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Part IRecap: MRFs and ConvexRelaxations



Discrete MRF setting
• Given:– Objects from a graph– The edges are undirected– A probability function

• We can then state a wide range of problems on finding a setof assignments to maximize the probability P

edgesobjects



Discrete MRF optimization
• Given:– Objects from a graph– If X can be an assignment ofdiscrete or continuous values
• Assign labels (to objects) that minimize MRF energy:

edgesobjects

pairwise potentialunary potential



Continuous MRF optimization
• Examples in computer vision and neuroimaging
• RestorationFunctional brain activationoptical flow...

• and beyond, connections with graph deep learning• Comfortable way to express spatial priors

• Can be seen as a particular case of several machine learningscenarios with a specific prior

• Really powerful sound formulation



Continuous MRF optimization ascommon Regression (ML?) Problems

Regularized
Ridge /Tik
Lasso
Elastic Net

These can be solved through quadratic programming[Hastie et al, Elements of Statistical Learning 2017]
…



Continuous MRF optimization ascommon Regression (ML?) Problems



Discrete MRF optimization
• MRF optimization ubiquitous in computer vision
• segmentation stereo matchingoptical flow image restorationimage completion object detection/localization...

• and beyond• medical imaging, computer graphics, digitalcommunications, physics…

• Extensive research for more than 30 years

• Really powerful formulation



How to handle MRF optimization?
n Unfortunately, discrete MRF optimization is extremelyhard (a.k.a. NP-hard)

q E.g., highly non-convex energies

MRF pairwise potential

MRF hardness

linear
exact globaloptimum

arbitrary

local optimum

metric

global optimumapproximation



How to handle MRF optimization?

MRF pairwise potential

MRF hardness

linear
exact globaloptimum

arbitrary

local optimum

metric

global optimumapproximation

We want:Move right in the horizontal axis,And remain low in the vertical axis(i.e. still be able to provide approximately optimal solution)
We want to do it efficiently (fast)!



MRFs and Optimization
n Deterministic methods

q Iterated conditional modes
n Non-deterministic methods

q Mean-field and simulated annealing
n Graph-cut based techniques such as alpha-expansion

q Min cut/max flow, etc.
n Message-passing techniques

q Belief propagation networks, etc.



n We would like to have a method which providestheoretical guarantees to obtain a good solution
n Within a reasonably fast computational time



Discrete optimization problems

n Typically x lives on a very high dimensional space



How to handle MRF optimization?
n Unfortunately, discrete MRF optimization is extremelyhard (a.k.a. NP-hard)

q E.g., highly non-convex energies
n So what do we do?

q Is there a principled way of dealing with this problem?

n Well, first of all, we don’t need to panic.Instead, we have to stay calm and RELAX!
n Actually, this idea of relaxing may not be such a badidea after all…



The relaxation technique
n Very successful technique for dealing with difficultoptimization problems

n Practical assumptions:
q Relaxed problem must always be easier to solve
q Relaxed problem must be related to the original one

n It is based on the following simple idea:
q try to approximate your original difficult problem withanother one (the so called relaxed problem) which is easierto solve



The relaxation technique

true optimalsolution
optimal solution torelaxed problem

feasible set

relaxedproblem



How do we find easy problems?
n Convex optimization to the rescue

"…in fact, the great watershed in optimization isn'tbetween linearity and nonlinearity, but convexity andnonconvexity" - R. Tyrrell Rockafellar, in SIAM Review, 1993

n Two conditions for an optimization problemto be convex:
q convex objective function
q convex feasible set



Why is convex optimization easy?

convexobjectivefunction

n Because we can simply let gravity do all the hardwork for us

n More formally, we can let gradient descent do allthe hard work for us

gravityforce



Why do we need the feasible set to beconvex as well?
n Because, otherwise we may get stuck in a localoptimum of we simply “follow gravity”



How do we get a convex relaxation?
n By dropping some constraints(so that the enlarged feasible set is convex)
n By modifying the objective function(so that the new function is convex)
n By combining both of the above



Linear programming (LP) relaxations
• Optimize linear function subject to linear constraints,i.e.:

• Very common form of a convex relaxation, because:
• Typically leads to very efficient algorithms(important due to large scale nature of problems incomputer vision)
• Also often leads to combinatorial algorithms
• Surprisingly good approximation for many problems



Geometric interpretation of LP
Max Z = 5X + 10Ys.t.X + 2Y <= 120X + Y >= 60X – 2Y >= 0X, Y >= 0



MRFs and Linear Programming
• Tight connection between MRF optimization andLinear Programming (LP) recently emerged
• Active research topic with a lot of interesting work:
– MRFs and LP-relaxations [Schlesinger] [Boros][Wainwright et al. 05] [Kolmogorov 05] [Weiss et al. 07][Werner 07] [Globerson et al. 07] [Kohli et al. 08]…
– Tighter/alternative relaxations[Sontag et al. 07, 08] [Werner 08] [Kumar et al. 07, 08]



MRFs and Linear Programming
• E.g., state of the art MRF algorithms are now knownto be directly related to LP:
– Graph-cut based techniques such as a-expansion:generalized by primal-dual schema algorithms(Komodakis et al. 05, 07)

further generalized by Dual-Decomposition (Komodakis 07)– Message-passing techniques:

• The above statement is more or less true for almostall state-of-the-art MRF techniques



Part IIPrimal-dual schema



The primal-dual schema
n Highly successful technique for exact algorithms. Yielded exactalgorithms for cornerstone combinatorial problems:matching network flowminimum spanning tree minimum branchingshortest path ...
n Soon realized that it’s also an extremely powerful tool for derivingapproximation algorithms [Vazirani]:set cover steiner treesteiner network feedback vertex setscheduling ...



The primal-dual schema
n Conjecture:
Any approximation algorithm can be derivedusing the primal-dual schema
(has not been disproved yet)



The primal-dual schema
§ Say we seek an optimal solution x* to the following integerprogram (this is our primal problem):

(NP-hard problem)

§ To find an approximate solution, we first relax the integralityconstraints to get a primal & a dual linear program:

primal LP: dual LP:



Duality



Duality



Duality

Theorem:If the primal has an optimal solution,the dual has an optimal solution with the same cost



The primal-dual schema
n Goal: find integral-primal solution x, feasible dual solution y such thattheir primal-dual costs are “close enough”, e.g.,

primal cost ofsolution xdual cost ofsolution y cost of optimalintegral solution x*

Then x is an f*-approximation to optimal solution x*



General form of the dual



Properties of Duality
n The dual of the dual is the primal



Primal and Dual



Properties of Duality
n The dual of the dual is the primal



Primal and Dual



Properties of Duality
n The dual of the dual is primal



Primal/Dual Relationships



Primal/Dual Relationships



Certificate of Optimality
n NP-complete problems

q Certificate of feasibility
n Can you provide

q A certificate of optimality?
n Consider now a linear program

q Can you convince me that you have found an optimalsolution?



Certificate of Optimality



Bounding



Bounding



Bounding



Bounding



Bounding



Bounding



Bounding



Bounding



Bounding



Bounding



Bounding



Bounding



Complementarity slackness
n Let x* and y* be the optimal solutions to theprimal and dual. The following conditions arenecessary and sufficient for the optimality of x*and y*:



Economic Interpretation
Maximizing profit:

Capacity constraints onyour production:



Primal-Dual
n Why using the dual?

q I have an optimal solution and I want to add a newconstraint
q The dual is still feasible (I am adding a new variable);the primal is not
q Optimize the dual and the primal becomes feasible atoptimality



The primal-dual schema
sequence of dual costs sequence of primal costs

…
unknown optimum
…

n The primal-dual schema works iteratively

n Global effects, through local improvements!
n Instead of working directly with costs (usually not easy), use relaxedcomplementary slackness conditions (easier)
n Different relaxations of complementary slacknessDifferent approximation algorithms!!!



The primal-dual schema for MRFs

(only one label assigned per vertex)
enforce consistency betweenvariables xp,a, xq,b and variable xpq,ab

Binaryvariables xp,a=1 label a is assigned to node p
xpq,ab=1 labels a, b are assigned to nodes p, q



Complementary slackness

Complementary slackness conditions:

Theorem. If x and y are primal and dual feasible and satisfy thecomplementary slackness condition then they are both optimal.

primal LP: dual LP:



Relaxed complementary slackness

Exact CS:
Relaxed CS:

implies 'exact' complemetary slackness (why?)
Theorem. If x, y primal/dual feasible and satisfy therelaxed CS condition then x is an f-approximation of the optimalintegral solution, where f = max_j f_j.

primal LP: dual LP:



Complementary slackness and theprimal-dual schema
Theorem (previous slide). If x, y primal/dual feasible and satisfythe relaxed CS condition then x is an f-approximation of theoptimal integral solution, where f = max_j f_j.
Goal of the primal dual schema: find a pair (x,y) that satisfies:- Primal feasibility- Dual feasibility- (Relaxed) complementary slackness conditions.



n Regarding the PD schema for MRFs, it turns out that:
each update ofprimal and dualvariables

solving max-flow inappropriatelyconstructed graph

n Max-flow graph defined from current primal-dual pair (xk,yk)
q (xk,yk) defines connectivity of max-flow graph
q (xk,yk) defines capacities of max-flow graph

n Max-flow graph is thus continuously updated

n Resulting flows tell us how to update both:
q the dual variables, as well as
q the primal variables for each iteration ofprimal-dual schema

FastPD: primal-dual schema for MRFs



n Very general framework. Different PD-algorithms by RELAXINGcomplementary slackness conditions differently.

n Theorem: All derived PD-algorithms shown to satisfy certainrelaxed complementary slackness conditions
n Worst-case optimality properties are thus guaranteed

n E.g., simply by using a particular relaxation of complementary slacknessconditions (and assuming Vpq(·,·) is a metric)THEN resulting algorithm shown equivalent to a-expansion![Boykov,Veksler,Zabih]
n PD-algorithms for non-metric potentials Vpq(·,·) as well

FastPD: primal-dual schema for MRFs



Per-instance optimality guarantees
n Primal-dual algorithms can always tell you (for free) how well theyperformed for a particular instance

unknown optimum
… …

per-instance approx. factor

per-instance lower bound(per-instance certificate)

per-instance upper bound



Computational efficiency (static MRFs)
n MRF algorithm only in the primal domain (e.g., a-expansion)

primalk primalk-1 primal1…
primal costs

dual1

fixed dual cost
gapk

STILL BIG Many augmenting paths per max-flow

Theorem: primal-dual gap = upper-bound on #augmenting paths(i.e., primal-dual gap indicative of time per max-flow)

dualkdual1 dualk-1…
dual costs

gapk
primalk primalk-1 primal1…

primal costs
SMALL Few augmenting paths per max-flow

n MRF algorithm in the primal-dual domain (Fast-PD)



Computational efficiency (static MRFs)

dramatic decrease

always very high

n Incremental construction of max-flow graphs(recall that max-flow graph changes per iteration)
Possible because we keep both primal and dual information

n Principled way for doing this construction via the primal-dualframework

n

noisy image denoised image



Computational efficiency (static MRFs)
penguin Tsukuba SRI-tree

almost constant

dramatic decrease



Computational efficiency (dynamic MRFs)
n Fast-PD can speed up dynamic MRFs [Kohli,Torr] as well(demonstrates the power and generality of this framework)

gap

primalxdualy
SMALL

primalx
gap

dualy
SMALL few path augmentations

primalx
SMALL

gap

dual1
fixed dual cost

primalx
gap LARGE many path augmentations

n Principled (and simple) way to update dual variables when switchingbetween different MRFs

Fast-PD algorithm

primal-basedalgorithm



Drop: Deformable Registration usingDiscrete Optimization [Glocker et al. 07, 08]
n Easy to use GUI
n Main focus on medical imaging
n 2D-2D registration
n 3D-3D registration
n Publicly available:http://campar.in.tum.de/Main/Drop



primal-dualframework

Handles wide classof MRFs

Approximatelyoptimalsolutions

Theoretical guaranteesANDtight certificatesper instance

Significant speed-upfor static MRFs

Significant speed-upfor dynamic MRFs

- New theorems- New insights intoexisting techniques- New view on MRFs



Powerful framework for systematically tacklingthe MRF optimization problem
Unifying view for the state-of-the-artMRF optimization techniques

Take home message:
LP and its duality theory provides:


