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Artificial Intelligence / Machine Learning
A Case of Irrational Scientific Exuberance

I Underspecified goals Big Data cures everything

I Underspecified limitations Big Data can do anything (if big

enough)

I Underspecified caveats Big Data and Big Brother

Wanted: An AI with common decency

I Fair no biases

I Accountable models can be explained

I Transparent decisions can be explained

I Robust w.r.t. malicious examples
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ML & AI, 2
In practice

I Data are ridden with biases

I Learned models are biased (prejudices are transmissible to AI
agents)

I Issues with robustness

I Models are used out of their scope

More

I C. O’Neill, Weapons of Math Destruction, 2016
I Zeynep Tufekci, We’re building a dystopia just to make people

click on ads, Ted Talks, Oct 2017.
4 / 82



ML yields discriminative or generative modelling
Given a training set iid samples ∼ P(X ,Y )

E = {(xi , yi ), xi ∈ IRd , i ∈ [[1, n]]}
Find

I Supervised learning: ĥ : X 7→ Y or P̂(Y |X )
I Generative model P̂(X ,Y )

Predictive modelling might be based on correlations
If umbrellas in the street, Then it rains
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The implicit big data promise:

If you can predict what will happen,
then how to make it happen what you want ?

Knowledge → Prediction → Control

ML models will be expected to support interventions:
Intervention do(X = a) forces variable X to value a

I health and nutrition

I education

I economics/management

I climate
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The implicit big data promise, 2

Intervention Pearl 2009

Direct cause X → Y iff

PY |do(X=a,Z=c) 6= PY |do(X=b,Z=c)

Example C: Cancer, S : Smoking, G : Genetic factors
P(C |do{S = 0,G = 0}) 6= P(C |do{S = 1,G = 0})
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Correlations do not support interventions

Causal models are needed to support interventions

Consumption of chocolate enables to predict # of Nobel prizes

but eating more chocolates does not increase # of Nobel prizes
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Predictive model 6→ Causal model

Consider

X ,EY ,EZ ∼ Uniform(0, 1),

Y ← 0.5X + EY ,

Z ← Y + EZ ,

with EY ,EZ ∼ N (0, 1) (noise)

Predicting Y
Ŷ = 0.25X + 0.5Z

If interpreted as a causal model, suggests that Y depends on Z .

Issue
Causes can often be predicted from their effects
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When correlations do not imply causality

Tentative explanation: confounders

I Both effects of a same cause, C 6⊥⊥ N.

I But C and N are conditionally independent given W

C ⊥⊥ N|W
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Causality and paradoxes

Facts

I If mother smokes, child weight tends to be small

I Tiny child, more health problems

I However, tiny child AND mother smokes > tiny child

Interpretation mother smoking beneficial to child’s health ?

Explaining away
Many possible causes for small child weight
Many of these severely affect child’s health (genetic diseases)
Compared to these, mother smoking is rather a good news...
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An AI with common decency

Desired properties

I Fair no biases

I Accountable models can be explained

I Transparent decisions can be explained

I Robust w.r.t. malicious examples

Relevance of Causal Modeling

I Decreased sensitivity wrt data distribution

I Support interventions clamping variable value

I Hopes of explanations / bias detection
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Causal Discovery

HOW

I Gold Standard: perform randomized controlled experiments

I But these experiments are often costly, unethical or unfeasible

I Our setting: observational causal discovery
From data, infer causal model.

WHAT FOR

I Understandable, interpretable, more robust models

I Prioritize confirmatory experiments: enabling some control

I Generate new data: privacy and domain-compliant, e.g. for
medical training
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Motivating applications
Human resources

1. Autonomy / Satisfaction / Productivity

2. Quality of life at work / Economic profitability of firms

Joint project with ’La Fabrique de l’industrie’
Kalainathan et al. 18

Health and Life habits

1. Diet / Diabetes type 2.

Joint project Nutriperso with INRA
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State of the art
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Causal Modelling

The Causal Discovery Setting
Assume random variables

X1, . . .Xd : random variables

and a sample of their joint distribution

D = {xi , i = 1 . . . n}

to be given.

Formal background: Overview

1. Key concepts

2. Framework

3. Approaches
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Key concepts: 1. Dependence among pairs of variables

Independent variables X and Y (X ⊥⊥ Y )

X ⊥⊥ Y iff P(X ,Y ) = P(X ).P(Y )

Dependency tests

I Correlation limited to linear dependencies

Y = X 2 + E
Correlation(X ,Y ) ≈ 0
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Key concepts: 1. Dependence among pairs of variables

Independent variables X and Y (X ⊥⊥ Y )

X ⊥⊥ Y iff P(X ,Y ) = P(X ).P(Y )

Dependency tests

I Correlation limited to linear dependencies

I HSIC, Hilbert-Schmitt Independence Criterion
Gretton et al. 05

HSIC (Pr
XY
,F ,G) := ||CXY ||2

where || · || denotes the Hilbert-Schmidt norm, and CXY a
kernel based covariance operator and F ,G two RKHSs.
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Key concepts: 2. Conditional Dependence/Independence

Conditional independence a.k.a. hidden confounder

Conditional dependence a.k.a. V-structure

X = Complex machineY = Inexperienced Worker

Z = Accident

X and Y are independent; but given Z = true they are not
independent (either the machine is complex or the worker is
inexperienced...)
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Definition of causal relationship
Definition of intervention

do(X = 1) forces variable X to value 1

Pearl 09

Definition of causal relationship
X is a direct cause of Y (X → Y ) iff
all other variables Z being constant,

PY |do(X=1,...,Z=c) 6= PY |do(X=0,...,Z=c)

Example C : Cancer, S : Smoking, G : Genetic factors.

P(C |do{S = 0},G}) 6= P(C |do{S = 1},G})

CS

Intervention

G
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Markov equivalence class and V-structure

Markov Equivalent Class: A⊥⊥ C |B and A⊥6⊥ C

A B C A B C A B C

B

A C

V-Structure: A⊥6⊥ C |B and A⊥⊥ C

Spirtes et al. 00, 16
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Key concepts: 3. Causality with distributional asymmetry

Leveraging Occam’s razor principle; Janzig 19

→ the causal model as the one being the simplest model that fits
the data.
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Framework: Functional Causal Models (FCMs)
Given X1, ..Xd ,

Xi = fi (XPa(i ;G),Ei ),∀i ∈ [1, d ]

with XPa(i ;G) the set of parents of Xi in G (= causes of Xi ),
Ei a random independent noise variable modeling the unobserved
other causes,
fi a deterministic function: the causal mechanism

E1

f1

X1 E3E2 E4

f4

X4E5

f2 f3

X3

f5

X5

X2



X1 = f1(E1)

X2 = f2(X1,E2)

X3 = f3(X1,E3)

X4 = f4(E4)

X5 = f5(X3,X4,E5)
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Functional Causal Models, 2

Markov decomposition

P(X1, . . . ,Xd) = ΠP(Xi |XPa(i ;G))
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Usual Assumptions

Causal Sufficiency: no unobserved confounders

Causal Markov: all d-separations in the causal graph G imply
conditional independences in the observational distribution P

Causal Faithfulness: all conditional independences in P imply
d-separations in G.
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Key approach 1: Constraint-based methods

Constraint-based methods, through V-Structures and constraint
propagation, output a CPDAG (Completed Partially Directed
Acyclic Graph).

X1

X2 X3

X5

X4

X6

(a) The exact DAG of G.

X1

X2 X3

X5

X4

X6

(b) The CPDAG of G.

Ex: Peter-Clark Algorithm (PC) Spirtes et al. 00

Non-linear extensions (CI tests): PC-HSIC (KCI-test), PC-RCIT
Zhang 12, Strobl 17
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Key approach 2: Score-based methods

Objective function to optimize such as the Bayesian Information
Criterion (BIC):

BIC (G) = −2 ln L + k ∗ ln n

with L: Likelihood of the model, k : number of parameters, n:
Number of samples

The graph is optimized with the operators:

I add edge

I remove edge

I revert edge

Ex: Greedy Equivalence Search (GES) Chickering 02
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Limitations
I Computational cost dependent on the type of test/scoring

method used
I Data hungry
I Identifiability issues

Example

X1,EX1 ,EX2 ∼ Uniform(0, 1),X1 ⊥⊥ EX1 , Y ⊥⊥ EX2

Y ← 0.5X1 + EX1 ,

X2 ← Y + EX2 ,

X2 Y X1

Here X1 ⊥⊥ X2|Y . No V-structure
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Key approach 3: Global optimization

Assuming linear causal mechanisms, the causal mechanisms can be
formulated in terms of linear algebra.

X = BTX + E

And estimate the B matrix, through ICA for LiNGAM
Shimizu 06, Hyvarinen 99

→ Graphical models Pearl 09, Friedman 08

Ex: Max-Min Hill-Climbing (MMHC) Tsamardinos 06

Concave penalized Coordinate Descent (CCDr) Aragam 15
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Key approach 4: Exploiting asymmetries in the distribution

→ If no v-structure available or causal discovery with 2 variables:
leverage assymetries in the distributions.
Additive noise model (ANM): Hoyer 09

Y = f (X ) + E

Ex: Post Non-Linear model (PNL), GPI
Zhang 10, Stegle 10
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Limitations of asymmetry-based approaches
I Restrictive assumptions on the type of causal mechanisms
I Does not take into account conditional independence

relations.
Zhang 09

Example

X1,X2,EX1 ∼ Gaussian(0, 1),X1 ⊥⊥ EX1 , X2 ⊥⊥ EX1

Y ← 0.5X1 + X2 + EX1

Y

X1 X2

(X1,Y ) and (X2,Y ) are perfect symmetric pairwise distribution
(after rescaling)
However X1 ⊥6⊥ X2|Y : A V-structure may be identified
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ey approach 5: A machine learning-based approach
Guyon et al, 2014-2015

Pair Cause-Effect Challenges

I Gather data: a sample is a pair of variables (Ai ,Bi )
I Its label `i is the “true” causal relation (e.g., age “causes”

salary)

Input
E = {(Ai ,Bi , `i ), `i in {→,←,⊥⊥}}

Example Ai ,Bi Label `i
Ai causes Bi →
Bi causes Ai ←
Ai and Bi are independent ⊥⊥

Output using supervised Machine Learning

Hypothesis : (A,B) 7→ Label 31 / 82



Key approach 5: A machine learning-based
approach, 2

Guyon et al, 2014-2015
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The Cause-Effect Pair Challenge
Learn a causality classifier (causation estimation)

I Like for any supervised ML problem from images ImageNet
2012

More

I Guyon et al., eds, Cause Effect Pairs in Machine Learning,
2019. 33 / 82



State of the art: summary

34 / 82



State of the art: summary

34 / 82



Causal Generative Neural Networks
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Causal Generative Neural Networks (CGNN): Overview

Assumptions:

I Input: Graph skeleton with L edges

I Continuous data: X1 . . . , Xd real valued

Problem posed:

I Combinatorial optimization problem of dimension L

I For each candidate in {−1, 1}L, find each causal mechanism

Approach:

I Causal mechanisms fi approximated as a neural net.

I Loss function: Maximum Mean Discrepancy (MMD) (distance
original vs generated data);

I Hyperparameter: number nh of neurons in fi
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Modeling FCMs with generative neural networks

I Idea: approximate the continuous mechanisms f1, . . . , fd with
a set of one hidden layer neural networks f̂ = (f̂1, . . . , f̂d)

I Estimate FCMs C as Ĉ = (Ĝ, f̂ ):

X̂i ← f̂i (X̂Pa(i ;Ĝ),Ei ),Ei ∼ N (0, 1) (1)
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Generative neural networks as a FCM

For each candidate (Ĝ , f̂ ), generate samples X̂;
Loss = difference between original distribution, generated

distribution
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Learning Metric: Maximum Mean Discrepancy (MMD)

Kernel-based loss evaluating a ”distance” between empirical
distributions:

Gretton 05

I Generated data X̂ = x̂i , i = 1 . . . n′

I True data X = xi , i = 1 . . . n

MMD(X̂,X) =
1

n2

∑
i ,j

k(xi , xj)+
1

n′2

∑
i ,j

k(x̂i , x̂j)−
2

nn′

∑
i ,j

k(x̂i , xj)

with k(u, v) =
∑

` exp
− γ`

d
||u−v||2 , γ` ∈ {10−2, . . . , 102}

A linear approximation M̂MD leveraging random projections has
been proposed

Lopez-Paz et al. 16
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Adjusting number of hidden units nh

original data, X → Y nh = 2 nh = 5 nh = 20
C

G
N

N
s

X
→

Y
nh = 100

C
G

N
N

s
X
←

Y

X E1

f1

Y

Y E2

f2

X

X → Y Y → X
⇒ Causal direction not identifiable if nh too high
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General algorithm

Input = Continuous Data + Graph skeleton

1. Init: Pairwise orientation + DAG recovery (remove cycles
heuristic)

2. Iteratively until the stopping criterion is met:
I Reverse an edge at random that does not create a cycle
I Retrain CGNN using backpropagation
I If the resulting MMD loss is better, replace the current best

solution

41 / 82



General algorithm

Input = Continuous Data + Graph skeleton

1. Init: Pairwise orientation + DAG recovery (remove cycles
heuristic)

2. Iteratively until the stopping criterion is met:
I Reverse an edge at random that does not create a cycle
I Retrain CGNN using backpropagation
I If the resulting MMD loss is better, replace the current best

solution

41 / 82



Experimental setting
I Benchmarks:

I Simulated data: Xi = fi (XPa(i ;G),Ei ),∀i ∈ [1, d ],
with fi : Polynomials, Gaussian processes with additive and
multiplicative noise

I Biological data : SynTReN Gene expression, Real protein
network

Sachs 05
I All methods are given the true skeleton
I Performance indicator: Area under the Precision Recall Curve

(number of identified edges)

I Baselines:
I PC, PC-HSIC (KCI-test) Spirtes 00, Zhang 11
I ANM Hoyer 09
I Jarfo Fonollosa 16
I GES Chickering 02
I LiNGAM Shimizu 06
I CAM Buhlman 14

I CGNN: nh ∈ [5, 20], epochs = 2000, `r = 0.01

I M̂MD
m

k ,m = 300 (Linear approx of MMD)

42 / 82



Experimental setting
I Benchmarks:

I Simulated data: Xi = fi (XPa(i ;G),Ei ),∀i ∈ [1, d ],
with fi : Polynomials, Gaussian processes with additive and
multiplicative noise

I Biological data : SynTReN Gene expression, Real protein
network

Sachs 05
I All methods are given the true skeleton
I Performance indicator: Area under the Precision Recall Curve

(number of identified edges)
I Baselines:

I PC, PC-HSIC (KCI-test) Spirtes 00, Zhang 11
I ANM Hoyer 09
I Jarfo Fonollosa 16
I GES Chickering 02
I LiNGAM Shimizu 06
I CAM Buhlman 14

I CGNN: nh ∈ [5, 20], epochs = 2000, `r = 0.01

I M̂MD
m

k ,m = 300 (Linear approx of MMD)
42 / 82



Experimental validation: Generated datasets

All methods are given the true skeleton.
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Experimental validation: Real data

Color: green: ok ; red: wrong; blue: unknown, Edge width: confidence
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Experimental validation: Real data

Color: green: ok ; red: wrong; blue: unknown, Edge width: confidence
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CGNN

PROS:

I [UNIVERSALITY] power of NN (universal approximators)

I [UNIFICATION] unification of causal discovery principles (CI
and DA)

CONS:

I [SKELETON KNOWLEDGE NEEDED] the method
requires the initial knowledge of the graph skeleton (though
edge orientation is robust against skeleton mistakes)

I [COMPUTATIONAL COST] the method is
computationally costly (30h for 50 variables) which in practice
required us to perform sub-optimal greedy optimizations

I [SENSITIVITY] the method is sensitive to hyper-parameter
selection (including number of neurons)
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Structural Agnostic Modeling
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Structural Agnostic Model (SAM): Overview

Assumptions:

I Continuous data

I Causal sufficiency (no hidden confounder)

Goal:

I Learn end-to-end the graph structure and the causal
mechanisms

Approach:

I A global loss

I accounting for structural and functional complexity

I accounting for model fitness through an adversarial
mechanism
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Finding the causes for each variable

Xj = fj(X−j ,Ej), (2)

Goal: Find the causes = a sparse network it generates

→ Enforcing sparsity through L0 penalization
Leray 99, Maddison 16, Jang 16
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Regularization of the complexity of the mechanisms

original data, X → Y nh = 2 nh = 5 nh = 20
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General architecture and loss of SAM

→ Adversarial loss goodfellow2014generative
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Loss of SAM

Learning criterion to minimize:

S(Ĝ, f̂ ,D) = −Ex∼p(x)

[
log q(x , θ, Ĝ)

]
︸ ︷︷ ︸

Log likelihood

estimated by the discriminator

+λA‖A‖1 + λZ‖Z‖1︸ ︷︷ ︸
Regularization

, (3)

where

I ‖A‖1 =
∑

i,j=1..d ai,j : total number of edges in Ĝ

→ Structural complexity.

I ‖Z‖1 =
∑

j=1,...,d

∑
h=1,...,nh

zj,h: total number of active units in f̂

→ Functional complexity.
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Final learning objective

S(Ĝ, f̂ ,D) =
d∑

j=1

I (Xj ,XPa(j ;Ĝ)|XPa(j ;Ĝ)) + λA‖A‖1︸ ︷︷ ︸
Structural score

+
d∑

j=1

DKL[p(xj |xPa(j ;Ĝ)) ‖ q(xj |xPa(j ;Ĝ), θj)] + λZ‖Z‖1︸ ︷︷ ︸
Functional score

+ λD

d∑
k=1

tr Ak

k!︸ ︷︷ ︸
Acyclicity constraint

Zheng 18

with I the mutual information and DKL the Kullback-Leibler
divergence
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Properties of the score

Theorem 1: Identification to the Markov Equivalence Class

Under Causal Markov and faithfulness assumptions, the DAG Ĝ
minimizing the structural score belongs to the Markov equivalence
class of the true graph G (CPDAG of G )

Theorem 2: Identification of the DAG

Under additional assumptions, the DAG Ĝ minimizing also the
functional score is exactly the DAG G

53 / 82



Properties of the score

Theorem 1: Identification to the Markov Equivalence Class

Under Causal Markov and faithfulness assumptions, the DAG Ĝ
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Experimental setting
I Benchmarks:

I Simulated data (20 and 100 Variables):
Xi = fi (XPa(i ;G),Ei ),∀i ∈ [1, d ],
fi : Linear, Gaussian processes with additive (GP AM) and
multiplicative noise (GP Mix), Sigmoid functions (Sigmoid
AM/Sigmoid Mix), Neural networks with randomized weights
(NN).

I Biological data : SynTReN Gene expression , Real protein
network Sachs 05

I Performance indicator: Area under the Precision Recall Curve

I Baselines:
I PC, PC-HSIC (KCI-test) Spirtes 00, Zhang 11
I PC-RCIT/RCOT Strobl 17
I ANM Hoyer 09
I Jarfo Fonollosa 16
I GES Chickering 02
I LiNGAM Shimizu 06
I CAM Buhlman 14
I MMHC Tsamardinos 06
I CCDr Aragam 17
I GENIE3 Irrthum 10
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Experimental setting (2)

I Hyperparameters of SAM:
I `r = 0.01
I λA = 0.01
I λz = 10−5

I Lesion study (impact of neural vs linear mechanims and mean
square error vs adversarial loss):
I SAM-mse-linear: Linear mechanisms and a MSE loss
I SAM-linear: Linear mechanisms and a GAN Setting
I SAM-mse: Non-linear mechanisms and a MSE Loss
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Experimental results: Generated datasets (20 variables)

CAM is especially tailored for Gaussian processes with additive noise;
and GES for linear mechanisms

56 / 82



Experimental results: Generated datasets (100 variables)
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Results on biological data

Syntren Dataset

Sachs dataset
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Ablation studies

Both the non-linear mechanisms and the adversarial network are required
to attain maximum performance
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Computational time (graph of 100 variables)

AP Time in s. (CPU) Time in s. (GPU)

PC-Gauss 13
PC-HSIC -

PC-RCOT 31 320
PC-RCIT 46 440

GES 1
GIES 5

MMHC 5
LiNGAM 5

CAM 45 899
CCDr 3

GENIE3 511
SAM-lin-mse 3 076 74

SAM-mse 18 180 118
SAM-lin 24 844 1 980

SAM 24 844 2 041
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Applications
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Applications: 1. Human Resources
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Causal Modeling and Human Resources
Known:

A Quality of life at work employee’s perspective
B Economic performance firm’s perspective
I ... are correlated

Question: Are there causal relationships ?
A→ B ; or B → A; or ∃C / C → A and C → B

Data

I Polls from Ministry of Labor
I Gathered by Group Alpha Secafi (trade union advisor)
I Tax files + social audits for 408 firms

Economic sectors: low tech, medium-low, medium-high and
high-tech.
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Variables
Economic indicators

I Total number of employees

I Capitalistic intensity, Total payroll, Gini index

I Average salary (of workers, technicians, managers)

I Productivity, Operating profits, Investment rate

People

I Average age, Average seniority, Physical effort,

I Permanent contract rate, Manager rate, Fixed-term contract
rate, Temporary job rate, Shift and night work, Turn-over

I Vocational education effort, duration of stints, Average stint
rate (for workers, technicians, managers);
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Variables, cont’d

Quality of life at work

I Frequency & Gravity of work injuries, Safety expenses, Safety
training expenses

I Absenteism (diseases), Occupational-related diseases

I Resignation rate, Termination rate, Participation rate

I Subsidy to the works council

Men/Women

I Percentage of women (employees, managers)

I Wage gap between women and men (average, for workers,
technicians, managers)
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General Causal Relations
Access to training ↗

I ↘ Gravity of work injuries
I ↘ Occupational-related diseases

Termination rate ↗

I ↗ Absenteism (diseases)

Percentage of managers ↗

I ↗ Access to training
I ↘ Shift or night working hours

Age ↗

I ↘ Fixed-term contract rate
I ↘ Productivity (weak impact)

?

I Productivity ↗ → Participation rate ↗
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Global relations between QLW and performance ?

Failure

I Nothing conclusive

Interpretation

I Exist confounders (controlling QLW and performance) C → A
and C → B

I One such confounder is the activity sector

I In different activity sectors, causal relations are different
(hampering their identification)

I ⇒ Condition on confounders
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Low-tech sector

I Resignation rate ↗, Productivity ↘

I Average salary ↗, Productivity ↗ very significant

I Occupational-related diseases ↗, Productivity ↘

I Temporary job rate↗, Gravity of work injuries ↗

I Permanent contract rate ↗, Safety training ↘

I Duration training stints ↗, Termination rate ↘
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Outcomes & Limitations

Causal modeling and exploratory analysis

I Efficient filtering of plausible relations (several orders of
magnitude);

I Complementary w.r.t. visual inspection (experts can be fooled
and make sense of correlations & hazards);

I Multi-factorial relations ? yes; but even harder to interpret.

Not a ready-made analysis

I Causal relations must be
I interpreted
I confirmed by field experiments; polls; interviews.
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Applications: 2. Food and Health
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A data-driven approach to individual dietary
recommendations

Context

I Long-term goal: Personalized dietary recommendations

I Requirement: identify risk index associated to food products

I At a coarse-grained level (lipid, protein, glucid), nothing to see

I At a fine-grained level: 300+ types of pizzas, ranging from ok
to very bad.

The wealth of Kantar data

I ∼22,000 households × 10 years (this study: 2014)

I 19M total purchases/year (180,000 products)

I Socio-demographic attributes, varying size
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Beware: data rarely collected as should be...
Raw description can hardly be used for meaningful analysis

I 170,000 products for 22,000 households
I Data gathered with (among others) marketing goals

where bought, which conditioning
I Most products are sold by 1 vendor
I Most families are going to one vendor

Manual pre-processing

I Consider 10 categories of interest, e.g. bio/non-bio; alcohol
yes/no; fresh/frozen

I Merge products with same categories
I 170,000 →≈ 4,000 products

Example: for beer, we only selected as features of interest: colour
(blonde, black, etc.); has-alcohol (yes, no); organic (yes, no) 72 / 82



Methodology
Dimensionality reduction

1. Borrowing Natural Language Processing tools, with
vector of purchase ≈ document
food product ≈ word

2. Using Latent Dirichlet Association to extract “dietary topics”
Blei et al. 03

Some topics can be directly interpreted The darker the region,
the more present the topic (NB: regions are not used to build
topics)

Topic 2 Topic 16
”Brittany” ”Sausages++”
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Focus: impact of topics on BMI
Left: Bio/organic topic Right: Frozen food topic
Top row: Women Bottom row: Men

High weight of Bio topic is correlated with lower BMI (p < 5%)
(particularly so for women).
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Does A (eat bio) cause B (better BMI) ?
Three cases

I A does cause B (bio food is better)
I Confounder: exists C that causes A and B

(rich/young/educated people tend to consume bio products
and have lower BMI);

I Backdoor effects: exists C correlated with A which causes B
(people eating bio also tend to eat more greens, which causes
lower BMI);

Goal: Find out which case holds

Causal models

I Ideally based on randomized controlled trials
Imbens Rubins 15
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Proposed Methodology
Taking inspiration from Abadie Imbens 06

Target population: “Bio” people = top quantile coordinate on
bio topic.

RCT would require a control population

Building a control population finding matches
I For each bio person, take her consumption z (basket of

products)
I Create a falsified consumption z ′ (replacing each bio product

with same, but non-bio, product)
I Find true consumption z“ nearest to z ′ (in LDA space)
I Let the true person with consumption z“ be called ”falsified

bio“

Compare bio and ”falsified bio“ populations wrt BMI 76 / 82



Bio vs Falsified Bio populations

Left

I Projection on the Bio topic (in log scale)
I (Falsified bio population not 0: the bio topic contains e.g.

sheep yogurt).

Right

I BMI Histograms of both bio and falsified bio populations
I Statistically significant difference 77 / 82



Next
Chasing confounders

I Discriminating bio from “falsified bio” populations w.r.t.
socio-professional features: accuracy ≈ 60%

I Candidate confounder: mother education level (on-going
study)

Next steps

I Confirm conjectures using longitudinal data (2015-2016)

I Interact with nutritionists / sociologists

I Extend the study to consider the impact of, e.g.
I Price of the food
I Amount of trans fats
I Amount of added sugar
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Discussion
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Perspectives: Causality analysis and Big Data
Finding the needle in the haystack

I Redundant variables (e.g. in economics) → un-interesting
relations

I Variable selection
I Feature construction dimensionality reduction

Beyond causal sufficiency

I Confounders are all over the place (and many are plausible,
e.g. age and size of firm; company ownership and
shareholdings)

I When prior knowledge available, condition on counfounders
I Use causal relationships on latent variables Wang and Blei,

19

to filter causal relationships on initial variables
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A python package for observational causal
discovery

All the presented framework is available on GitHub at :
https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox
It includes multiple algorithms as well as tools for graph structure.
Accepted at JMLR - Open Source Software

Kalainathan Goudet 19
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