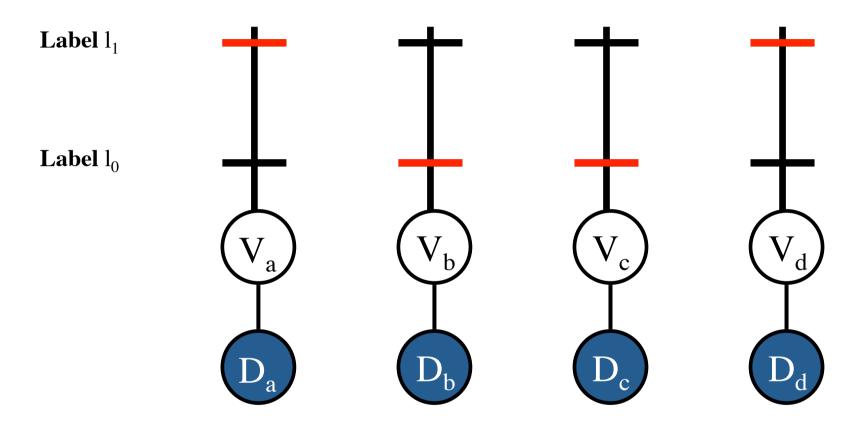
Cost of a labelling Q(f)

Unary Cost Pairwise Cost

Find $f^* = arg min Q(f)$

Overview

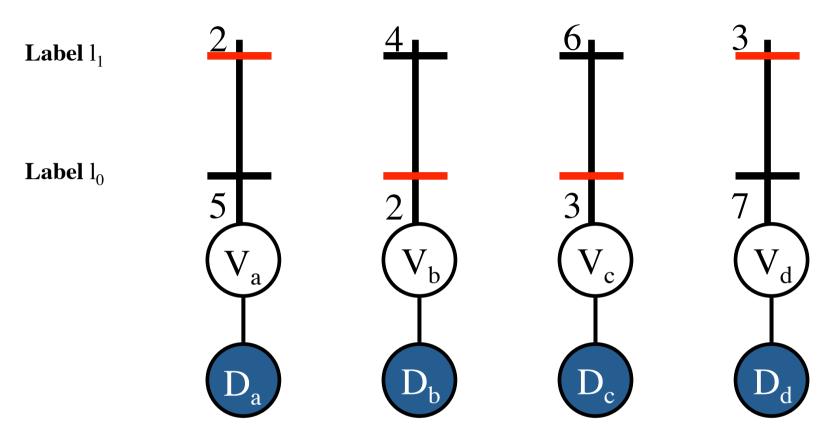
- Basics: problem formulation
 - Energy Function
 - MAP Estimation
 - Computing min-marginals
 - Reparameterization
- Solutions
 - Belief Propagation and related methods
 - Graph cuts



Random Variables $V = \{V_a, V_b,\}$

Labels L = $\{I_0, I_1,\}$ Data D

Labelling f: {a, b, } → {0,1, ...}

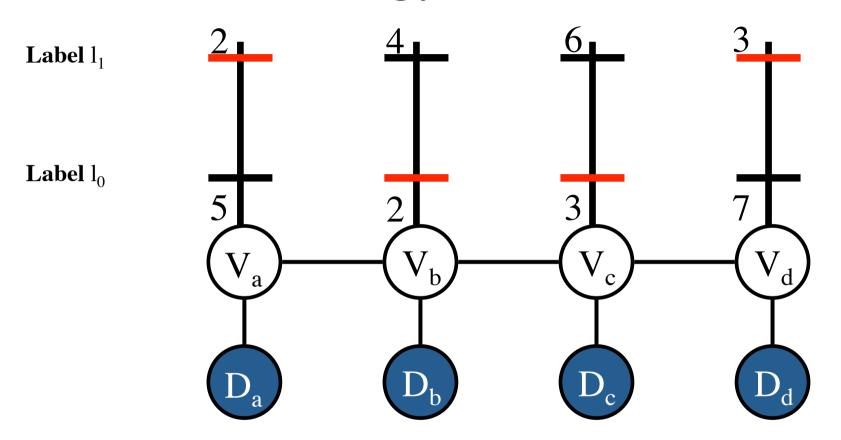


Q(f) =
$$\sum_{a} \theta_{a;f(a)}$$

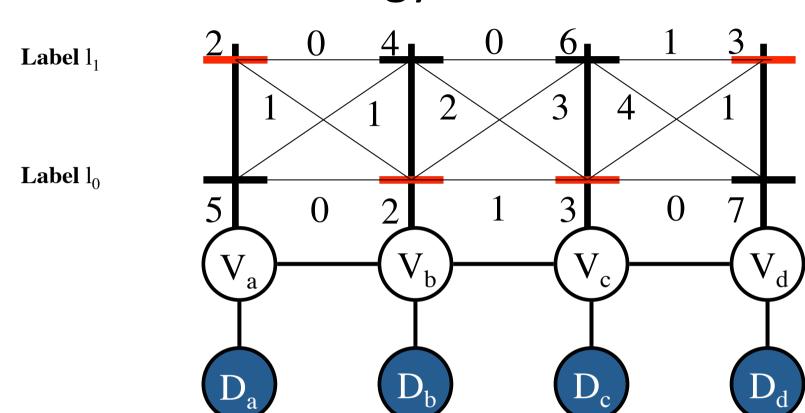
Unary Potential

Easy to minimize

Neighbourhood

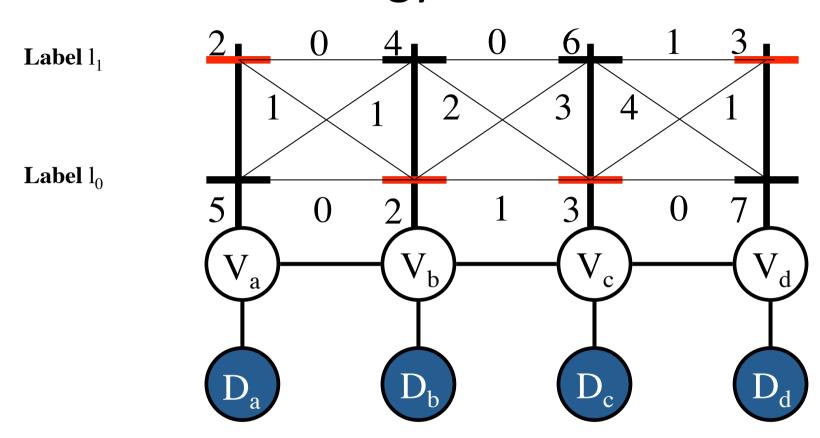


E:
$$(a,b) \in E$$
 iff V_a and V_b are neighbours
E = { (a,b) , (b,c) , (c,d) }



Pairwise Potential

Q(f) =
$$\sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$



$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$

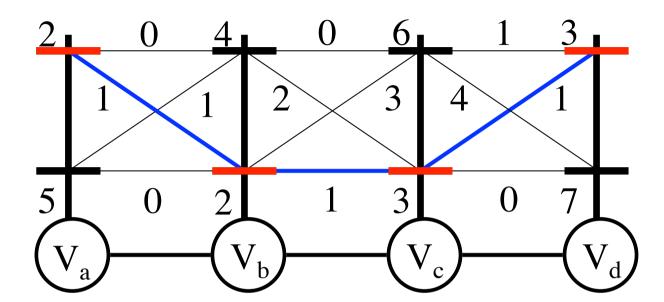
Parameter

Overview

- Basics: problem formulation
 - Energy Function
 - MAP Estimation
 - Computing min-marginals
 - Reparameterization
- Solutions
 - Belief Propagation and related methods
 - Graph cuts

Label l_1

Label l_0

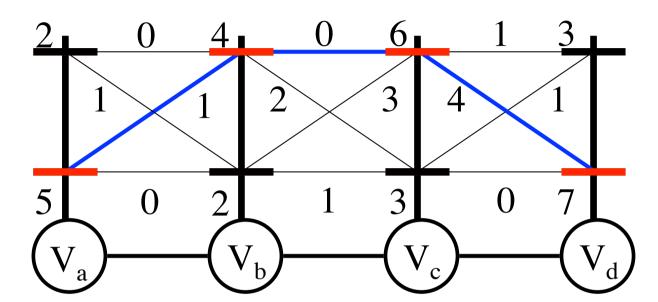


$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$

$$2+1+2+1+3+1+3=13$$

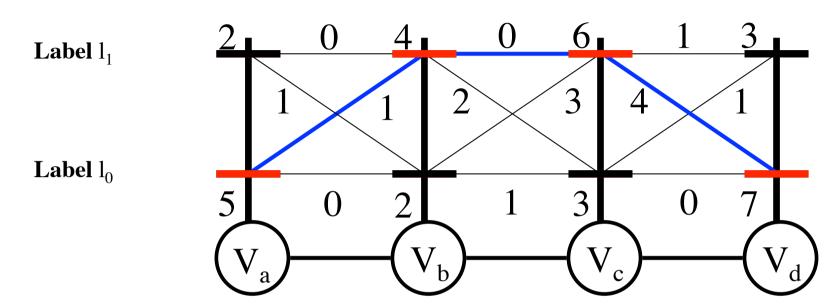
Label l_1

Label l_0



$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$

$$5 + 1 + 4 + 0 + 6 + 4 + 7 = 27$$



$$q^* = \min Q(f; \theta) = Q(f^*; \theta)$$

$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$

 $f^* = arg min Q(f; \theta)$

Equivalent to maximizing the associated probability

16 possible labellings

$$f^* = \{1, 0, 0, 1\}$$

 $q^* = 13$

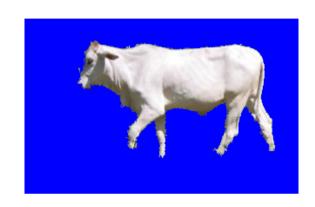
f(a)	f(b)	f(c)	f(d)	Q(f; θ)
0	0	0	0	18
0	0	0	1	15
0	0	1	0	27
0	0	1	1	20
0	~	0	0	22
0	~	0	1	19
0	1	1	0	27
0	1	1	1	20

f(a)	f(b)	f(c)	f(d)	Q(f; θ)
1	0	0	0	16
1	0	0	1	13
1	0	1	0	25
1	0	1	1	18
1	1	0	0	18
1	~	0	1	15
1	1	1	0	23
1	1	1	1	16

Computational Complexity

Segmentation

2|V|



|V| = number of pixels ≈ 153600

Can we do better than brute-force?

MAP Estimation is NP-hard!!

MAP Inference / Energy Minimization

 Computing the assignment minimizing the energy in NP-hard in general

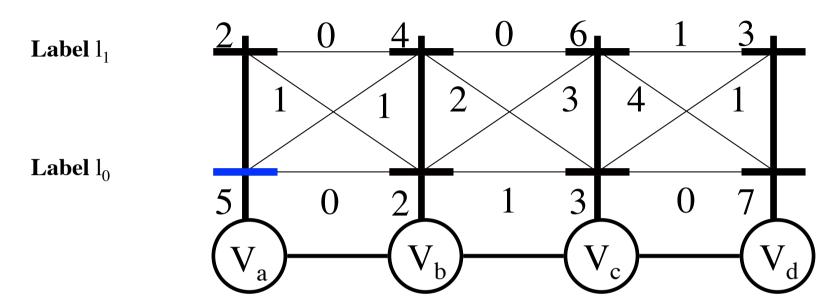
$$\underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmin}} E(\mathbf{y}; \mathbf{x}) = \underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} P(\mathbf{y} \mid \mathbf{x})$$

- Exact inference is possible in some cases, e.g.,
 - Low treewidth graphs → message-passing
 - Submodular potentials → graph cuts
- Efficient approximate inference algorithms exist
 - Message passing on general graphs
 - Move-making algorithms
 - Relaxation algorithms

Overview

- Basics: problem formulation
 - Energy Function
 - MAP Estimation
 - Computing min-marginals
 - Reparameterization
- Solutions
 - Belief Propagation and related methods
 - Graph cuts

Min-Marginals



Not a marginal (no summation)

 $f^* = arg min Q(f; \theta) such that f(a) = i$

Min-marginal q_{a;i}

Min-Marginals

16 possible labellings

$$q_{a:0} = 15$$

f(a)	f(b)	f(c)	f(d)	Q(f; θ)
0_	0	0	0	18
0	0	0	1	15
0	0	1	0	27
0	0	1	1	20
0	1	0	0	22
0	1	0	1	19
0	1	1	0	27
0	1	1	1	20

f(a)	f(b)	f(c)	f(d)	Q(f; θ)
1	0	0	0	16
1	0	0	1	13
1	0	1	0	25
1	0	1	1	18
1	1	0	0	18
1	1	0	1	15
1	1	1	0	23
1	1	1	1	16

Min-Marginals

16 possible labellings

$$q_{a:1} = 13$$

f(a)	f(b)	f(c)	f(d)	Q(f; θ)
0	0	0	0	18
0	0	0	1	15
0	0	1	0	27
0	0	1	1	20
0	1	0	0	22
0	1	0	1	19
0	1	1	0	27
0	1	1	1	20

f(a)	f(b)	f(c)	f(d)	Q(f; θ)
1	0	0	0	16
1	0	0	1	13
1	0	1	0	25
1	0	1	1	18
1	1	0	0	18
1	1	0	1	15
1	1	1	0	23
1	1	1	1	16

Min-Marginals and MAP

 Minimum min-marginal of any variable = energy of MAP labelling

```
\begin{aligned} & \min_i \ q_{a;i} \\ & \min_i ( \min_f Q(f; \theta) \quad \text{such that } f(a) = i \ ) \\ & V_a \text{ has to take one label} \\ & \min_f Q(f; \theta) \end{aligned}
```

Summary

Energy Function

$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$

MAP Estimation

$$f^* = arg min Q(f; \theta)$$

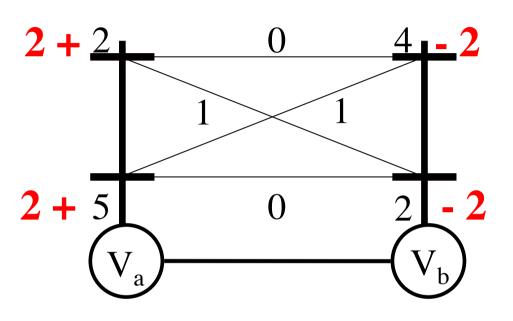
Min-marginals

$$q_{a:i} = min Q(f; \theta) s.t. f(a) = i$$

Overview

- Basics: problem formulation
 - Energy Function
 - MAP Estimation
 - Computing min-marginals
 - Reparameterization
- Solutions
 - Belief Propagation and related methods
 - Graph cuts

Reparameterization



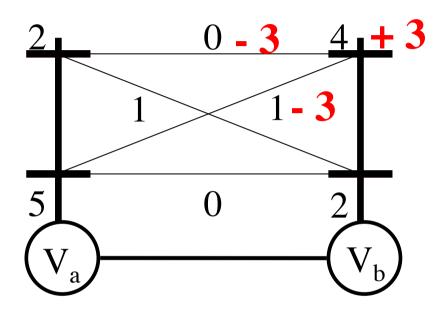
f(a)	f(b)	Q(f; θ)
0	0	7 + 2 - 2
0	1	10 + 2 - 2
1	0	5 + 2 - 2
1	1	6 + 2 - 2

Add a constant to all $\theta_{a;i}$

Subtract that constant from all $\theta_{b;k}$

$$Q(f; \theta') = Q(f; \theta)$$

Reparameterization



f(a)	f(b)	Q(f; θ)
0	0	7
0	1	10 - 3 + 3
1	0	5
1	1	6 - 3 + 3

Add a constant to one $\theta_{b:k}$

Subtract that constant from $\theta_{ab;ik}$ for all 'i'

$$Q(f; \theta') = Q(f; \theta)$$

Reparameterization

 θ ' is a reparameterization of θ , iff

$$Q(f; \theta') = Q(f; \theta)$$
, for all $f = \theta'$

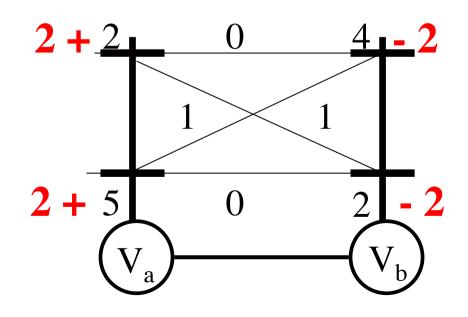
Equivalently

$$\theta'_{a;i} = \theta_{a;i} + M_{ba;i}$$

$$\theta'_{b;k} = \theta_{b;k} + M_{ab;k}$$

$$\theta'_{ab;ik} = \theta_{ab;ik} - M_{ab;k} - M_{ba;i}$$

Kolmogorov, PAMI, 2006



Recap

MAP Estimation

$$f^* = arg min Q(f; \theta)$$

$$Q(f; \theta) = \sum_{a} \theta_{a;f(a)} + \sum_{(a,b)} \theta_{ab;f(a)f(b)}$$

Min-marginals

$$q_{a:i} = min Q(f; \theta) s.t. f(a) = i$$

Reparameterization

$$Q(f; \theta') = Q(f; \theta)$$
, for all $f = \theta'$

Overview

- Basics: problem formulation
 - Energy Function
 - MAP Estimation
 - Computing min-marginals
 - Reparameterization
- Solutions
 - Belief Propagation and related methods
 - Graph cuts

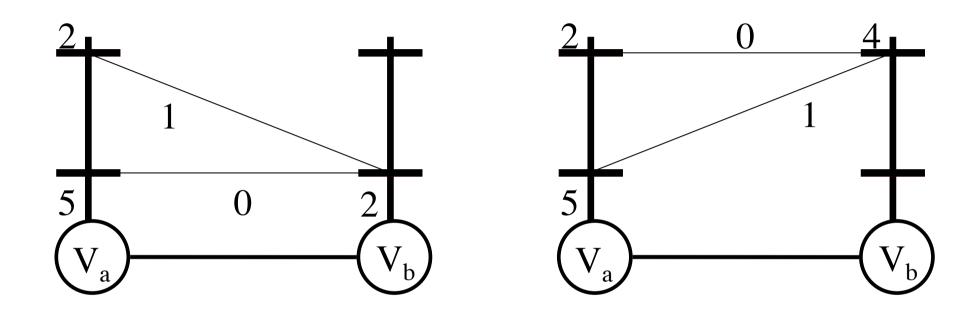
Belief Propagation

Remember, some MAP problems are easy

Belief Propagation gives exact MAP for chains

Exact MAP for trees

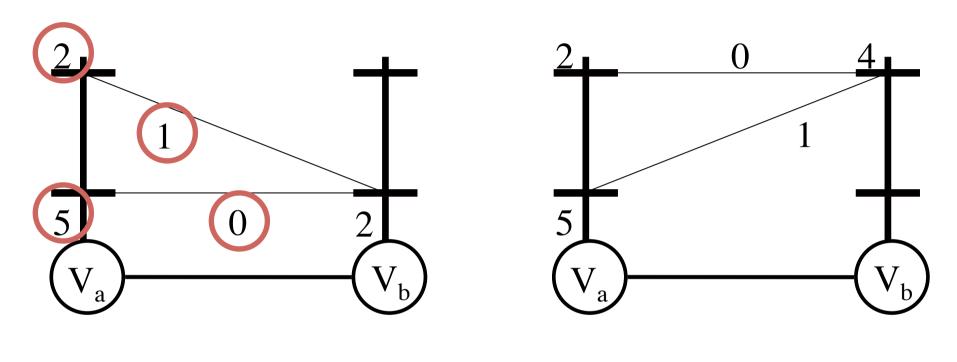
Clever Reparameterization



Add a constant to one $\theta_{b:k}$

Subtract that constant from $\theta_{ab;ik}$ for all 'i'

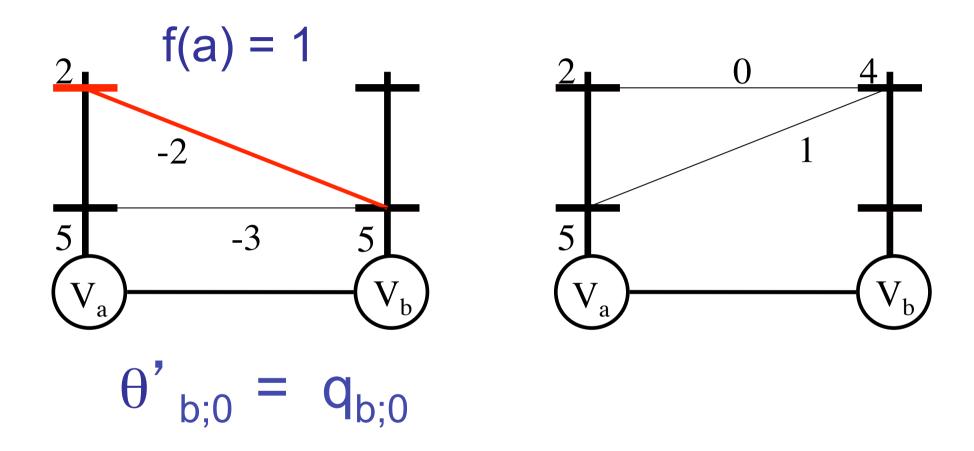
$$\theta'_{b;k} = q_{b;k}$$



$$M_{ab;0} = \min_{\theta_{a;0} + \theta_{ab;00}} \theta_{a;0} = 5 + 0$$

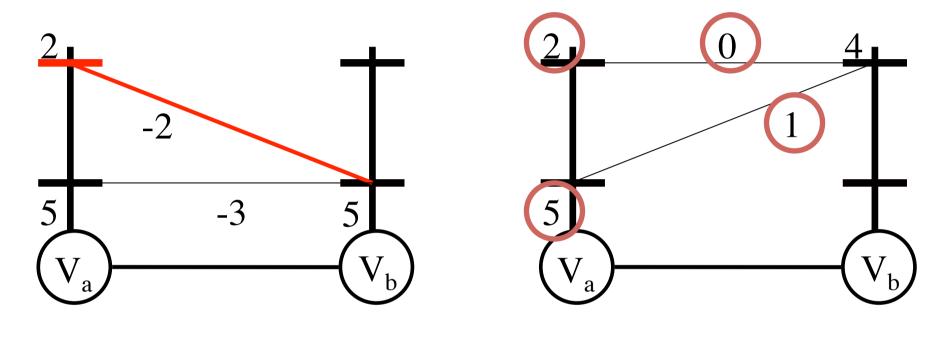
 $\theta_{a;1} + \theta_{ab;10} = 2 + 1$

$$\theta'_{b;k} = q_{b;k}$$



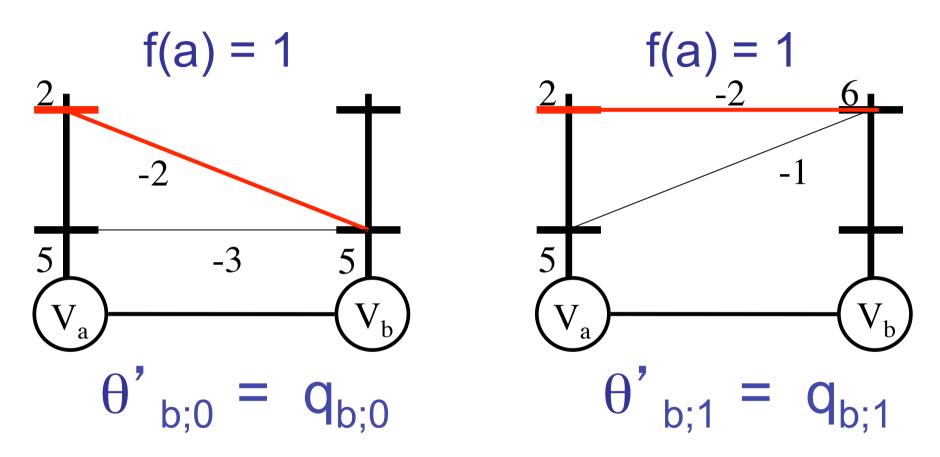
Potentials along the red path add up to 0

$$\theta'_{b;k} = q_{b;k}$$



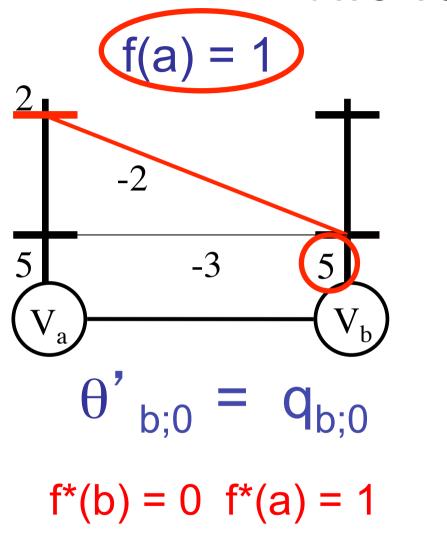
$$M_{ab;1} = \min \begin{array}{l} \theta_{a;0} + \theta_{ab;01} = 5 + 1 \\ \theta_{a;1} + \theta_{ab;11} = 2 + 0 \end{array}$$

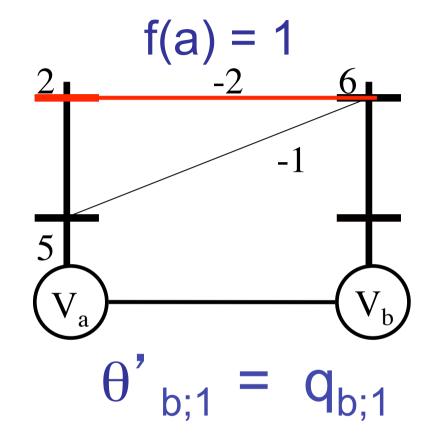
$$\theta'_{b;k} = q_{b;k}$$



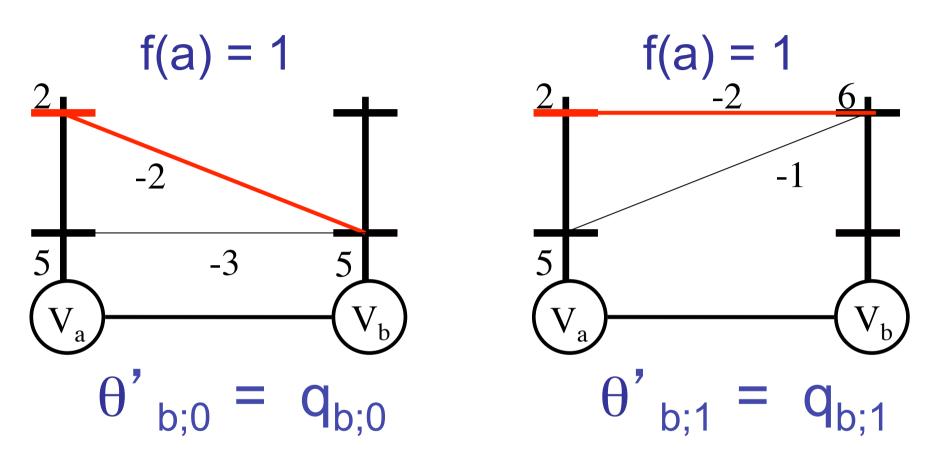
Minimum of min-marginals = MAP estimate

$$\theta'_{b;k} = q_{b;k}$$





$$\theta'_{b;k} = q_{b;k}$$



We get all the min-marginals of V_b

$$\theta'_{b;k} = q_{b;k}$$

Recap

We only need to know two sets of equations

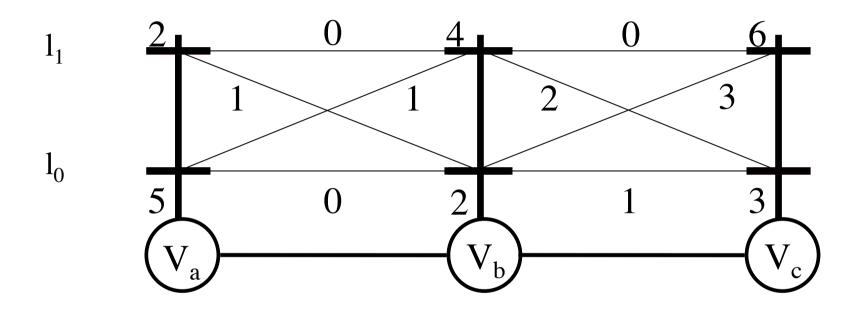
General form of Reparameterization

$$\theta'_{a;i} = \theta_{a;i} + M_{ba;i}$$
 $\theta'_{b;k} = \theta_{b;k} + M_{ab;k}$
 $\theta'_{ab;ik} = \theta_{ab;ik} + M_{ab;k} - M_{ba;i}$

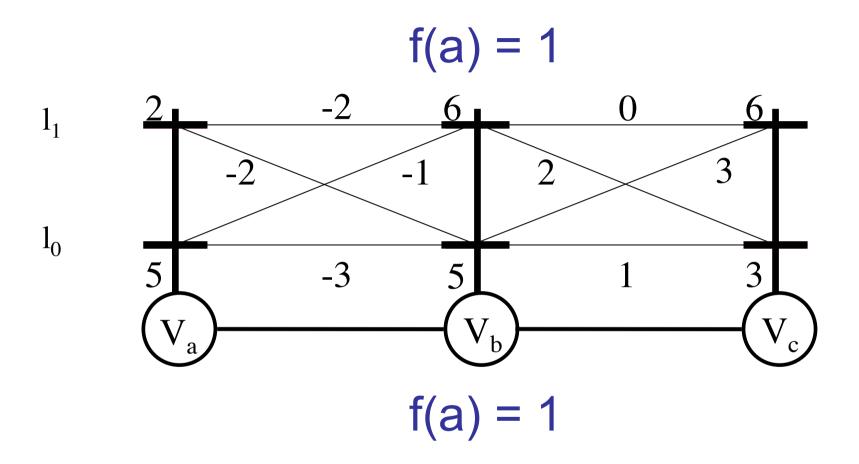
Reparameterization of (a,b) in Belief Propagation

$$M_{ab;k} = min_i \{ \theta_{a;i} + \theta_{ab;ik} \}$$

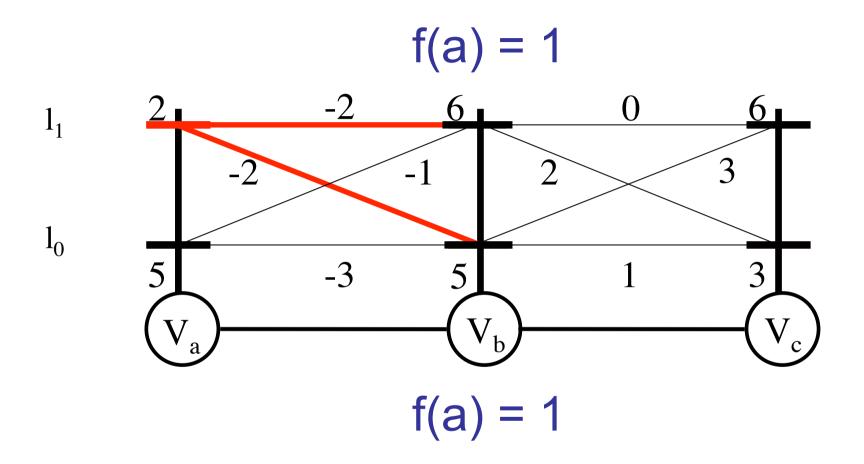
 $M_{ba;i} = 0$



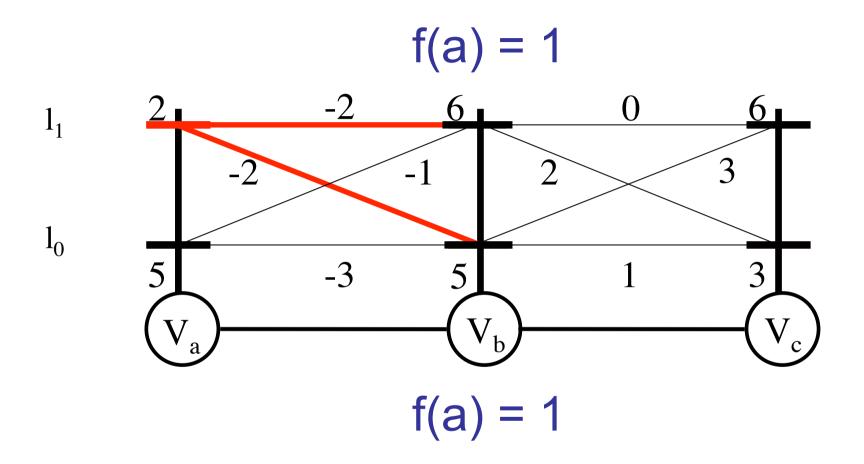
Reparameterize the edge (a,b) as before



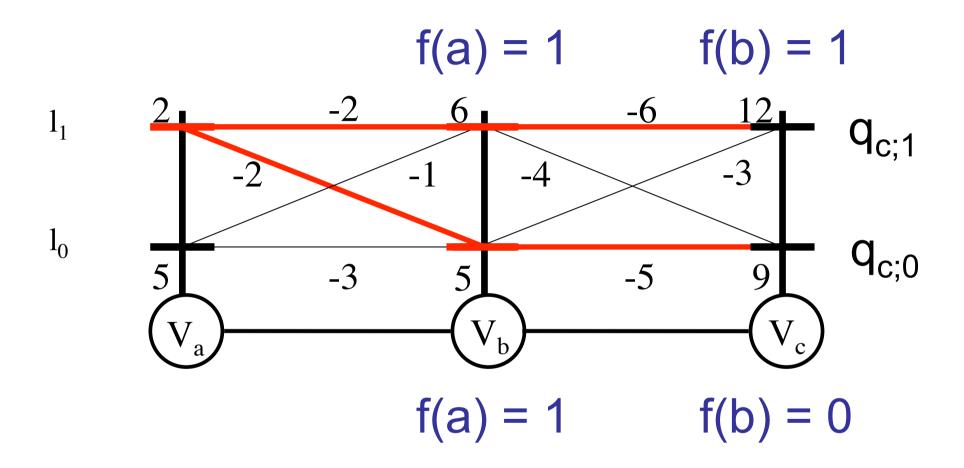
Reparameterize the edge (a,b) as before



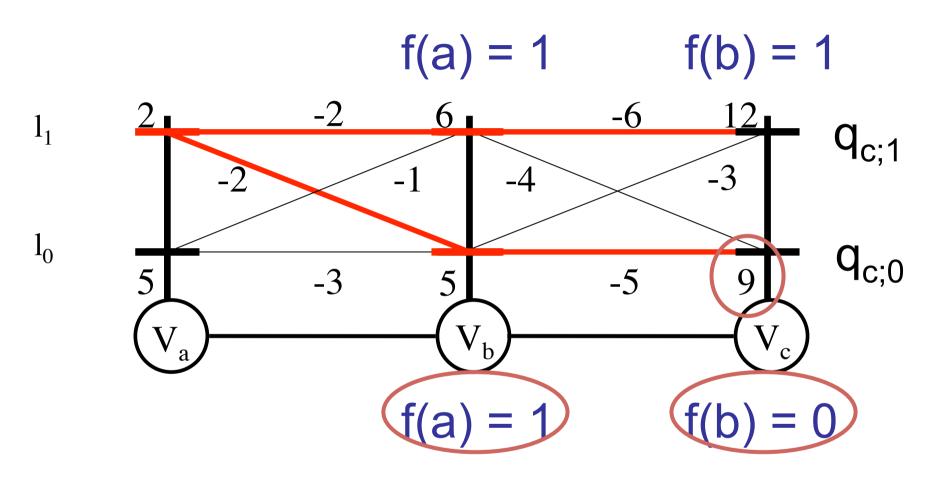
Reparameterize the edge (a,b) as before Potentials along the red path add up to 0



Reparameterize the edge (b,c) as before Potentials along the red path add up to 0



Reparameterize the edge (b,c) as before Potentials along the red path add up to 0



$$f^*(c) = 0$$
 $f^*(b) = 0$ $f^*(a) = 1$

Generalizes to any length chain

$$f^*(c) = 0$$
 $f^*(b) = 0$ $f^*(a) = 1$

Only Dynamic Programming

Why Dynamic Programming?

 $3 \text{ variables} \equiv 2 \text{ variables} + \text{book-keeping}$ n variables \equiv (n-1) variables + book-keeping

Start from left, go to right

Reparameterize current edge (a,b)

$$\begin{aligned} \mathbf{M}_{ab;k} &= \min_{i} \left\{ \theta_{a;i} + \theta_{ab;ik} \right\} \\ \theta'_{b;k} &= \theta_{b;k} \mathbf{M}_{ab;k} \theta'_{ab;ik} = \theta_{ab;ik} \mathbf{M}_{ab;k} \end{aligned}$$

Repeat

Why Dynamic Programming?

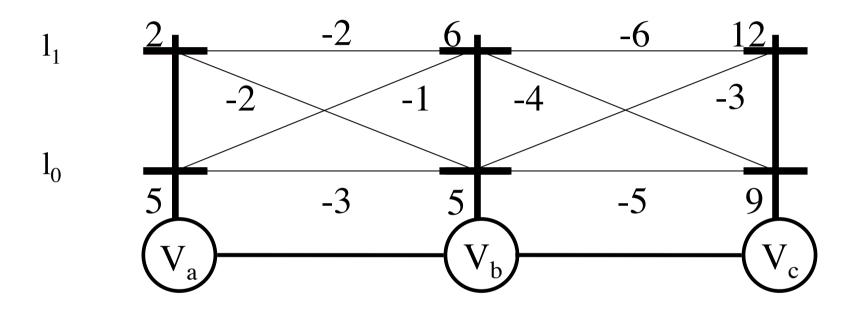
Messages Message Passing

Why stop at dynamic programming?

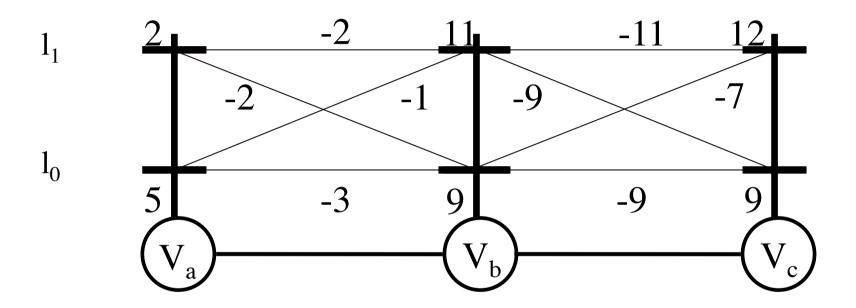
Start from left, go to right

Reparameterize current edge (a,b)

Repeat

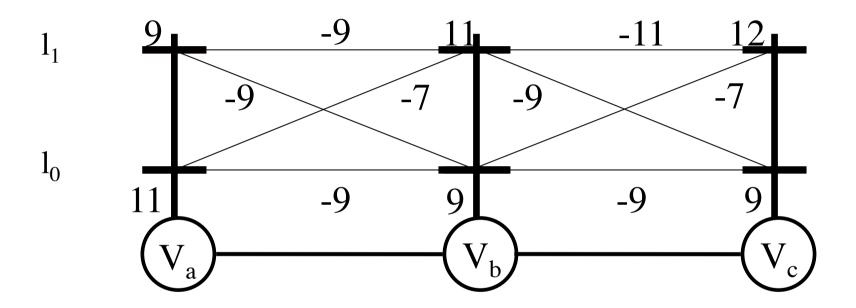


Reparameterize the edge (c,b) as before



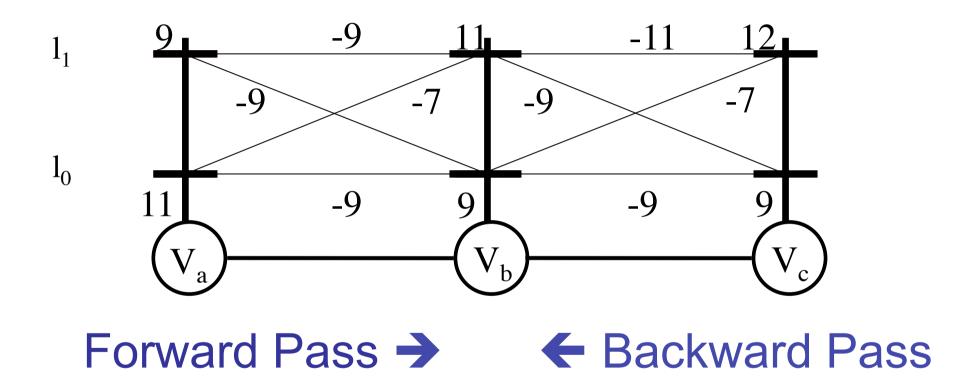
Reparameterize the edge (c,b) as before

$$\theta'_{b;i} = q_{b;i}$$

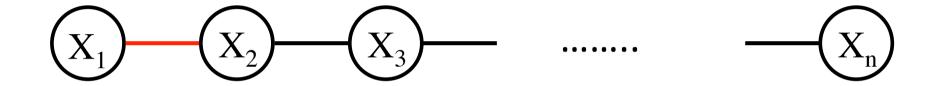


Reparameterize the edge (b,a) as before

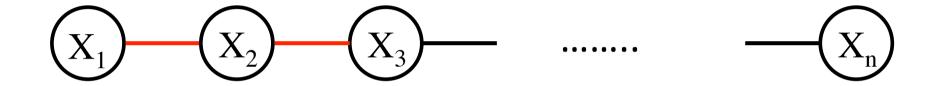
$$\theta'_{a;i} = q_{a;i}$$



All min-marginals are computed



Reparameterize the edge (1,2)



Reparameterize the edge (2,3)

Reparameterize the edge (3,4)

Reparameterize the edge (n-1,n)

Min-marginals e_n(i) for all labels

Belief Propagation on Chains

Start from left, go to right

Reparameterize current edge (a,b)

$$M_{ab;k} = \min_{i} \{ \theta_{a;i} + \theta_{ab;ik} \}$$

$$\theta'_{b;k} = \theta_{b;k} M_{ab;k} \theta'_{ab;ik} = \theta_{ab;ik} M_{ab;k}$$

Repeat till the end of the chain

Start from right, go to left

Repeat till the end of the chain

Belief Propagation on Chains

- Generalizes to chains of any length
- A way of computing reparam constants
- Forward Pass Start to End
 - MAP estimate
 - Min-marginals of final variable
- Backward Pass End to start
 - All other min-marginals

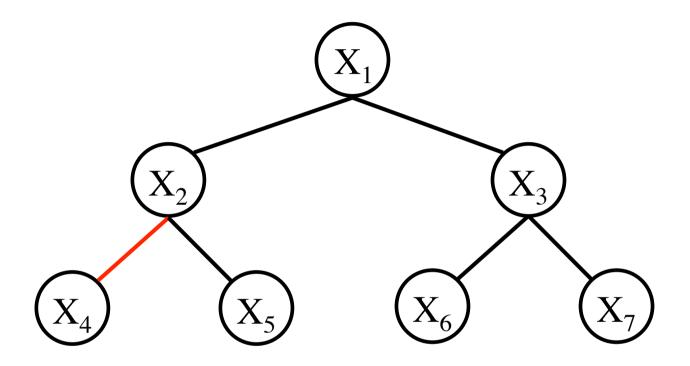
Computational Complexity

Number of reparameterization constants = (n-1)h

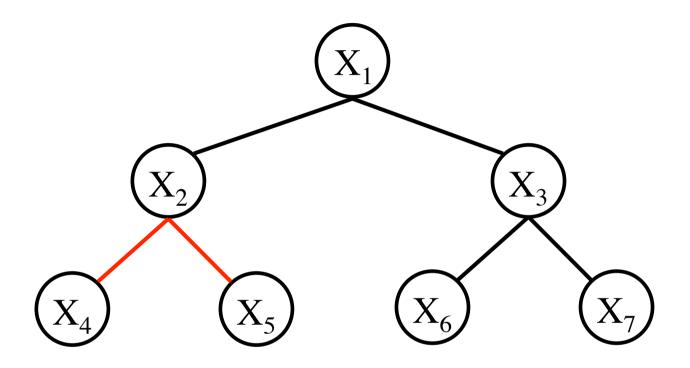
Complexity for each constant = O(h)

Total complexity = $O(nh^2)$

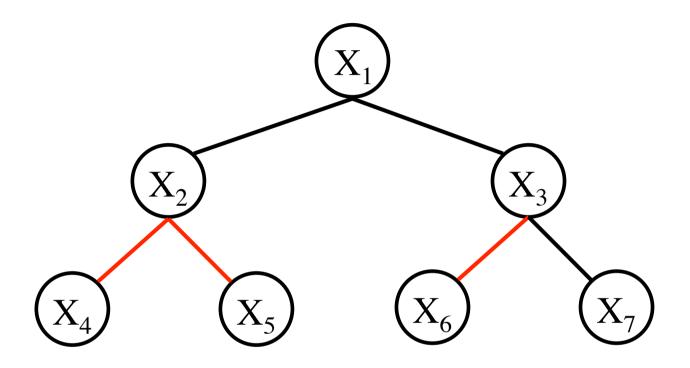
Better than brute-force O(hⁿ)



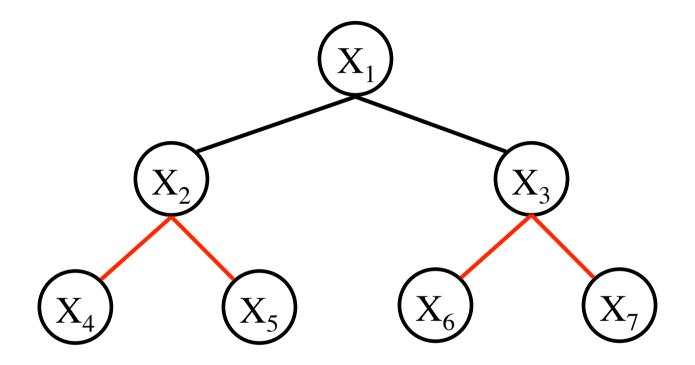
Reparameterize the edge (4,2)



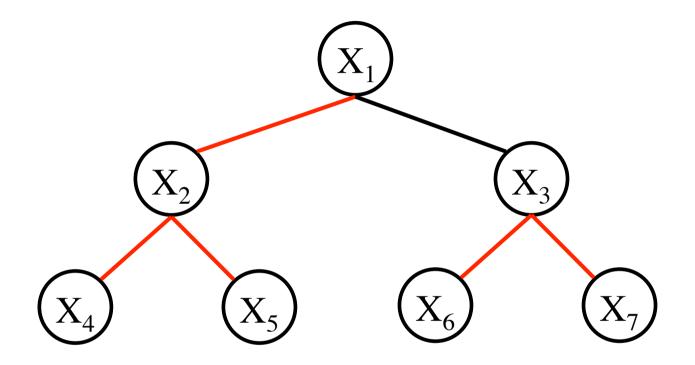
Reparameterize the edge (5,2)



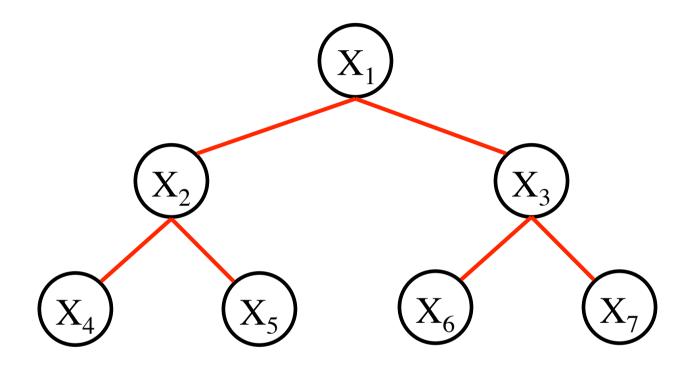
Reparameterize the edge (6,3)



Reparameterize the edge (7,3)

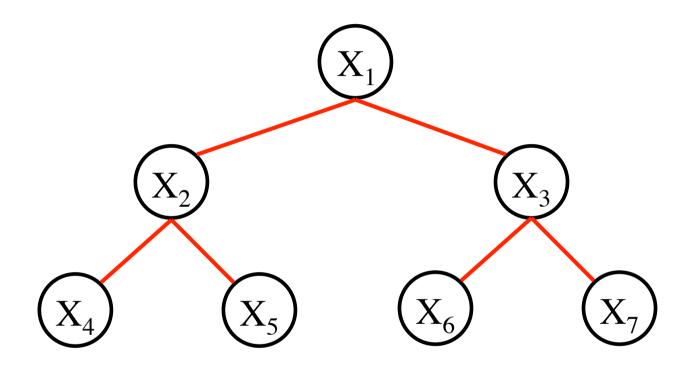


Reparameterize the edge (2,1)



Reparameterize the edge (3,1)

Min-marginals e₁(i) for all labels



Start from leaves and move towards root

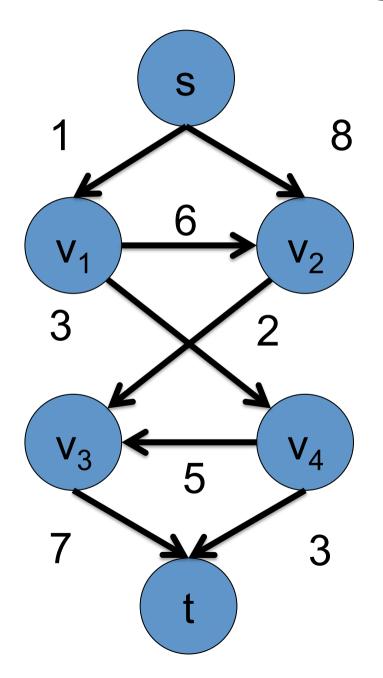
Pick the minimum of min-marginals

Backtrack to find the best labeling x

Outline

- Preliminaries
 - s-t Flow
 - s-t Cut
 - Flows vs. Cuts

- Maximum Flow
- Algorithms
- Energy minimization with max flow/min cut



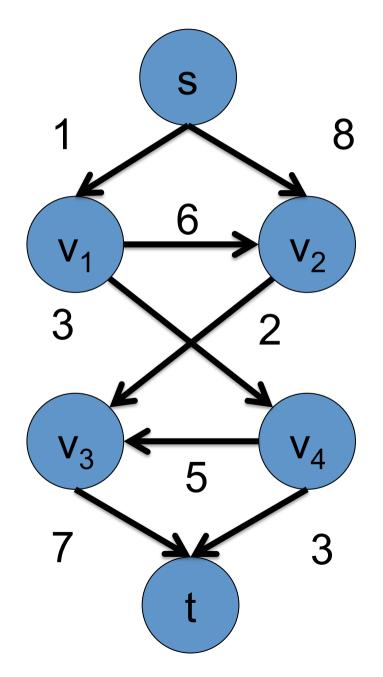
Function flow: A → R

Flow of arc ≤ arc capacity

Flow is non-negative

For all vertex except s,t

Incoming flow



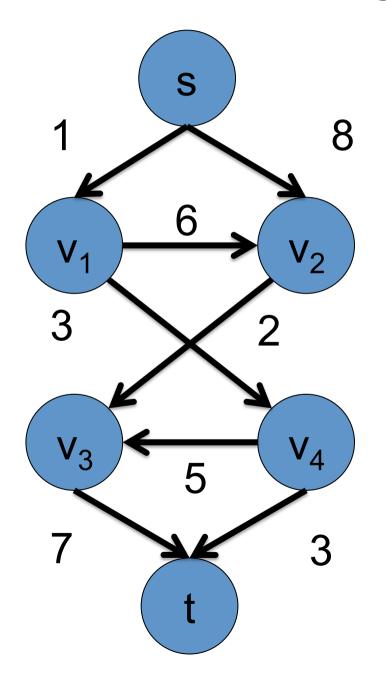
Function flow: A → R

 $flow(a) \le c(a)$

Flow is non-negative

For all vertex except s,t

Incoming flow



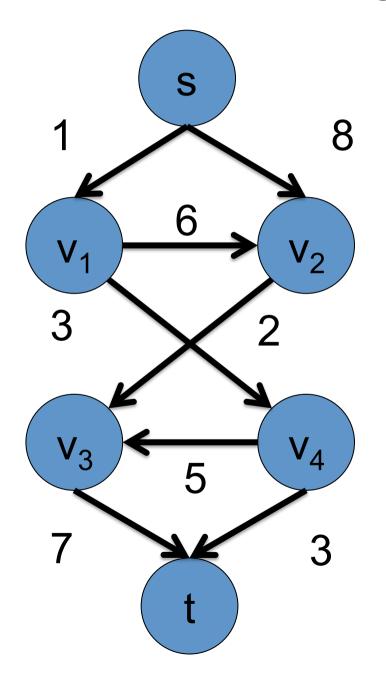
Function flow: A → R

 $flow(a) \le c(a)$

 $flow(a) \ge 0$

For all vertex except s,t

Incoming flow



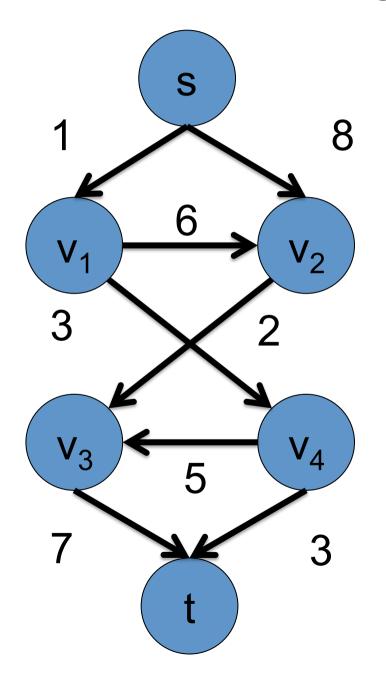
Function flow: A → R

 $flow(a) \le c(a)$

 $flow(a) \ge 0$

For all $v \in V \setminus \{s,t\}$

Incoming flow



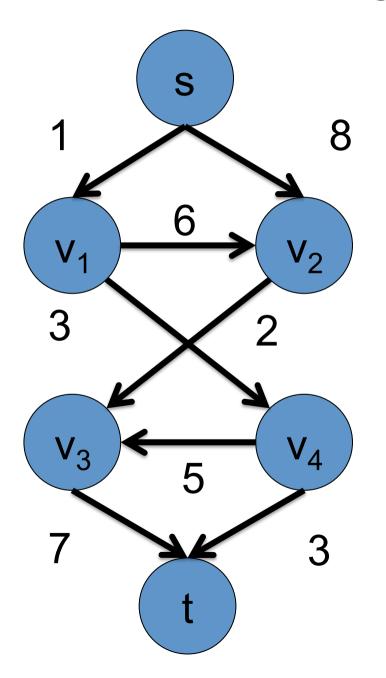
Function flow: A → R

 $flow(a) \le c(a)$

 $flow(a) \ge 0$

For all $v \in V \setminus \{s,t\}$

 $\Sigma_{(u,v)\in A}$ flow((u,v))



Function flow: A → R

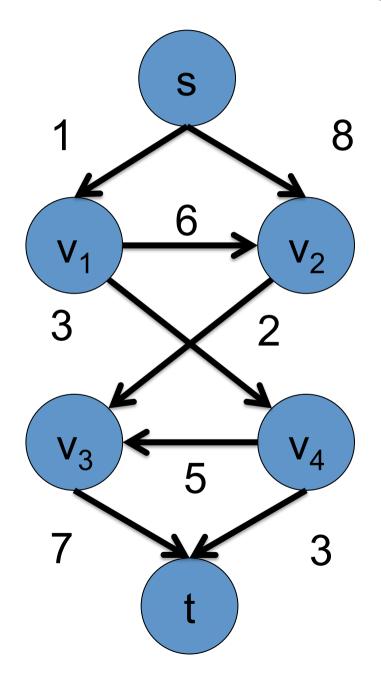
 $flow(a) \le c(a)$

 $flow(a) \ge 0$

For all $v \in V \setminus \{s,t\}$

$$\Sigma_{(u,v)\in A}$$
 flow((u,v))

= $\Sigma_{(v,u)\in A}$ flow((v,u))

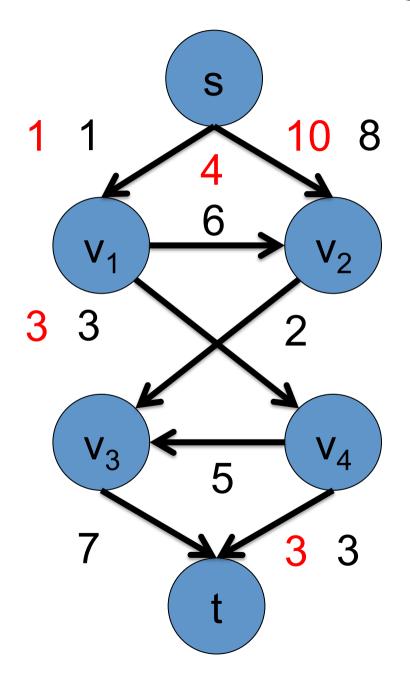


Function flow: A → R

 $flow(a) \le c(a)$

 $flow(a) \ge 0$

$$E_{flow}(v) = 0$$

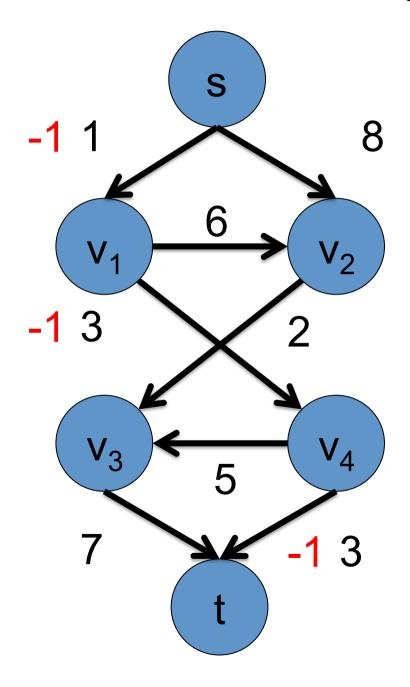


Function flow: A → R

 $flow(a) \le c(a)$

 $flow(a) \ge 0$

$$E_{flow}(v) = 0$$

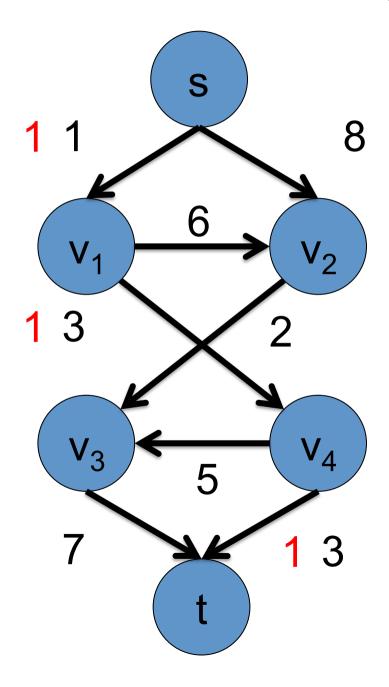


Function flow: A → R

 $flow(a) \le c(a)$

 $flow(a) \ge 0$

$$E_{flow}(v) = 0$$



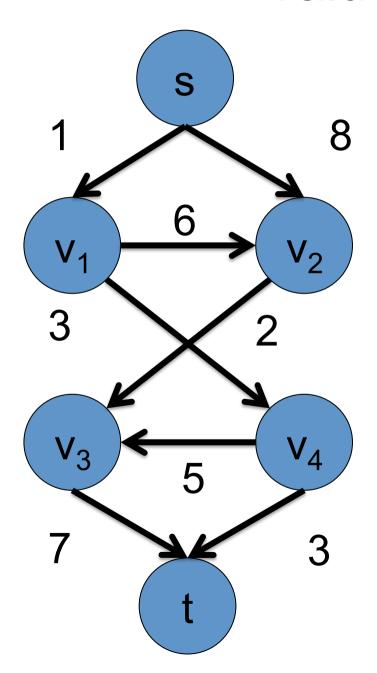
Function flow: A → R

 $flow(a) \le c(a)$

 $flow(a) \ge 0$

$$E_{flow}(v) = 0$$

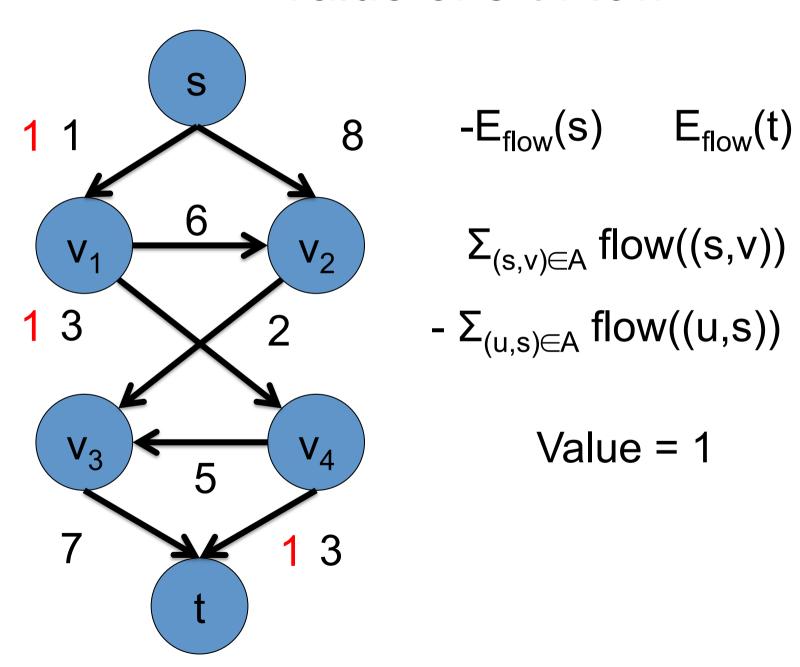
Value of s-t Flow



Outgoing flow of s

- Incoming flow of s

Value of s-t Flow



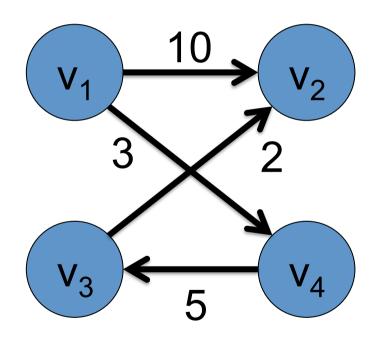
Outline

- Preliminaries
 - Functions and Excess Functions
 - s-t Flow
 - -s-t Cut
 - Flows vs. Cuts

- Maximum Flow
- Algorithms
- Energy minimization with max flow/min cut

$$D = (V, A)$$

Let U be a subset of V



C is a set of arcs such that

- (u,v) ∈ A
- u ∈ U
- v ∈ V\U

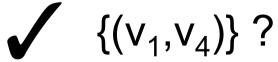
C is a cut in the digraph D

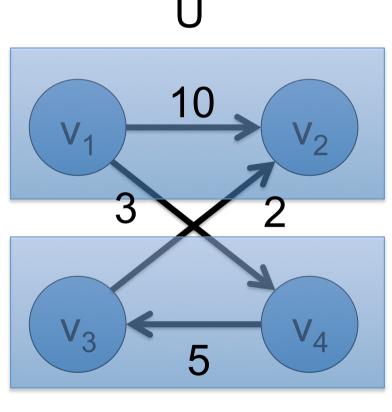
$$D = (V, A)$$

What is C?

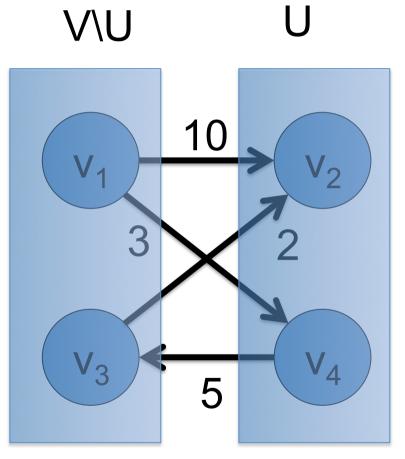
$$\{(v_1,v_2),(v_1,v_4)\}$$
?

$$\{(v_1,v_4),(v_3,v_2)\}$$
?





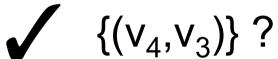
V\U



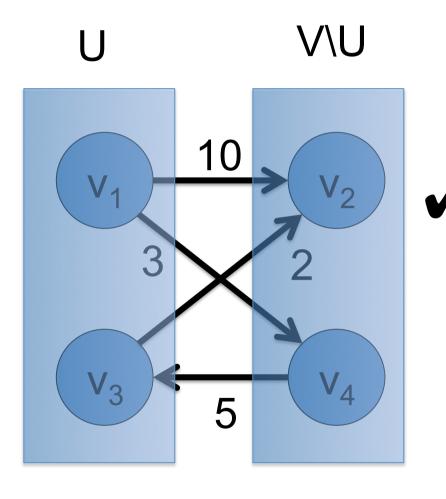
$$D = (V, A)$$

What is C?

$$\{(v_1,v_2),(v_1,v_4),(v_3,v_2)\}$$
?



$$\{(v_1,v_4),(v_3,v_2)\}$$
?



$$D = (V, A)$$

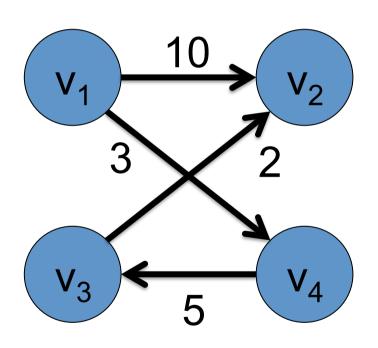
What is C?

$$\{(v_1,v_2),(v_1,v_4),(v_3,v_2)\}$$
?

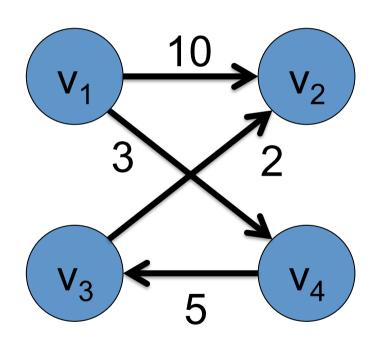
$$\{(v_3, v_2)\}$$
?

$$\{(v_1,v_4),(v_3,v_2)\}$$
?

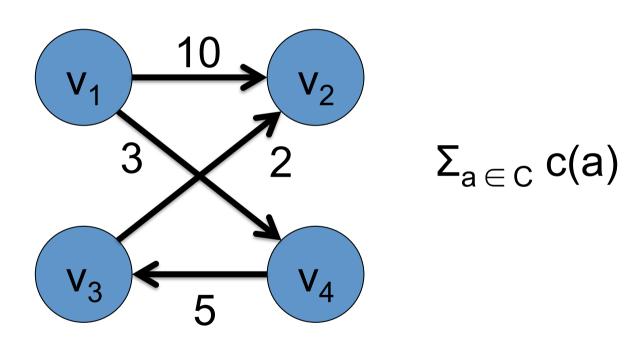
$$D = (V, A)$$

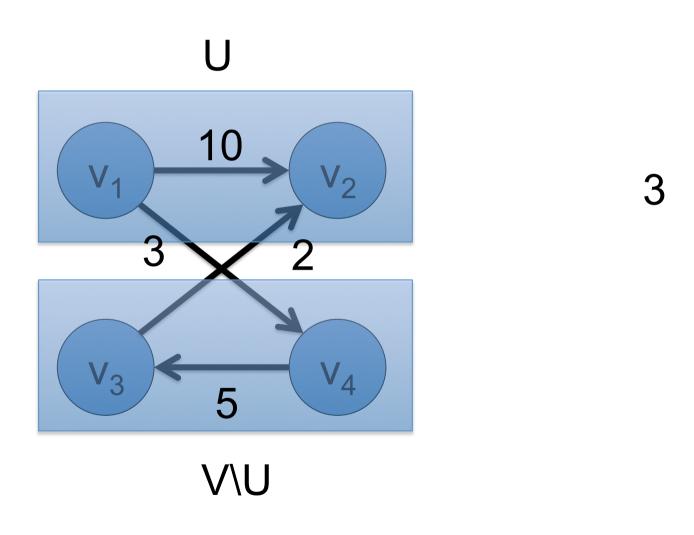


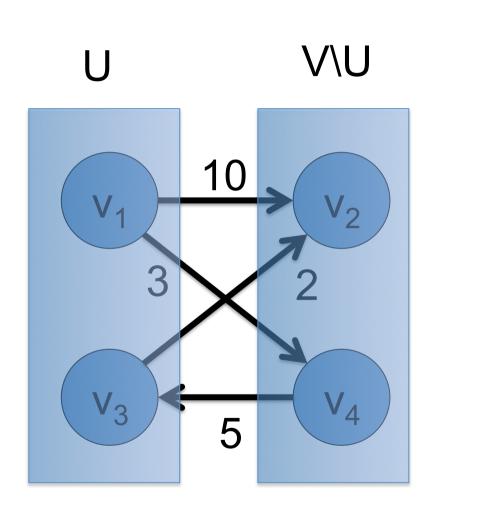
C = out-arcs(U)



Sum of capacity of all arcs in C

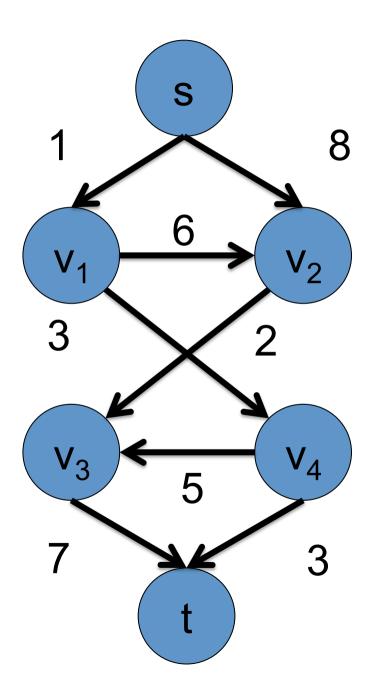






15

s-t Cut



$$D = (V, A)$$

A source vertex "s"

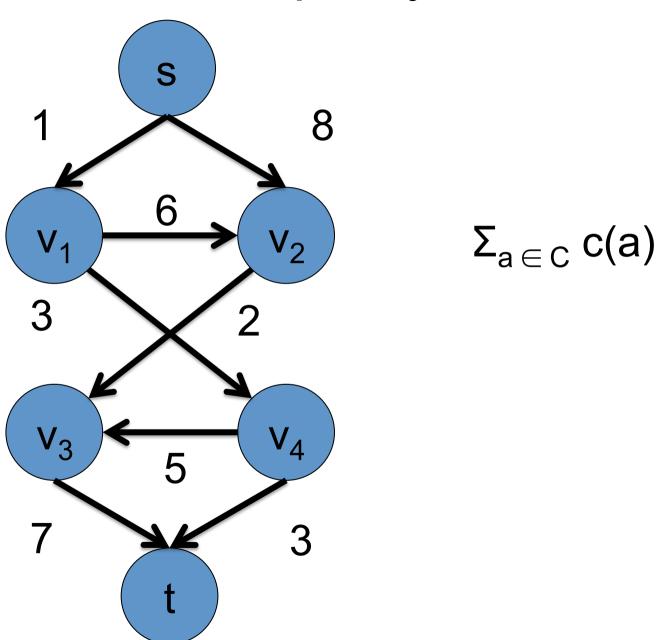
A sink vertex "t"

C is a cut such that

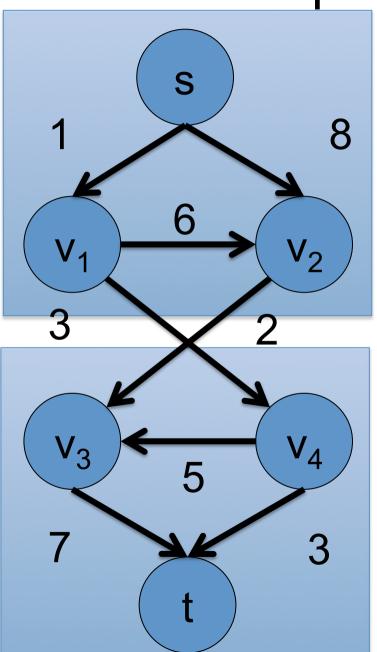
- s ∈ U
- t ∈ V\U

C is an s-t cut

Capacity of s-t Cut



Capacity of s-t Cut



5

Capacity of s-t Cut S 17

Outline

- Preliminaries
 - s-t Flow
 - s-t Cut
 - Flows vs. Cuts

- Maximum Flow
- Algorithms
- Energy minimization with max flow/min cut

Outline

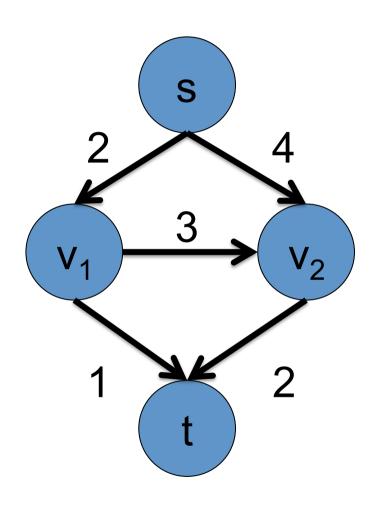
Preliminaries

- Maximum Flow
 - Residual Graph
 - Max-Flow Min-Cut Theorem

Algorithms

Energy minimization with max flow/min cut

Maximum Flow Problem

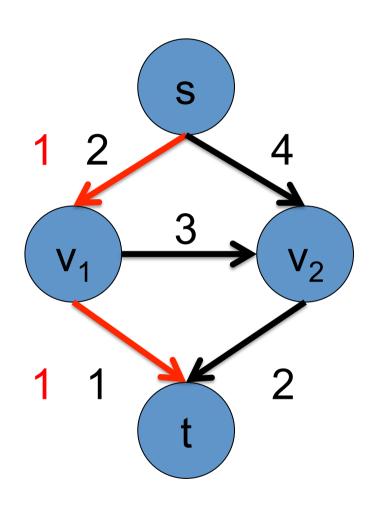


Find the flow with the maximum value!!

$$\Sigma_{(s,v)\in A}$$
 flow((s,v))

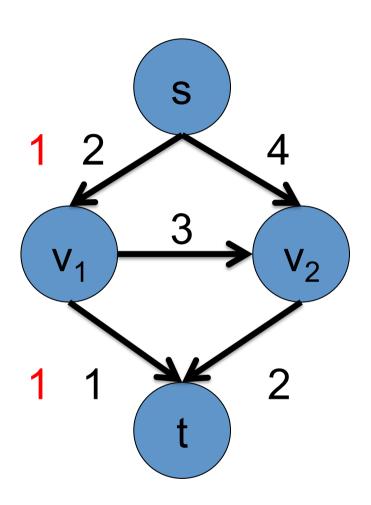
-
$$\Sigma_{(u,s)\in A}$$
 flow((u,s))

First suggestion to solve this problem !!

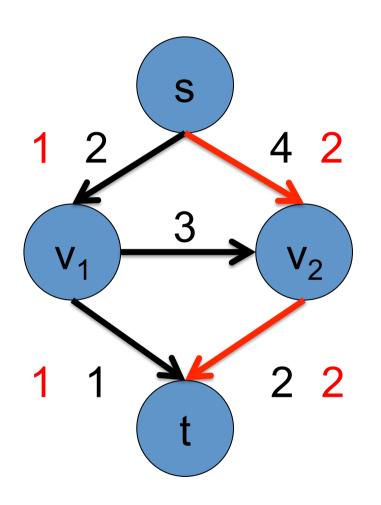


Find an s-t path where flow(a) < c(a) for all arcs

Pass maximum allowable flow through the arcs

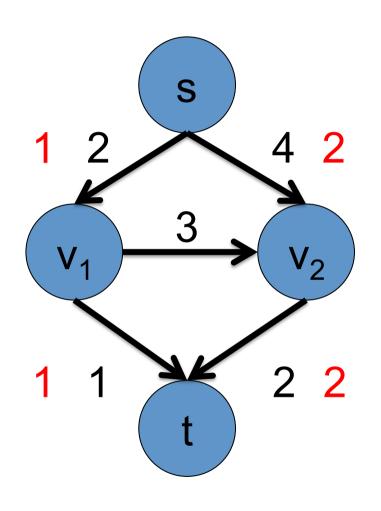


Find an s-t path where flow(a) < c(a) for all arcs



Find an s-t path where flow(a) < c(a) for all arcs

Pass maximum allowable flow through the arcs

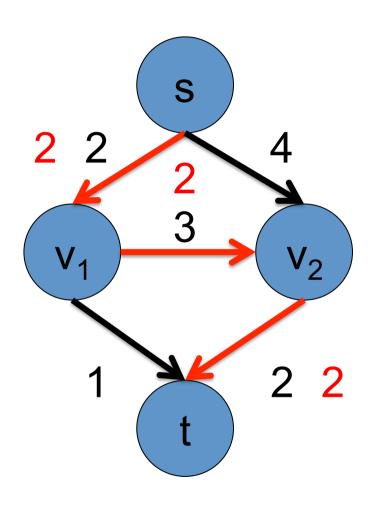


Find an s-t path where flow(a) < c(a) for all arcs

No more paths. Stop.

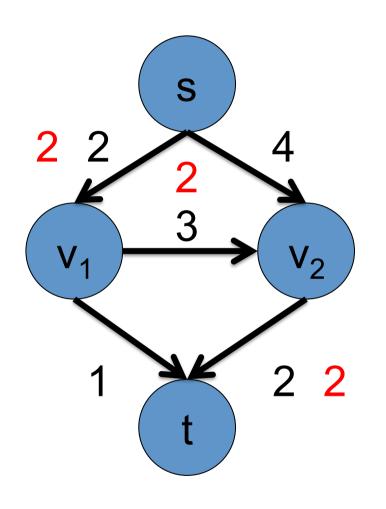
Will this give us maximum flow?

NO!!!



Find an s-t path where flow(a) < c(a) for all arcs

Pass maximum allowable flow through the arcs



Find an s-t path where flow(a) < c(a) for all arcs

No more paths. Stop.

Another method?

Incorrect Answer!!

Outline

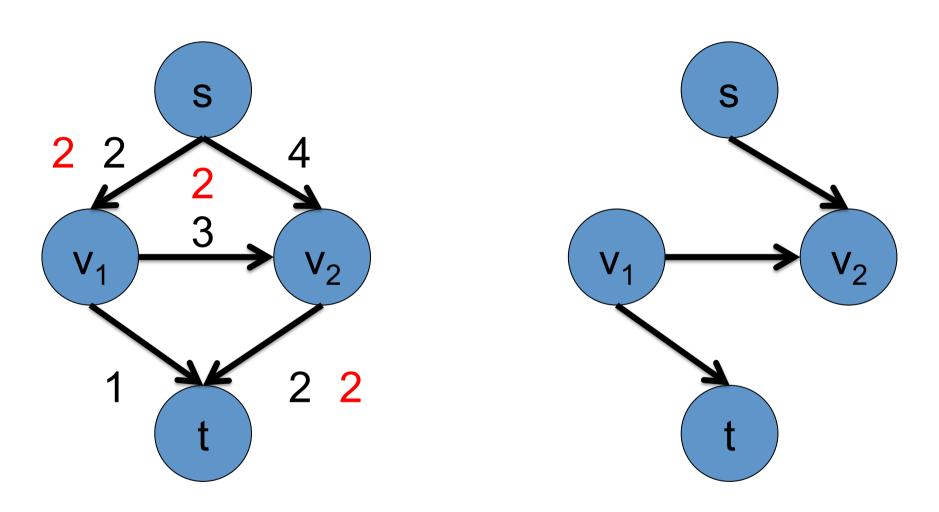
Preliminaries

- Maximum Flow
 - Residual Graph
 - Max-Flow Min-Cut Theorem

Algorithms

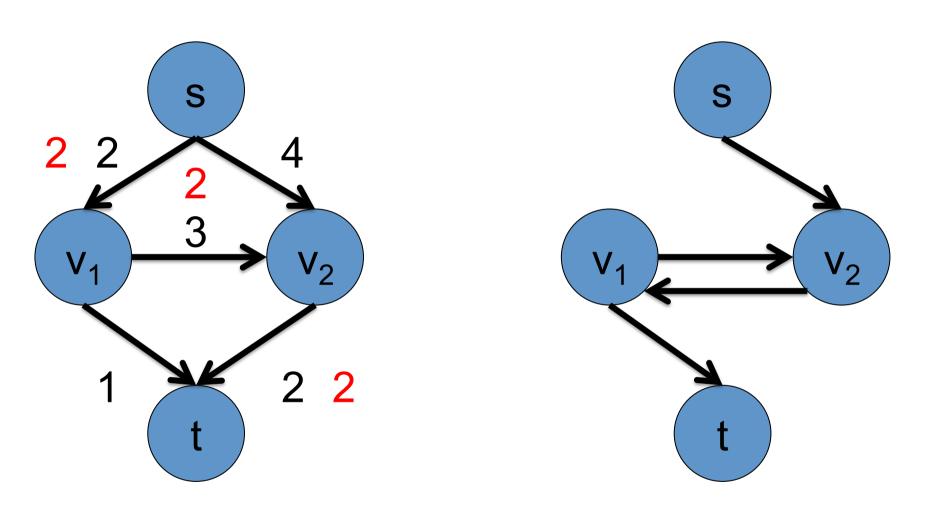
Energy minimization with max flow/min cut

Residual Graph

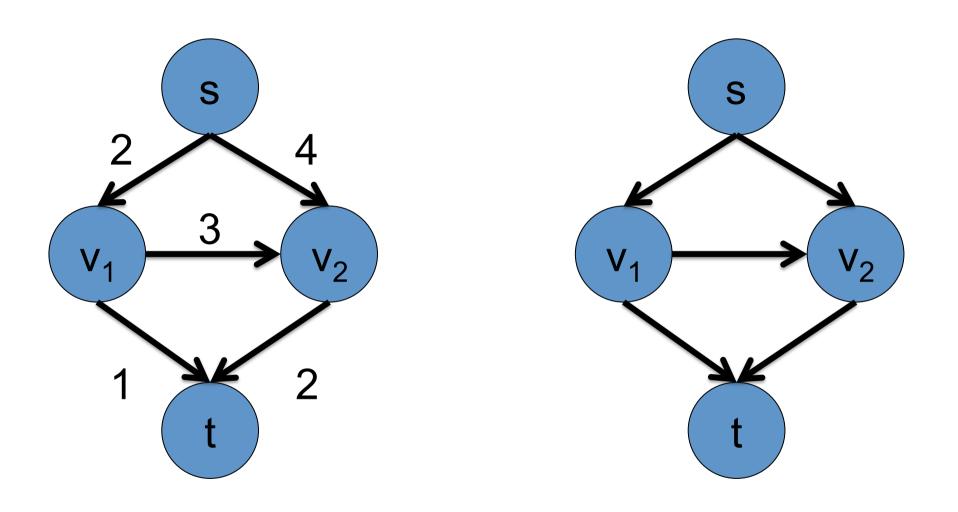


Arcs where flow(a) < c(a)

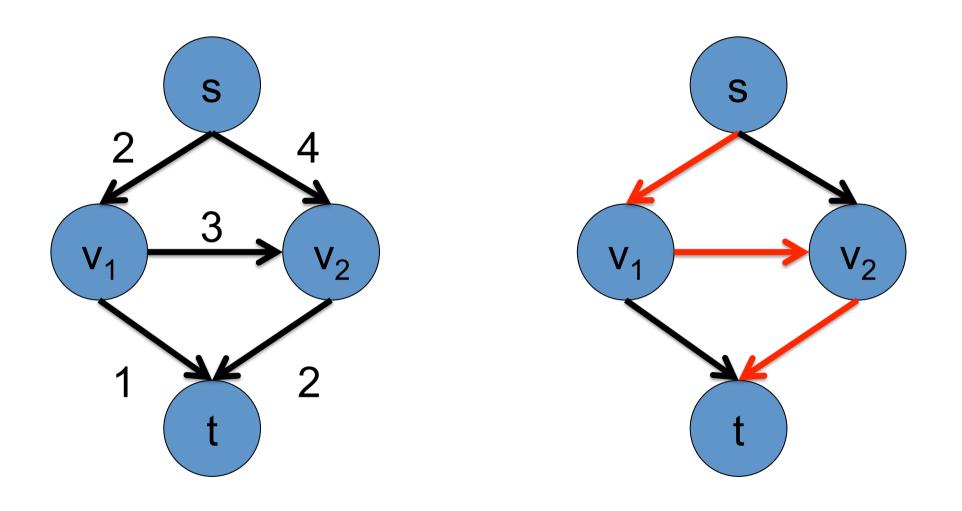
Residual Graph



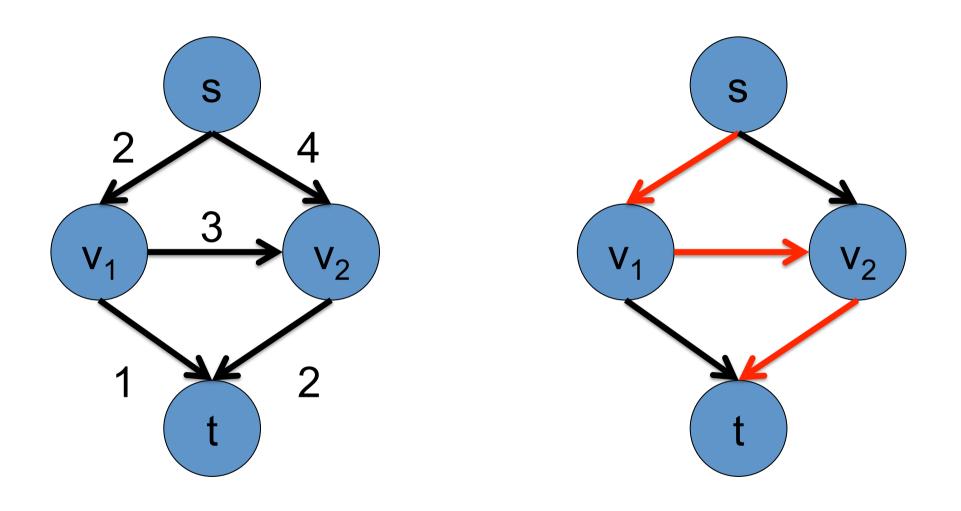
Including arcs to s and from t is not necessary Inverse of arcs where flow(a) > 0



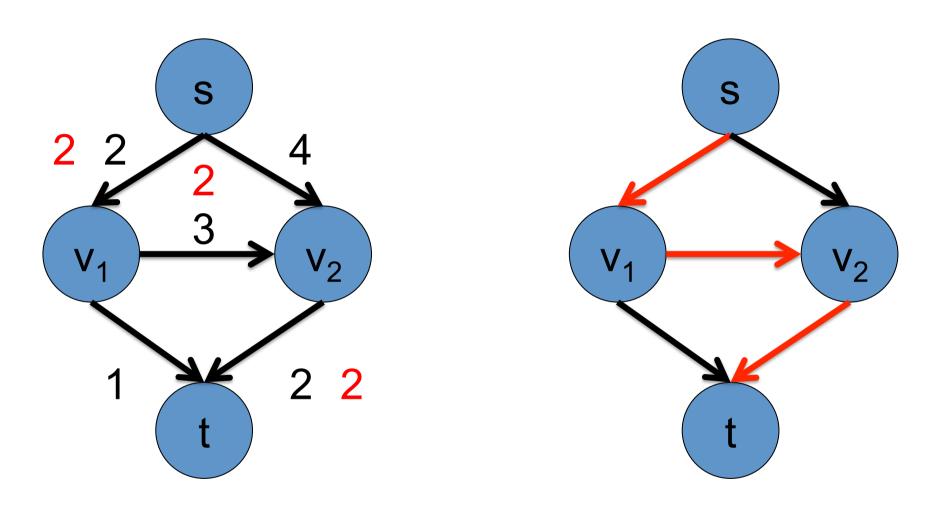
Start with zero flow.



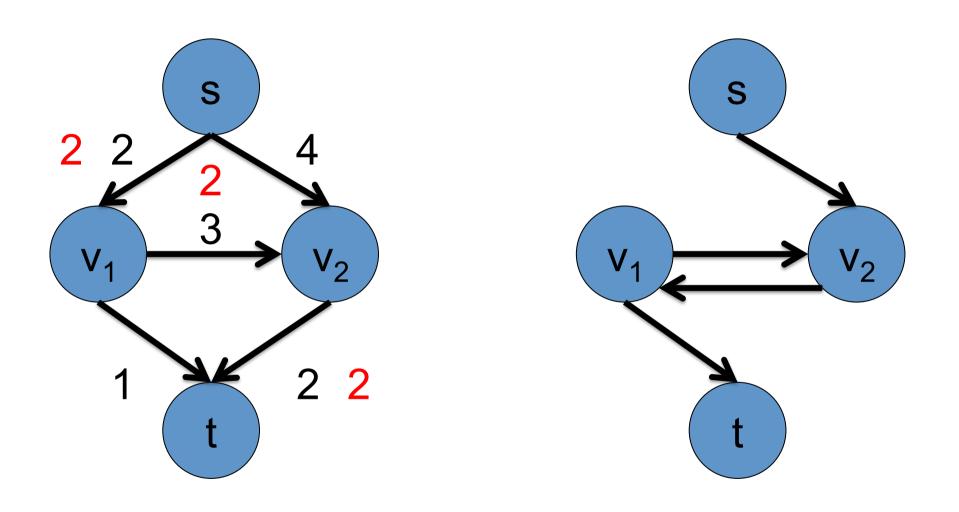
Find an s-t path in the residual graph.



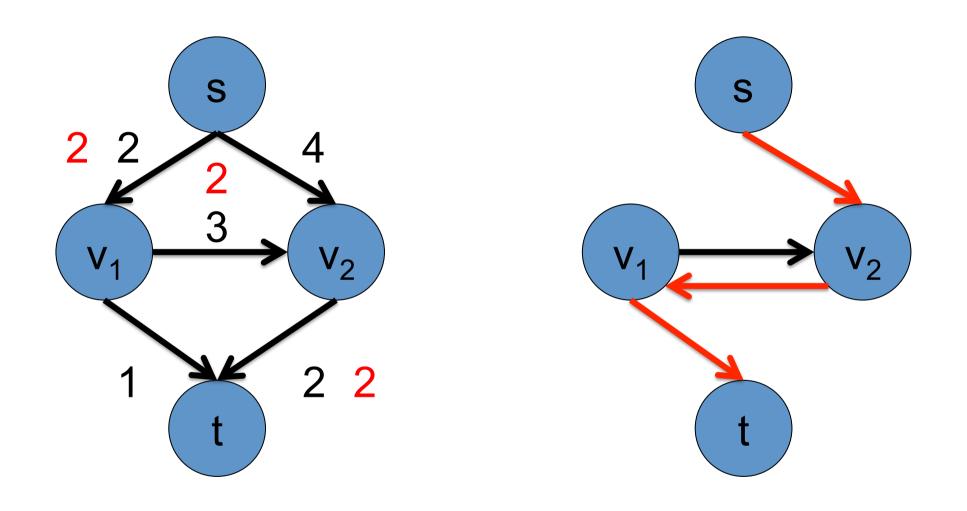
For inverse arcs in path, subtract flow K.



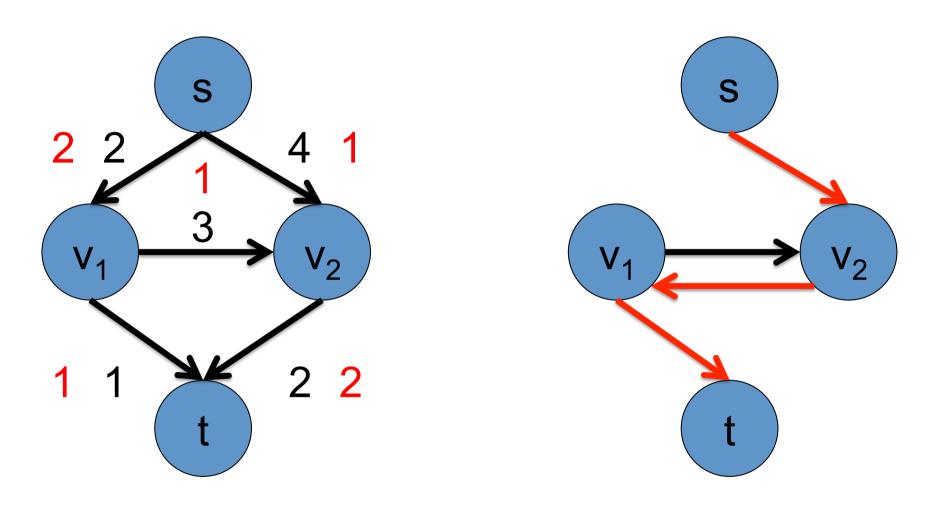
Choose maximum allowable value of K. For forward arcs in path, add flow K.



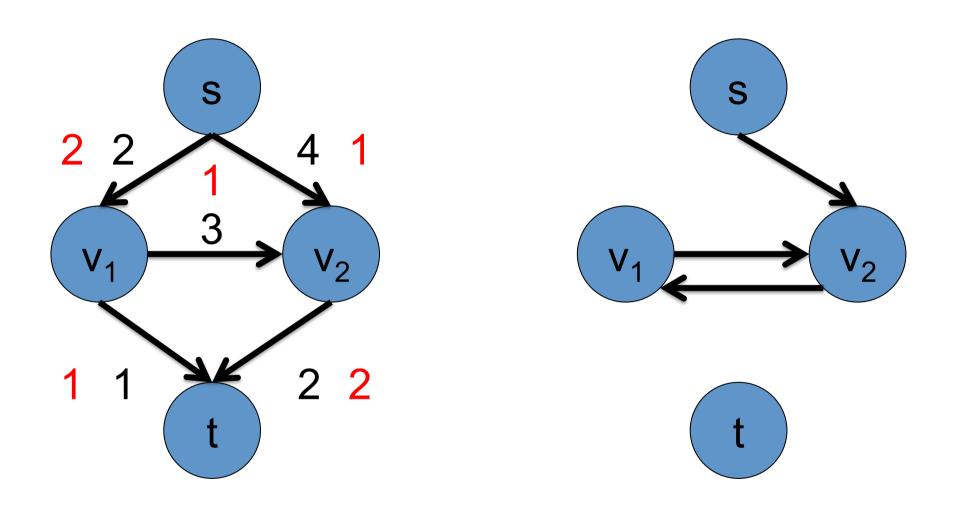
Update the residual graph.



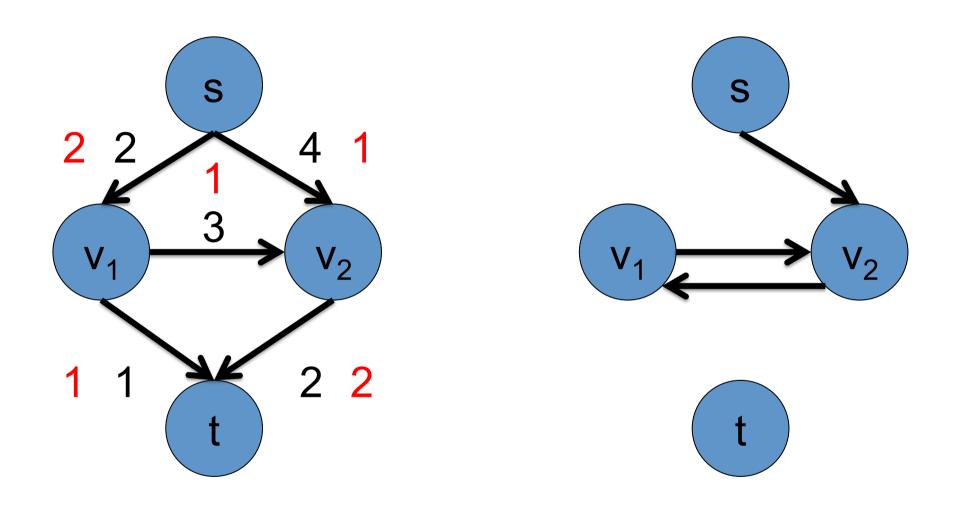
Find an s-t path in the residual graph.



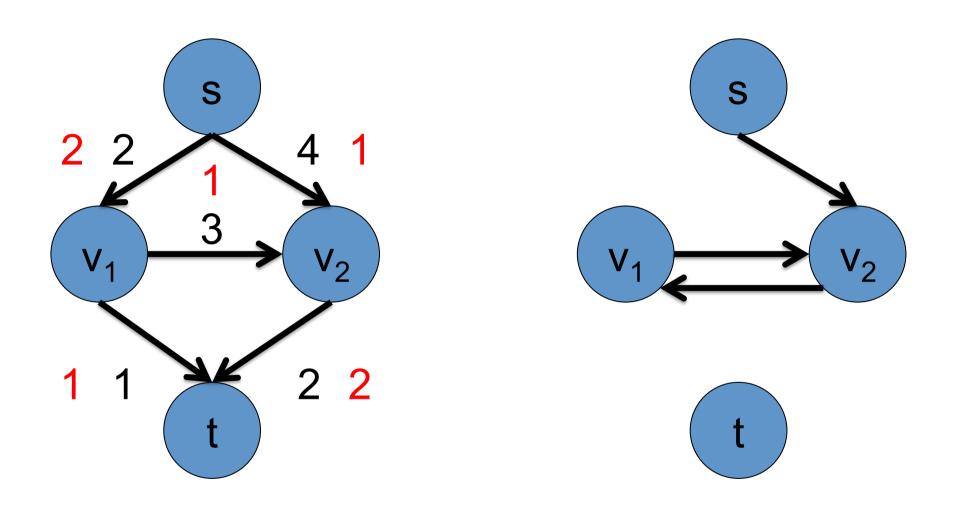
Choose maximum allowable value of K. Add K to (s,v_2) and (v_1,t) . Subtract K from (v_1,v_2) .



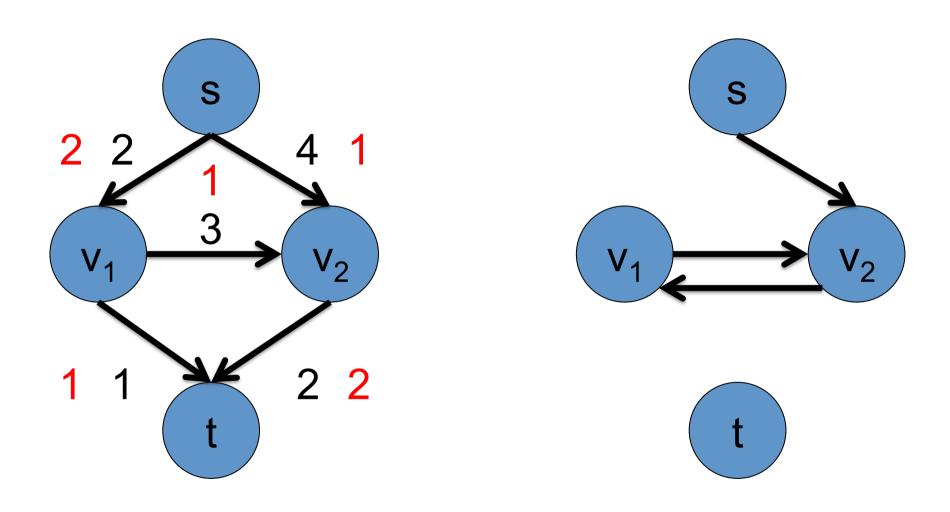
Update the residual graph.



Find an s-t path in the residual graph.



No more s-t paths. Stop.



Correct Answer.

Outline

Preliminaries

- Maximum Flow
 - Residual Graph
 - Max-Flow Min-Cut Theorem

Algorithms

Energy minimization with max flow/min cut

History of Maxflow Algorithms

Augmenting Path and Push-Relabel

year	discoverer(s)	bound
1951	Dantzig	$O(n^2mU)$
1955	Ford & Fulkerson	$O(m^2U)$
1970	Dinitz	$O(n^2m)$
1972	Edmonds & Karp	$O(m^2 \log U)$
1973	Dinitz	$O(nm \log U)$
1974	Karzanov	$O(n^3)$
1977	Cherkassky	$O(n^2m^{1/2})$
1980	Galil & Naamad	$O(nm\log^2 n)$
1983	Sleator & Tarjan	$O(nm \log n)$
1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/m))$
1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
1990	Cheriyan et al.	$O(n^3/\log n)$
1990	Alon	$O(nm + n^{8/3} \log n)$
1992	King et al.	$O(nm + n^{2+\epsilon})$
1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
1994	King et al.	$O(nm\log_{m/(n\log n)}n)$
1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
		$O(n^{2/3}m\log(n^2/m)\log U)$

n: #nodes

m: #edges

U: maximum edge weight

Algorithms assume non-negative edge weights

[Slide credit: Andrew Goldberg]

History of Maxflow Algorithms

Augmenting Path and Push-Relabel

year	discoverer(s)	bound
1951	Dantzig	$O(n^2mU)$
1955	Ford & Fulkerson	$O(m^2U)$
1970	Dinitz	$O(n^2m)$
1972	Edmonds & Karp	$O(m^2 \log U)$
1973	Dinitz	$O(nm \log U)$
1974	Karzanov	$O(n^3)$
1977	Cherkassky	$O(n^2m^{1/2})$
1980	Galil & Naamad	$O(nm\log^2 n)$
1983	Sleator & Tarjan	$O(nm \log n)$
1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/m))$
1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
1990	Cheriyan et al.	$O(n^3/\log n)$
1990	Alon	$O(nm + n^{8/3} \log n)$
1992	King et al.	$O(nm + n^{2+\epsilon})$
1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
1994	King et al.	$O(nm\log_{m/(n\log n)}n)$
1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
		$O(n^{2/3}m\log(n^2/m)\log U)$

n: #nodes

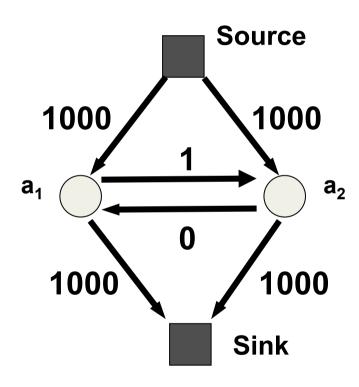
m: #edges

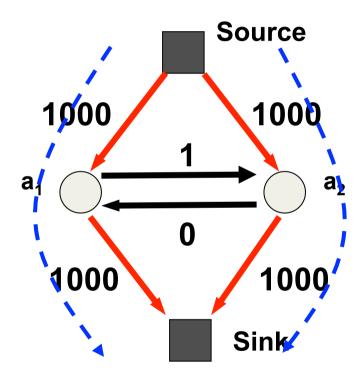
U: maximum

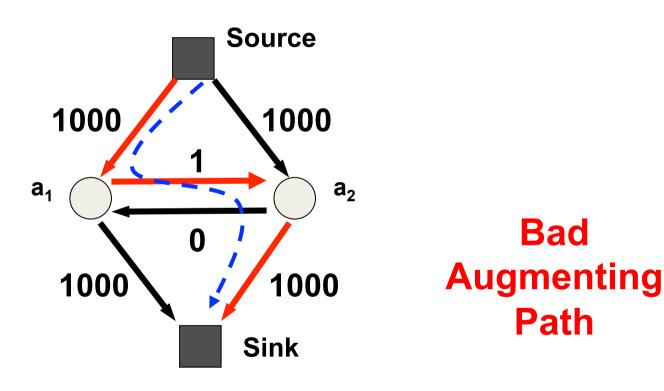
edge weight

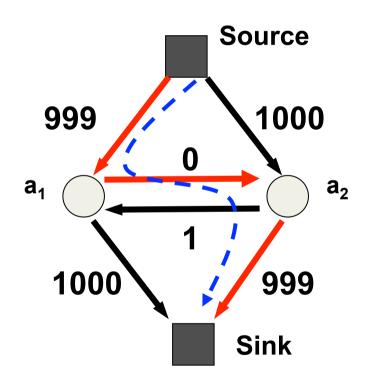
Algorithms assume non-negative edge weights

[Slide credit: Andrew Goldberg]





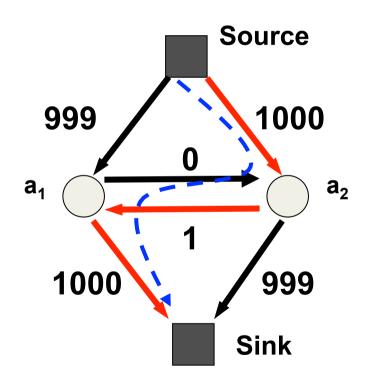




n: #nodes

m: #edges

Ford Fulkerson: Choose any augmenting path



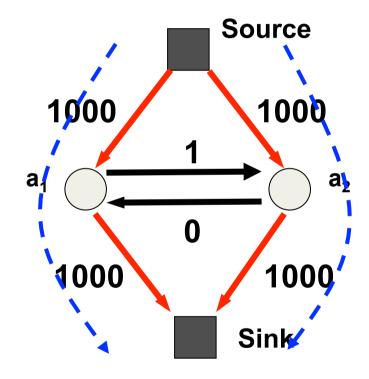
We will have to perform 2000 augmentations!

Worst case complexity: O (m x Total_Flow) (Pseudo-polynomial bound: depends on flow)

n: #nodes

m: #edges

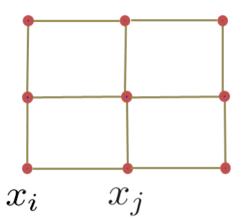
Dinitz: Choose shortest augmenting path



Worst case complexity: O (m n²)

Maxflow in Computer Vision

- Specialized algorithms for vision problems
 - Grid graphs
 - Low connectivity (m ~ O(n))



 Dual search tree augmenting path algorithm

[Boykov and Kolmogorov PAMI 2004]

- Finds approximate shortest augmenting paths efficiently
- High worst-case time complexity
- Empirically outperforms other algorithms on vision problems
- Efficient code available on the web e.g., http://pub.ist.ac.at/~vnk/software.html

