Graphical Models Inference and Learning Lecture 8

MVA
$$
2019-2020
$$

http://thoth.inrialpes.fr/~alahari/disinflearn

Recall

- Graphical Models
- Directed vs Undirected
- Representation and Modeling
- Problem formulation
- Energy/cost function
- MAP estimation
- Belief propagation, TRW, graph cuts, LP relaxation, primal-dual, dual decomposition
- Learning
- Maximum likelihood, max-margin learning

Recall

This class

- Bayesian Networks
- Parameter Learning
- Structure Learning
- Inference

But first...

A quiz!

1. How would you parameterize

$$
\operatorname{MRF}_{G}\left(\mathbf{x} ; \mathbf{u}^{k}, \mathbf{h}^{k}\right)=\sum_{p} u_{p}^{k}\left(x_{p}\right)+\sum_{c} h_{c}^{k}\left(\mathbf{x}_{c}\right)
$$

for learning?
2. Name two parameter learning approaches for MRFs.
3. What loss functions would you use for these approaches?

$$
\text { Recall } \min _{\mathbf{w}} R(\mathbf{w})+\sum_{k=1}^{K} L_{G}\left(\mathbf{x}^{k}, \mathbf{z}^{k} ; \mathbf{w}\right)
$$

This class

- Bayesian Networks
- Parameter Learning
- Structure Learning
- Inference

Bayesian Networks

- A general Bayes net
- Set of random variables
- DAG: encodes independence assumptions
- Conditional probability trees
- Joint distribution

$$
P\left(Y_{1}, \ldots, Y_{n}\right)=\prod_{i=1}^{n} P\left(Y_{i} \mid \mathrm{Pa}_{Y_{i}}\right)
$$

Bayesian Networks

- Example

Independencies in problem

World, Data, reality:

True distribution P contains independence assertions

Graph G encodes local independence assumptions

Learning Bayesian Nets

Slide courtesy: Dhruv Batra

Learning Bayesian Nets

Known structure Unknown structure

Fully observable data

Missing data

Very easy

Somewhat easy (EM)

Hard

Very very hard

$$
\begin{aligned}
& \text { CPTs - } \\
& \text { P(X } \left.\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}_{\mathrm{i}}}\right)
\end{aligned}
$$

Maximum Likelihood Estimation

- Goal: Find a good θ
- What is a good θ ?
- One that makes it likely for us to have seen this data
- Quality of $\theta=\operatorname{Likelihood}(\theta ; D)=P(D \mid \theta)$
- Why MLE?
- Log-likelihood $(\theta)=\operatorname{entropy}\left(P^{*}\right)-K L\left(P^{*}, P(D \mid \theta)\right)$
- i.e., maximizing $\mathrm{LL}=$ minimizing $K L$

MLE: Learning the CPTs

For each discrete variable X_{i}

$$
\hat{P}_{M L E}\left(X_{i}=a \mid \operatorname{Pa}_{X_{i}}=b\right)=\frac{\operatorname{Count}\left(X_{i}=a, \mathrm{~Pa}_{X_{i}}=b\right)}{\operatorname{Count}\left(\mathrm{Pa}_{X_{i}}=b\right)}
$$

Bayesian Estimation

- Exploit priors
- Priors: Beliefs before experiments are conducted
- Help deal with unseen data
- Bias us towards "simpler" models
- Beta prior distribution

Bayesian Estimation

- Posterior

$$
\begin{gathered}
P(\mathcal{D} \mid \theta)=\theta^{m_{H}}(1-\theta)^{m_{T}} \\
P(\theta)=\frac{\theta^{\alpha_{H}-1}(1-\theta)^{\alpha_{T}-1}}{B\left(\alpha_{H}, \alpha_{T}\right)} \sim \operatorname{Beta}\left(\alpha_{H}, \alpha_{T}\right) \\
P(\theta \mid \mathcal{D}) \propto P(\mathcal{D} \mid \theta) P(\theta) \\
P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(m_{H}+\alpha_{H}, m_{T}+\alpha_{T}\right)
\end{gathered}
$$

Bayesian Estimation

- MAP: use most likely parameter

$$
\hat{\theta}=\arg \max _{\theta} P(\theta \mid \mathcal{D})
$$

$P(\theta \mid \mathcal{D}) \sim \operatorname{Beta}\left(m_{H}+\alpha_{H}, m_{T}+\alpha_{T}\right)$

- Beta prior equiv. to extra H / T
- As m \rightarrow inf, prior is "forgotten"
- But, for small sample size, prior is important !

Bayesian Estimation

- What about the multinomial case?
- Use a Dirichlet for the prior

$$
\theta \sim \operatorname{Dirichlet}\left(\alpha_{1}, \ldots, \alpha_{k}\right) \sim \prod_{i} \theta_{i}^{\alpha_{i}-1}
$$

Meta BN: Bayesian view of BN

- Show parameters explicitly as variables
- Two examples (on board)

Global parameter independence

- All CPT parameters are independent
- Common assumption
- Prior over parameters is product of prior over CPTs, i.e.,

$$
P(\theta \mid \mathcal{D})=\prod_{i} P\left(\theta_{X_{i} \mid \mathbf{P a}_{X_{i}}} \mid \mathcal{D}\right)
$$

Parameter Sharing

- Consider the scenario, where n random variables $X_{1}, X_{2}, \ldots X_{n}$ represent coin tosses of the same coin.
- What is the corresponding BN?

Parameter Sharing

- Plate notation

Plates denote replication of random variables

Hierarchical Bayesian Models

- Why stop with a single prior?

Graphical model representation of LDA. The boxes are "plates" representing replicates. The outer plate represents documents, while the inner plate represents the repeated choice of topics and words within a document.

Summary: Learning BN

- MLE
- Decomposes; results in counting procedure
- Bayesian estimation
- Priors = regularization (smoothing)
- Hierarchical priors
- Plate notation
- Shared parameters

Known Tree Structure

Distribution $P_{T}(x)$

$$
v_{p(a)}=\text { "parent" of } v_{a}
$$

$P_{T}\left(x_{5} \mid x_{3}\right) P_{T}\left(x_{4} \mid x_{1}\right) P_{T}\left(x_{3} \mid x_{0}\right) P_{T}\left(x_{2} \mid x_{0}\right) P_{T}\left(x_{1} \mid x_{0}\right) P_{T}\left(x_{0}\right)$
Estimate $P_{T}\left(x_{a} \mid x_{p(a)}\right)=P\left(x_{a} \mid x_{p(a)}\right)$

Known Tree Structure

Distribution $P_{T}(x)$

$$
v_{p(a)}=\text { "parent" of } v_{a}
$$

$P_{T}\left(x_{5} \mid x_{2}\right) P_{T}\left(x_{4} \mid x_{2}\right) P_{T}\left(x_{3} \mid x_{2}\right) P_{T}\left(x_{2} \mid x_{0}\right) P_{T}\left(x_{1} \mid x_{2}\right) P_{T}\left(x_{0}\right)$
Estimate $P_{T}\left(x_{a} \mid x_{p(a)}\right)=P\left(x_{a} \mid x_{p(a)}\right) \quad$ Which tree?

Learning Bayesian Nets

Fully observable data

Missing data

Known structure	Unknown structure
Very easy	Hard
Somewhat easy (EM)	Very very hard

CPTs $\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{x}}\right)$

Learning Bayesian Nets: Structure

- Prediction: Care about a good structure => good prediction
- Discovery: Understand some system

CPTs $P\left(X_{i} \mid P a_{x_{i}}\right)$

Learning Bayesian Nets: Structure

- Truth

- Recovered

Slide courtesy: Dhruv Batra

Learning Bayesian Nets: Structure

- Constraint-based approach
- Test conditional independencies in data
- Find an I-map
- Score-based approach
- Finding structure and parameters => density estimation task
- Evaluate model, similar to parameter estimation
- MLE
- Bayesian estimation

Score-based Approach

Possible structures

Score structure -52

Score structure -60

Score-based Approach

- Say there are N vertices?
- How many (undirected) graphs in the search space?
- How many (undirected) trees?

Score-based Approach

- What is a good score?
- How about log-likelihood?
- Score(G) $=\log$-likelihood(G: D, $\left.\theta_{\text {MLE }}\right)=\log P\left(D \mid G, \theta_{\text {MLE }}\right)$
- How do we interpret this Max Likelihood score?
- Consider a two-node graph (on board)

Kullback-Leibler Divergence

$$
\mathrm{KL}\left(P_{1} \| P_{2}\right)=-\sum_{x} P_{1}(x) \log P_{2}(x)+\underbrace{\sum_{x} P_{1}(x) \log P_{1}(x}_{\text {Constant }}
$$

$$
K L\left(P_{1} \| P_{2}\right) \geq 0
$$

$$
K L\left(P_{1} \| P_{1}\right)=0
$$

Substitute $P_{1}=P$ and $P_{2}=P_{\mathrm{T}}$. Minimize $K L\left(P \| P_{\mathrm{T}}\right)$

Estimating the Tree Structure

$$
\min -\sum_{x} P(x) \log P_{T}(x)
$$

Estimating the Tree Structure

$$
\min -\sum_{x} P(x) \sum_{a} \log P_{T}\left(x_{a} \mid x_{p(a)}\right)
$$

Estimating the Tree Structure

$$
\min -\sum_{x} P(x) \sum_{a} \log \frac{P_{T}\left(x_{a}, x_{p(a)}\right) P\left(x_{a}\right)}{P_{T}\left(x_{p(a)}\right) P\left(x_{a}\right)}
$$

Estimating the Tree Structure

$$
\min -\sum_{x} P(x) \sum_{a} \log \frac{P_{T}\left(x_{a}, x_{p(a)}\right)}{P_{T}\left(x_{p(a)}\right) P\left(x_{a}\right)}
$$

$$
\sum_{x} P(x) \sum_{a} \log P\left(x_{a}\right)
$$

Independent of the tree structure

Estimating the Tree Structure

$$
\begin{aligned}
& \min -\sum_{a} \sum_{x_{a}} \sum_{x_{p(a)}} P\left(x_{a}, x_{p(a)}\right) \log \frac{P_{T}\left(x_{a}, x_{p(a)}\right)}{P_{T}\left(x_{p(a)}\right) P\left(x_{a}\right)} \\
& \min -\sum_{a} I\left(x_{a}, x_{p(a)}\right)
\end{aligned}
$$

Mutual Information

Score-based Approach

- For a general graph G,

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \sum_{x_{i}, \operatorname{Pa}_{x_{i}, \mathcal{G}}} \hat{P}\left(x_{i}, \mathbf{P} \mathbf{a}_{x_{i}, \mathcal{G}}\right) \log \hat{P}\left(x_{i} \mid \mathbf{P a}_{x_{i}, \mathcal{G}}\right)
$$

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \hat{I}\left(X_{i}, \mathbf{P a}_{X_{i}}\right)-m \sum_{i} \hat{H}\left(X_{i}\right)
$$

Score-based Approach

$$
\log \hat{P}(\mathcal{D} \mid \theta, \mathcal{G})=m \sum_{i} \hat{I}\left(X_{i}, \mathbf{P a}_{X_{i}}\right)-m \sum_{i} \hat{H}\left(X_{i}\right)
$$

- Implications
- Intuitive: higher mutual info \rightarrow higher score
- Decomposes over families (nodes and its parents)
- Information never hurts!
- But....

Score-based Approach

- Adding an edge only improves score!
- Thus, MLE = complete graph
- Two fixes
- Restrict space of graphs
- Say only d parents allowed
- Put priors on graphs
- Prefer sparser graphs

Chow-Liu Tree Learning - I

- For each pair of variables X_{i}, X_{j}
- Compute the empirical distribution

$$
\hat{P}\left(x_{i}, x_{j}\right)=\frac{\operatorname{Count}\left(x_{i}, x_{j}\right)}{m}
$$

- Compute mutual information

$$
\widehat{I}\left(X_{i}, X_{j}\right)=\sum_{x_{i}, x_{j}} \hat{P}\left(x_{i}, x_{j}\right) \log \frac{\widehat{P}\left(x_{i}, x_{j}\right)}{\hat{P}\left(x_{i}\right) \widehat{P}\left(x_{j}\right)}
$$

- Define graph
- Nodes $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$
- Edge (i,j) gets weight $\hat{I}\left(X_{i}, X_{j}\right)$

Chow-Liu Tree Learning - II

- Optimal tree BN
- Compute maximum weight spanning tree
- Directions:
- Pick any node as root
- Direct edges from root (breadth-first search for example)

Score-based Approach

- Bayesian score
=> Prior distributions
- Over structures
- Over parameters of a structure
- Posterior over structures (given data) $\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G})+\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) d \theta_{\mathcal{G}}$

Bayesian Score: Structure Prior

$\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G})+\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) d \theta_{\mathcal{G}}$

- Common choices
- Uniform: P(G) α c
- Sparsity prior: P(G) $\alpha c^{|G|}$
- Prior penalizing number of parameters
$-P(G)$ should decompose like the family score

Bayesian Score: Parameter Prior \& Integrals

$\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G})+\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) \& \theta_{\mathcal{G}}$

- If $\mathrm{P}\left(\theta_{G} \mid G\right)$ is Dirichlet, then the integral has closed form!
- And, it factorizes according to families in G

Bayesian Score: Parameter Prior \& Integrals

$\log P(\mathcal{G} \mid D) \propto \log P(\mathcal{G})+\log \int_{\theta_{\mathcal{G}}} P\left(D \mid \mathcal{G}, \theta_{\mathcal{G}}\right) P\left(\theta_{\mathcal{G}} \mid \mathcal{G}\right) \& \theta_{\mathcal{G}}$

- How should we choose Dirichlet hyperparameters?
- K2 prior: Fix an $\alpha, \mathrm{P}\left(\theta_{\mathrm{xi} \mid \mathrm{Pax}}\right)=\operatorname{Dirichlet}(\alpha, \ldots, \alpha)$
- BDe Prior: Pick a "prior" BN
- Compute $\mathrm{P}\left(\mathrm{Xi}, \mathrm{Pa}_{\mathrm{xi}}\right)$ under this prior BN

Learning Bayesian Nets: Structure

- Question: Are these score-based approaches really Bayesian?
- So far, we have selected only one structure
- We must average over structures
- Similar to averaging over parameters

This class

- Bayesian Networks
- Parameter Learning
- Structure Learning
- Inference

BNs: Inference

- Evidence $\mathbf{E}=\mathbf{e}$ (e.g., $\mathrm{N}=\mathrm{t}$)
- Query variables of interest Y

- Conditional probability: $P(Y \mid E=e)$
- e.g., P(F,A | N=t)
- Special case: Marginals P(F)
- Maximum a posteriori: argmax $\mathrm{P}($ all var | $\mathrm{E}=\mathbf{e}$) - argmax_\{f,a,s,h\}P(f,a,s,h|N=t)

BNs: Inference

- Evidence $\mathbf{E}=\mathbf{e}$ (e.g., $\mathrm{N}=\mathrm{t}$)
- Query variables of interest Y

- Marginal-MAP: argmax_y P(Y|E=e)
$-\operatorname{argmax} _y \boldsymbol{\Sigma}_{0} \mathrm{P}(\mathbf{Y}=\mathbf{y}, \mathbf{O}=\mathbf{o} \mid \mathrm{E}=\mathbf{e})$

BNs: Inference

- Are MAP and max of marginals consistent?
- Verify with this example:

BNs: Inference

- In general, (at least) NP-hard
- In practice,
- Exploit structure
- Many effective approximate algorithms
- We will look at
- Exact and approximate inference

BNs: Inference

- Variable Elimination
- Sum-product belief propagation
- Sampling: MCMC
- Integer programing (LP relaxation)
- Combinatorial optimization (e.g., graphcuts)

Marginal Inference

- Consider the example
- Evidence: $\mathrm{N}=\mathrm{t}$
- Compute: P(F|N=t)

- (On board)

Variable Elimination

- Given a $B N$ and a query $P(\mathbf{Y} \mid \mathbf{e}) \approx P(\mathbf{Y}, \mathbf{e})$,
- Choose an ordering on variables, e.g., $X_{1}, \ldots X_{n}$
- For $\mathrm{i}=1 . . . \mathrm{n}$, if $\mathrm{X}_{\mathrm{i}} \notin\{\mathbf{Y}, \mathrm{E}\}$
- Collect factors $f_{1} \ldots f_{k}$ that include X_{i}
- Generate a new factor by eliminating X_{i} from them

$$
g=\sum_{X_{i}} \prod_{j=1}^{k} f_{j}
$$

- Normalize $\mathrm{P}(\mathbf{Y}, \mathbf{e})$ to obtain $\mathrm{P}(\mathbf{Y} \mid \mathbf{e})$

MAP Inference

- Evidence $\mathbf{E}=\mathbf{e}$ (e.g., $\mathrm{N}=\mathrm{t}$)
- Query variables of interest Y

- Maximum a posteriori: argmax P (all var | $\mathrm{E}=\mathbf{e}$)
- argmax_\{f,a,s,h\}P(f,a,s,h|N=t)

Variable Elimination for MAP Inference

- Given a BN and a query $\max _{\mathrm{x} 1 \ldots \mathrm{xn}} \mathrm{P}\left(\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{n}}, \mathbf{e}\right)$,
- Choose an ordering on variables, e.g., $X_{1}, \ldots X_{n}$
- For $\mathrm{i}=1$...n, if $\mathrm{X}_{\mathrm{i}} \notin \mathbf{E}$
- Collect factors $f_{1} \ldots f_{k}$ that include X_{i}
- Generate a new factor by eliminating X_{i} from them

$$
g=\max _{x_{i}} \prod_{j=1}^{k} f_{j}
$$

- (This completes the forward pass)

Variable Elimination for MAP Inference

- $\left\{\mathrm{x}_{1}{ }^{*} . . . \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$ will store the maximizing assignment
- For $\mathrm{i}=\mathrm{n}$... 1 , if $\mathrm{X}_{\mathrm{i}} \notin \mathrm{E}$
- Take factors $f_{1} \ldots f_{k}$ used when X_{i} was eliminated
- Instantiate $\mathrm{f}_{1} \ldots \mathrm{f}_{\mathrm{k}}$ with $\left\{\mathrm{x}_{\mathrm{i}+1}{ }^{*} \ldots \mathrm{x}_{\mathrm{n}}{ }^{*}\right\}$
- Generate maximizing assignment for X_{i} :

$$
x_{i}^{*} \in \underset{x_{i}}{\operatorname{argmax}} \prod_{j=1}^{k} f_{j}
$$

- (This completes the backward pass)

