Graphical Models
Discrete Inference and Learning
Lecture 1

MVA
2021 — 2022

http://thoth.inrialpes.fr/~alahari/disinflearn

Slides based on material from Stephen Gould, Pushmeet Kohli, Nikos Komodakis,
M. Pawan Kumar, Carsten Rother, Daphne Koller, Dhruv Batra



Graphical Models ?
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What this class is about?

* Making global predictions from local
observations

Inference

* Learning such models from large quantities of
data

Learning



Motivation

* Consider the example of medical diagnosis

Predisposing factors
Symptoms
Test results

l

Diseases
Treatment outcomes

Slide inspired by PGM course, Daphne Koller



Motivation

* Avery different example: image segmentation

7y
|

sky
bldg

foreground

e.g., [He et al., 2004; Shotton et al., 2006; Gould et al

., 2009]

Millions of pixels
Colours / features

Pixel labels
{building, grass, cow, sky}

Slide inspired by PGM course, Daphne Koller



Motivation

 What do these two problems have in common?

sky
bldg

foreground

Slide inspired by PGM course, Daphne Koller



Motivation

What do these two problems have in common?
— Many variables

— Uncertainty about the correct answer

Graphical Models (or Probabilistic Graphical Models)
provide a framework to address these problems

Slide inspired by PGM course, Daphne Koller



(Probabilistic) Graphical Models

* First, it is a model: a declarative representation
* Can also define the model

— with domain knowledge

— from data
Learning
’ Domain expertQ)\/
_ Algorithm
Algorithm Algorithm

Slide inspired by PGM course, Daphne Koller



(Probabilistic) Graphical Models

* Why probabilistic ?
* To model uncertainty

* Uncertainty due to:
— Partial knowledge of state of the world
— Noisy observations
— Phenomena not observed by the model
— Inherent stochasticity

Slide inspired by PGM course, Daphne Koller



(Probabilistic) Graphical Models

* Probability theory provides
— Standalone representation with clear semantics
— Reasoning patterns (conditioning, decision making)

— Learning methods

Slide inspired by PGM course, Daphne Koller



(Probabilistic) Graphical Models

* Why graphical ?

* |Intersection of ideas from probability theory
and computer science
— To represent large number of variables

Predisposing factors
Symptoms
Test results

Millions of pixels
Colours / features

Random variables Y,,Y,, ..., Y,

Goal: capture uncertainty through joint distribution P(Y,,...,Y,)

Slide inspired by PGM course, Daphne Koller



Probabilistic) Graphical Models

Directed
Factor
Graph

Graphical
Models Bayesian

Networks

age Credit: David Barber




(Probabilistic) Graphical Model

 Examples
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Figure courtesy: D. Koller



(Probabilistic) Graphical Model

Examples
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(Probabilistic) Graphical Model

* |ntuitive & compact data structure

e Efficient reasoning through general-purpose
algorithms

* Sparse parameterization
— Through expert knowledge, or
— Learning from data

Slide inspired by PGM course, Daphne Koller



(Probabilistic) Graphical Model

* Many many applications
— Medical diagnosis
— Fault diagnosis
— Natural language processing
— Traffic analysis
— Social network models
— Message decoding
— Computer vision: segmentation, 3D, pose estimation
— Speech recognition
— Robot localization & mapping

Slide courtesy: PGM course, Daphne Koller



Image segmentation

No graphical model With graphical model

Sturgess et al., 2009



Multi-sensor integration: Traffic

* Learn from historical data to make predictions

Route optimization

Slide courtesy: Eric Horvitz, MSR
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Going global: Local ambiguity

* Text recognition

TAE CRI

Smyth et al., 1994

Slide courtesy: Dhruv Batra



Going global: Local ambiguity

e Textual information extraction

e.g., Mrs. Green spoke today in New York. Green
chairs the financial committee.

{ 1-PER ) {\ orm ) { orn ) { orm ) {B-LOC) {1.LOC) {B-PER) { ory )

QO QOO OOOOO O O O O
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Overview of the course

* Representation
— How do we store P(Y,,...Y,)
— Directed and undirected (model implications/assumptions)

* Inference
— Answer questions with the model
— Exact and approximate (marginal/most probable estimate)

* Learning
— What model is right for data

— Parameters and structure Slide inspired by D. Batra, D. Koller ’s courses



First, a recap of basics



Graphs

* Concepts
— Definition of G
— Vertices/Nodes
— Edges
— Directed vs Undirected
— Neighbours vs Parent/Child
— Degree vs In/Out degree
— Walk vs Path vs Cycle



GGGGGG



Special graphs

* Trees: undirected graph, no cycles

e Spanning tree: Same set of vertices, but
subset of edges, connected and no cycles

O—0O—C0O—C0O—=0 Cﬁ O—CO i
O—O—CO—CO—=0 O—0O0—C—0O O
O—O—CO——C0O—™0 O—0O—CO—C0C——=0
O—0O—"—C0O——C0O—=0 O—0O——0O j) O
O—O—C0O—"—C0O——20 O—0O O O—l

Slide courtesy: D. Batra



Directed acyclic graphs (DAGS)




Interpreting Probability

 What does P(A) mean?
* Frequentist view
— Limit N—>oo, #(A is true)/N

—i.e., limiting frequency of a repeating non-
deterministic event

* Bayesian view
— P(A) is your belief about A

Slide courtesy: D. Batra



Joint distribution

e 3 variables I D G Prob.
. © d° ! 0.126

— Intelligence (I) o e ;} 0.168

— Difficulty (D) I

i0 d! g' 0.009

— Grade (G) i0 d g2 0.045

i0 d! g° 0.126

il d° g’ 0.252

i do g2 0.0224

* Independent il e e 0.0056
parameters? i d g 0.06

i d! g 0.036

il d! g’ 0.024

Example courtesy: PGM course, Daphne Koller



Conditioning

» Condition on g I > & [ Prob.
i© d° g’ 0.126
o do e 0.168
i© d° g 0.126
o d gl 0.009
i d? g° 0.045
o di g° 0.126
i d g 0.252
i do g2 0.0224
i P g° 0.0056
i Jt gl 0.06
i d! g 0.036
i! d! g 0.024

Example courtesy: PGM course, Daphne Koller



Conditioning

P(Y=y | X=x)
Informally,
— What do you believe about Y=y when | tell you X=x ?

P(France wins a football tournament in 2021) ?
What if | tell you:

— France won the world cup 2018
— Hasn’t had catastrophic results since ©

Slide based on D. Batra’s course



Conditioning: Reduction

» Condition on @' I b & [ Prob.
i© d° g 0.126
o Ji gl 0.009
i! d° g’ 0.252
i J! gl 0.06

Example courtesy: PGM course, Daphne Koller



Conditioning: Renormalization

I D G Prob.

i d° g’ 0.126

0 d! g' 0.009

i! d° g* 0.252

i d! g' 0.06
P(T,D.g)

Unnormalized measure

Example courtesy: PGM course, Daphne Koller

I D Prob.
i© d° 0.282
[:‘ 0 d! 0.02
it d° 0.564
i! d! 0.134
P(I,D | gY)




Conditional probability distribution

* Example P(G | I, D)

04| 03| 04| 03
0d'|005| 025 07
i1d°| 09 0.08] 0.02
itd'l 051 03 02

Example courtesy: PGM course, Daphne Koller



Conditional probability distribution

L S S -

p(X.Y | 2)

X
p(z,y, 2)
p(2)

ple,y| Z2=2)=

Slide courtesy: Erik Sudderth



Marginalization

P(I,D) Marginalize I
I D Prob.
10 d° 0.282
- 1 — D Prob.
| d 0.02 \<___, q° 0.846
! d° 0.564 | — . -_>, d! 0.154
i! d! 0.134

Example courtesy: PGM course, Daphne Koller




Marginalization

* Events
— P(A) = P(A and B) + P(A and not B)

e Random variables
— P(X=x)=EP(X=x,Y=y)

Slide courtesy: Dhruv Batra



Marginalization

=
Y = =
z A T T »
- e // P
////
/// P
P ///
////
Erd
//////
P
v //
7y
p(z,y) = E p(z,y, 2)

p(x,y)

p(z) =) p(z,y)

yey

Slide courtesy: Erik Sudderth



Factors

* Afactor ®(Y,,...,Y,)

®: val(Y,,..,Y,) > R

* Scope ={Y,,...,Y,}



Factors

* Example:P(D, I, G)[ 1 D & | Prob.
0 do g! 0.126
o do e 0.168
i d° g 0.126
o d gl 0.009
i d! g° 0.045
o di g° 0.126
il do g' 0.252
i do g2 0.0224
i 0 g° 0.0056
i! d! g’ 0.06
i J! g 0.036
il d g° 0.024

Example courtesy: PGM course, Daphne Koller



Factors

* Example: P(D, I, g')

I D G Prob.
i© d° g’ 0.126
i d! g’ 0.009
! d° g’ 0.252
i! d! g’ 0.06

What is the scope here?

Example courtesy: PGM course, Daphne Koller



General factors

* Not necessarily for probabilities

A B b
a® b 30
a® b! 5
al b 1
a’ b! 10

Example courtesy: PGM course, Daphne Koller



Factor product

b! | ¢ 05
b' | ¢? 07
b? | ¢! 0.1
b? | ¢ 0.2

a! b! 05
a! b? 0.8
a® b! 01
a? b? 0

a® | b 0.3
a’ b? 09

a' b! c! 0505=025
a' b! c? 0507-=035
a' b? c! 080.1=008
a! b? c? 0802=016
a® b! c! 0.105=0.05
a’ b! c? 0107=007
a® b? c! 001:=0

a® b? c? 002=0
a? b! c! 0.305:=0.15
a’ b! c? 0307=021
a’ b? c! 0901=009
a® b? c? 0902=0.18 -

Example courtesy: PGM course, Daphne Koller




Factor marginalization

1

a' b! c! 0.25
a’ b' | ¢ 0.35
a' b? c! 0.08
a' b? ¢? 0.16
a? b! c! 0.05
a® b! c? 007
a | b? | ¢ 0

a? b? c? 0

a? b! c! 0.15
a’ b! c? 0.21
a’ b? c! 0.09
a’ b2 | ¢ 0.18

a' ¢! 0.33

a’ c? 0.51

a® c! 0.05

a? c? 007

a’ c! 0.24

a’ c? 039

Example courtesy: PGM course, Daphne Koller



Factor reduction

a’ b! c! 0.25
at | b2 | ¢ 0.08
a? b! c! 0.05
a? b? c! 0

a* b! c! 0.15
a | b | ¢ 0.09

a! b! c! 0.25
a’ b! c? 0.35
a! b? c! 0.08
a’ b? c? 0.16
a’ b! c! 0.05
a’ b! c? 007
a’ b? ¢! 0

a® b? c? 0

a’ b! c! 0.15
a’ b! c? 0.21
a’ b? c’\ 0.09
@ | b2 | 0.18




Why factors ?

* Building blocks for defining distributions in
high-dimensional spaces

* Set of basic operations for manipulating these
distributions



Independent random variables

P{x.y)

X

Y

p(z,y) = p(x)p(y)
forallz e X,y e )Y

Slide courtesy: Erik Sudderth



Marginal independence

 Sets of variables X, Y

« Xisindependentof Y
— Shorthand: P F (X LY)

* Proposition: P satisfies (X L Y) if and only if
- P(X=x,Y=y) = P(X=x) P(Y=y), VxeVal(X), yeVval(Y)

Slide courtesy: Dhruv Batra



Conditional independence

« Sets of variables X, Y, Z

« Xisindependent of Y given Z if
— Shorthand: PF (X LY | 2)
— ForPF(XL1LY|D), write P F (X LY)

* Proposition: P satisfies (X L Y | Z) if and only if
- P(X,Y|2) = P(X|2) P(Y|Z2), Vx&Val(X), yeVal(Y), zEVal(2)

Slide courtesy: Dhruv Batra



Bayes Rule

* Simple yet profound

* Concepts
— Likelihood

* How much does a certain hypothesis explain the data?
— Prior
* What do you believe before seeing any data?

— Posterior

* What do we believe after seeing the data?

Slide courtesy: Dhruv Batra



Bayesian Networks

e DAGS

— nodes represent variables in the Bayesian sense
— edges represent conditional dependencies

 Example

— Suppose that we know the following:
* The flu causes sinus inflammation
 Allergies cause sinus inflammation
* Sinus inflammation causes a runny nose
* Sinus inflammation causes headaches

— How are these connected ?

Slide courtesy: Dhruv Batra



Bayesian Networks

* Example

5eC

Slide courtesy: Dhruv Batra



Bayesian Networks

* A general Bayes net
— Set of random variables
— DAG: encodes independence assumptions
— Conditional probability trees
— Joint distribution

P(Y,....Y,) =] | P(Y,IPa,)
i=1

Slide courtesy: Dhruv Batra



Bayesian Networks

* A general Bayes net

— How many parameters ?
* Discrete variables Y,,...,Y,

* Graph: Defines parents of Y,, i.e., (Pay,)

* CPTs: P(Y,|Pay,)

Slide courtesy: Dhruv Batra



Markov nets

e Set of random variables

* Undirected graph

— Encodes independence assumptions

* Factors

Comparison to Bayesian Nets ?

Slide courtesy: Dhruv Batra



Pairwise MRFs

* Composed of pairwise factors
— A function of two variables
— Can also have unary terms

Example

£ s o s P 2 . - 2 . M
.‘.,.'.‘ o B &l .A" ALK 1'..‘1
. ' 2 ¢ ’ o '
/ a" B A B¢ 100 & d ‘ @ a" 10
| 3 1 o .
(/| 0 N o : { i o i |
’ .
{ i o d
1 1 !
{ i o d

f D J 100

7 b h - ] 1L
\ / Q b | h . LUl
) -~ .
[ \
L C P

100

Slide courtesy: Dhruv Batra



Markov Nets: Computing probabilities

* Can only compute ratio of probabilities directly

" B 3 ' ¢ 100 ' l d a 100
Q O ) h N : { d LU0 d a ]
(1 f | h = ] ] ." 100 '_.' 1 ]
{ 0’ | h' LUl { d | a a’ 10

* Need to normalize with a partition function

— Hard ! (sum over all possible assignments)

* |[n Bayesian Nets, can do by multiplying CPTs

Slide courtesy: Dhruv Batra



Markov nets €= Factorization

* Given an undirected graph H over variables
Y={Y,,...,Y,}
* A distribution P factorizes over H if there exist

— Subsets of variables S' CY s.t. S' are fully-
connected in H

— Non-negative potentials (factors) @,(S?),...,
®, (SM): clique potentials

— Such that 1

P(Y,...Y )= El;[q)i(81)

Slide courtesy: Dhruv Batra



Conditional Markov Random Fields

* Also known as: Markov networks, undirected graphical
models, MRFs

* Note: Not making a distinction between CRFs and MRFs
e X € X :observed random variables

* Y =(Y1,...,Y,) € Y:output random variables

* Y. are subset of variables for clique ¢ C {1,..., n}

* Define a factored probability distribution

PY | X) = 5 [[VelYei X

/ Exponential number

Partition function — ZYEy Hc \UC(YC; X) of configurations !



MRFs / CRFs

* Several applications, e.g., computer vision

Interactive figure-
segmentation [Bo
2001; Boykov and

Stereo matching [Kolmogorov and Zabih, 2001; Image denoising [Felzenszwalb
Scharstein and Szeliski, 2002] and Huttenlocher 2004]



MRFs / CRFs

* Several applications, e.g., computer vision

i .
Z
B ]

Z\ 4y )

Scene understanding
[Fouhey et al., 2014; Ladicky et al., 2010;
Xiao et al., 2013; Yao et al., 2012]



MRFs / CRFs

* Several applications, e.g., medical imaging




MRFs / CRFs

* Inherent in all these problems are graphical
models

%%-%0-%
e} o]

\

AN
S

J

Q
&)
p

S
S
l®

Object detection
Pose estimation

Pixel labeling Scene understanding



Maximum a posteriori (MAP) inference

y* = argmax P(y | x)

yey
1

= argmax V(Y X

yey Z(X)IZI C( : )

1

= argmaxlog | =——= V. (Y. X

g (Z(X)H AYe )>
= argmax Y logWc(Yc; X) — log Z(X)

yey

_ argmax
vey 4 —E(Y: X)



Maximum a posteriori (MAP) inference
y* = argmax P(y | x) = argmaxz log W (Y; X)
yey SN

= argmin E(y; x)
yey

MAP inference <~ Energy minimization

The energy function is E(Y; X) = ch(YC; X)

N

where wc() = — log \UC() Clique potential



Cliqgue potentials

Defines a mapping from an assignment of
random variables to a real number

e Ve x X =R

Encodes a preference for assignments to the
random variables (lower is better)

Parameterized as ¥c(Y.; X) = WZ_¢C(yC; X)

Parameters



Cliqgue potentials

* Arity
E (y;x) = Z e(yei )

=Y ¥ (is X)+Z¢ i, yji %) + D%l (yei x)-

IEV UEE ceC

y . _J

unary pairwise higher-order
s )

\ \Js
Y3 |

EJ \

&)

I
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Cliqgue potentials

* Arity

)41 Y3 Y1 Y3

DR O=ONENOSOSO
y ) —(y8 —(¥o v —(v8 —(¥s

4-connected, Ny 8-connected, Ny




*

e

Il'ﬂ'll!!ﬁ :

b - L R LR N, B

!J. 5 '!“'?!;"Fi

{
..... i
@.ﬂéz

Result MRF
4-connected

Erﬁiﬂ M.:#

Result MRF
4-connected
(neighbours)

n 1: Texture modelling

oz'q --XJ.' ’ -.:ﬂ’- s aqv IiA

Result MRF
9-connected
(7 attractive; 2 repulsive)




4-connected 8-connected
Euclidean Euclidean

higher-connectivity can model

true Euclidean length [Boykov et al. "03; '05]



Graphical representation

* Example

E(y) = v (y1,y2) + ¥(y2,¥3) + ¥(y3, ya) + ¢¥(ya, y1)

NS

OEONO

factor graph




Graphical representation

* Example

E(y) = Zi,j V(yi, ¥j)

@W

factor graph




Graphical representation

* Example

E(Y) — ¢(y17y27y37y4)

od Be

factor graph



A Computer Vision Application

Binary Image Segmentation

How ?

Cost function  Models our knowledge about natural images

Optimize cost function to obtain the segmentation



A Computer Vision Application

Binary Image Segmentation

Object - white, Background - green/grey Graph G = (V,E)
Each vertex corresponds to a pixel

Edges define a 4-neighbourhood grid graph

Assign a label to each vertex from L = {obj,bkg}



A Computer Vision Application

Binary Image Segmentation

Object - /Background - green/grey Graph G = (V,E)
Costof alabelling f: V= L Per Vertex Cost

. Cost of label ‘obj’ low Cost of label ‘bkg’ high



A Computer Vision Application

Binary Image Segmentation

Object - white;/Background - green/grey Graph G = (V,E)
Cos Per Vertex Cost

. Cost of label ‘obj’ high Cost of label ‘bkg’ low
UNARY COST



A Computer Vision Application

Binary Image Segmentation

Graph G = (V,E)
Per Edge Cost

‘ ‘ ‘ ‘Costofsame label low

Cost of different labels high



A Computer Vision Application

Binary Image Segmentation

Graph G = (V,E)
Per Edge Cost

‘ H ‘ Cost of same label high PAIRWISE
COST

Cost of different labels low



A Computer Vision Application

Binary Image Segmentation

Object whlte Background green/grey Graph G = (V,E)

Problem: Find the labelling with minimum cost f*



A Computer Vision Application

Binary Image Segmentation

Graph G = (V,E)

Problem: Find the labelling with minimum cost f*



Another Computer Vision Application

Stereo Correspondence

Disparity Map

How ?

Minimizing a cost function




Another Computer Vision Application

Stereo Correspondence

Graph G = (V,E)

Vertex corresponds to a pixel

Edges define grid graph

L = {disparities}




Another Computer Vision Application

Stereo Correspondence

Cost of labelling f :

Unary cost + Pairwise Cost

Find minimum cost *




The General Problem

Graph G=(V, E)
Discrete label set L = {1,2,...,h}

Assign a label to each vertex
5 V=L

Cost of a labelling Q(f)
Unary Cost Pairwise Cost

Find f* = arg min Q(f)



Overview

e Basics: problem formulation
— Energy Function
— MAP Estimation
— Computing min-marginals
— Reparameterization

e Solutions
— Relaxations, primal-dual [Lecture 2]
— Belief Propagation and related methods [Lecture 3]



