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Graphical	Models	?	

Slide	courtesy:	Dhruv	Batra	



What	this	class	is	about?	

•  Making	global	predictions	from	local	
observations	

•  Learning	such	models	from	large	quantities	of	
data	

Inference	

Learning	



Motivation	

•  Consider	the	example	of	medical	diagnosis	

Predisposing	factors	
Symptoms	
Test	results	

Diseases	
Treatment	outcomes	

Slide	inspired	by	PGM	course,	Daphne	Koller	



Motivation	

•  A	very	different	example:	image	segmentation	

Millions	of	pixels	
Colours	/	features	

Pixel	labels	
{building,	grass,	cow,	sky}	

Slide	inspired	by	PGM	course,	Daphne	Koller	e.g.,	[He	et	al.,	2004;	Shotton	et	al.,	2006;	Gould	et	al.,	2009]	



Motivation	

•  What	do	these	two	problems	have	in	common?	

Slide	inspired	by	PGM	course,	Daphne	Koller	



Motivation	

•  What	do	these	two	problems	have	in	common?	

– Many	variables	

– Uncertainty	about	the	correct	answer	

Slide	inspired	by	PGM	course,	Daphne	Koller	

Graphical	Models	(or	Probabilistic	Graphical	Models)	
provide	a	framework	to	address	these	problems	



(Probabilistic)	Graphical	Models	

•  First,	it	is	a	model:	a	declarative	representation	
•  Can	also	define	the	model	
– with	domain	knowledge	
–  from	data	

Model	

Algorithm	
Algorithm	

Algorithm	

Slide	inspired	by	PGM	course,	Daphne	Koller	

Data	

Learning	

Domain	expert	



(Probabilistic)	Graphical	Models	

•  Why	probabilistic	?	
•  To	model	uncertainty	
•  Uncertainty	due	to:	
– Partial	knowledge	of	state	of	the	world	
– Noisy	observations	
– Phenomena	not	observed	by	the	model	
–  Inherent	stochasticity	

Slide	inspired	by	PGM	course,	Daphne	Koller	



(Probabilistic)	Graphical	Models	

•  Probability	theory	provides	

– Standalone	representation	with	clear	semantics	

– Reasoning	patterns	(conditioning,	decision	making)	

– Learning	methods	

Slide	inspired	by	PGM	course,	Daphne	Koller	



(Probabilistic)	Graphical	Models	

•  Why	graphical	?	
•  Intersection	of	ideas	from	probability	theory	
and	computer	science	
– To	represent	large	number	of	variables	

Slide	inspired	by	PGM	course,	Daphne	Koller	

Predisposing	factors	
Symptoms	
Test	results	

Millions	of	pixels	
Colours	/	features	

Random	variables			Y1,…,Yn	

Goal:	capture	uncertainty	through	joint	distribution	P(Y1,…,Yn)	



(Probabilistic)	Graphical	Models	



(Probabilistic)	Graphical	Model	

•  Examples	

Bayesian	network	
(directed	graph)	

Markov	network	
(undirected	graph)	

Figure	courtesy:	D.	Koller	



(Probabilistic)	Graphical	Model	

•  Examples	

Diagnosis	network:	Pradhan	et	al.,	UAI’94	

Segmentation	network	(Courtesy	D.	Koller)	



(Probabilistic)	Graphical	Model	

•  Intuitive	&	compact	data	structure	

•  Efficient	reasoning	through	general-purpose	
algorithms	

•  Sparse	parameterization	
– Through	expert	knowledge,	or	
– Learning	from	data	

Slide	inspired	by	PGM	course,	Daphne	Koller	



(Probabilistic)	Graphical	Model	

•  Many	many	applications	
– Medical	diagnosis	
– Fault	diagnosis	
– Natural	language	processing	
– Traffic	analysis	
– Social	network	models	
– Message	decoding	
– Computer	vision:	segmentation,	3D,	pose	estimation	
– Speech	recognition	
– Robot	localization	&	mapping	 Slide	courtesy:	PGM	course,	Daphne	Koller	



Image	segmentation	

Image	 No	graphical	model	 With	graphical	model	

Sturgess	et	al.,	2009	



Multi-sensor	integration:	Traffic	

•  Learn	from	historical	data	to	make	predictions	

Slide	courtesy:	Eric	Horvitz,	MSR	

Learned	
Model	

Route	optimization	



Stock	market	

Slide	courtesy:	Dhruv	Batra	



Going	global:	Local	ambiguity	

•  Text	recognition	

Slide	courtesy:	Dhruv	Batra	

Smyth	et	al.,	1994	



Going	global:	Local	ambiguity	

•  Textual	information	extraction	

e.g.,	Mrs.	Green	spoke	today	in	New	York.	Green	
chairs	the	financial	committee.	

Slide	courtesy:	PGM	course,	Daphne	Koller	



Overview	of	the	course	

•  Representation	
–  How	do	we	store	P(Y1,…Yn)	
–  Directed	and	undirected	(model	implications/assumptions)	

•  Inference	
–  Answer	questions	with	the	model	
–  Exact	and	approximate	(marginal/most	probable	estimate)	

•  Learning	
– What	model	is	right	for	data	
–  Parameters	and	structure	 Slide	inspired	by	D.	Batra,	D.	Koller	’s	courses	



First,	a	recap	of	basics	



Graphs	

•  Concepts	
– Definition	of	G	
– Vertices/Nodes	
– Edges	
– Directed	vs	Undirected	
– Neighbours	vs	Parent/Child	
– Degree	vs	In/Out	degree	
– Walk	vs	Path	vs	Cycle	



Graphs	



Special	graphs	

•  Trees:	undirected	graph,	no	cycles	
•  Spanning	tree:	Same	set	of	vertices,	but	
subset	of	edges,	connected	and	no	cycles	

Slide	courtesy:	D.	Batra	



Directed	acyclic	graphs	(DAGs)	

Figure	courtesy:	D.	Batra	



Interpreting	Probability	

•  What	does	P(A)	mean?	
•  Frequentist	view	
– Limit	Nà∞,	#(A	is	true)/N	
–  i.e.,	limiting	frequency	of	a	repeating	non-
deterministic	event	

•  Bayesian	view	
– P(A)	is	your	belief	about	A	

Slide	courtesy:	D.	Batra	



Joint	distribution	

•  3	variables	
–  Intelligence	(I)	
– Difficulty	(D)	
– Grade	(G)	

•  Independent	 	 	 	 	 	 	 	 			
parameters?	

Example	courtesy:	PGM	course,	Daphne	Koller	



Conditioning	

•  Condition	on	g1 

Example	courtesy:	PGM	course,	Daphne	Koller	



Conditioning	

•  P(Y	=	y	|	X	=	x)	
•  Informally,	
– What	do	you	believe	about	Y=y	when	I	tell	you	
X=x	?	

•  P(France	wins	Euro	2020)	?	
•  What	if	I	tell	you:	
– France	won	the	world	cup	2018	
– Hasn’t	had	catastrophic	results	since	J	

Slide	based	on	D.	Batra’s	course	



Conditioning:	Reduction	

•  Condition	on	g1	

Example	courtesy:	PGM	course,	Daphne	Koller	



Conditioning:	Renormalization	

Unnormalized	measure	

Example	courtesy:	PGM	course,	Daphne	Koller	



Conditional	probability	distribution	

•  Example		P(G | I, D)	

Example	courtesy:	PGM	course,	Daphne	Koller	



Conditional	probability	distribution	

Slide	courtesy:	Erik	Sudderth	



Marginalization	

P(I,D) Marginalize I  

Example	courtesy:	PGM	course,	Daphne	Koller	



Marginalization	

•  Events	
– P(A)	=	P(A	and	B)	+	P(A	and	not	B)	

•  Random	variables	
–  		

Slide	courtesy:	Dhruv	Batra	



Marginalization	

Slide	courtesy:	Erik	Sudderth	



Factors	

•  A	factor	Φ(Y1,…,Yk)	

Φ:	Val(Y1,…,Yk)	à	R
	

•  Scope	=	{Y1,…,Yk}	



Factors	

•  Example:	P(D, I, G) 

Example	courtesy:	PGM	course,	Daphne	Koller	



Factors	

•  Example:	P(D, I, g1) 

Example	courtesy:	PGM	course,	Daphne	Koller	

What	is	the	scope	here?	



General	factors	

•  Not	necessarily	for	probabilities	

Example	courtesy:	PGM	course,	Daphne	Koller	



Factor	product	

Example	courtesy:	PGM	course,	Daphne	Koller	



Factor	marginalization	

Example	courtesy:	PGM	course,	Daphne	Koller	



Factor	reduction	



Why	factors	?	

•  Building	blocks	for	defining	distributions	in	
high-dimensional	spaces	

•  Set	of	basic	operations	for	manipulating	these	
distributions	



Independent	random	variables	

Slide	courtesy:	Erik	Sudderth	



Marginal	independence	

Slide	courtesy:	Dhruv	Batra	



Conditional	independence	

Slide	courtesy:	Dhruv	Batra	



Bayes	Rule	

•  Simple	yet	profound	
•  Concepts	
– Likelihood	
•  How	much	does	a	certain	hypothesis	explain	the	data?	

– Prior	
• What	do	you	believe	before	seeing	any	data?	

– Posterior	
• What	do	we	believe	after	seeing	the	data?	

Slide	courtesy:	Dhruv	Batra	



Bayesian	Networks	

•  DAGs	
– nodes	represent	variables	in	the	Bayesian	sense	
– edges	represent	conditional	dependencies	

•  Example	
– Suppose	that	we	know	the	following:	
•  The	flu	causes	sinus	inflammation	
•  Allergies	cause	sinus	inflammation	
•  Sinus	inflammation	causes	a	runny	nose	
•  Sinus	inflammation	causes	headaches	

– How	are	these	connected	?	
Slide	courtesy:	Dhruv	Batra	



Bayesian	Networks	

•  Example	

Slide	courtesy:	Dhruv	Batra	



Bayesian	Networks	

•  A	general	Bayes	net	
– Set	of	random	variables	
– DAG:	encodes	independence	assumptions	
– Conditional	probability	trees	
–  Joint	distribution	

Slide	courtesy:	Dhruv	Batra	

P(Y1,...,Yn ) = P(Yi | PaYi )
i=1

n

∏



Bayesian	Networks	

•  A	general	Bayes	net	
– How	many	parameters	?	
•  Discrete	variables	Y1,…,Yn	

•  Graph:	Defines	parents	of	Yi,	i.e.,	(PaYi)	

•  CPTs:	P(Yi|PaYi)	

Slide	courtesy:	Dhruv	Batra	



Markov	nets	

•  Set	of	random	variables	

•  Undirected	graph	
– Encodes	independence	assumptions	

•  Factors	

Slide	courtesy:	Dhruv	Batra	

Comparison	to	Bayesian	Nets	?	



Pairwise	MRFs	

•  Composed	of	pairwise	factors	
– A	function	of	two	variables	
– Can	also	have	unary	terms	

•  Example	

Slide	courtesy:	Dhruv	Batra	



Markov	Nets:	Computing	probabilities	

•  Can	only	compute	ratio	of	probabilities	directly	

•  Need	to	normalize	with	a	partition	function	
– Hard	!	(sum	over	all	possible	assignments)	

•  In	Bayesian	Nets,	can	do	by	multiplying	CPTs	

Slide	courtesy:	Dhruv	Batra	



Markov	nets	ßà	Factorization	

•  Given	an	undirected	graph	H	over	variables	
Y={Y1,…,Yn}	

•  A	distribution	P	factorizes	over	H	if	there	exist	
– Subsets	of	variables	Si					Y	s.t.	Si	are	fully-
connected	in	H	

– Non-negative	potentials	(factors)	Φ1(S1),...,	
Φm(Sm):	clique	potentials	

– Such	that		

Slide	courtesy:	Dhruv	Batra	

P(Y1,...,Yn ) =
1
Z i=1

m

∏Φi(Si)



Conditional	Markov	Random	Fields	
•  Also	known	as:	Markov	networks,	undirected	graphical	
models,	MRFs	

•  Note:	Not	making	a	distinction	between	CRFs	and	MRFs			
•  																:	observed	random	variables	
•  																																											:	output	random	variables	
•  							are	subset	of	variables	for	clique	
•  	Define	a	factored	probability	distribution	

Partition	function	
Exponential	number	
of	configurations	!	



MRFs	/	CRFs	

•  Several	applications,	e.g.,	computer	vision	

Interactive	figure-ground	
segmentation	[Boykov	and	Jolly,	
2001;	Boykov	and	Funka-Lea,	2006]	

Surface	context	[Hoiem	et	al.,	2005]	 Semantic	labeling	[He	et	al.,	2004;	
Shotton	et	al.,	2006;	Gould	et	al.,	
2009]	

Stereo	matching	[Kolmogorov	and	Zabih,	2001;	
Scharstein	and	Szeliski,	2002]	

Image	denoising	[Felzenszwalb	
and	Huttenlocher	2004]	

Low-level	vision	problems	



MRFs	/	CRFs	

•  Several	applications,	e.g.,	computer	vision	

Object	detection	[Felzenszwalb	et	al.,	2008]	 Pose	estimation	[Akhter	and	Black,	2015;		
Ramakrishna	et	al.,	2012]	

Scene	understanding	
[Fouhey	et	al.,	2014;	Ladicky	et	al.,	2010;	
Xiao	et	al.,	2013;	Yao	et	al.,	2012]	

High-level	vision	problems	



MRFs	/	CRFs	

•  Several	applications,	e.g.,	medical	imaging	



MRFs	/	CRFs	

•  Inherent	in	all	these	problems	are	graphical	
models	

Pixel	labeling	 Object	detection	
Pose	estimation	 Scene	understanding	



Maximum	a	posteriori	(MAP)	inference	



Maximum	a	posteriori	(MAP)	inference	

MAP	inference	ó	Energy	minimization	

The	energy	function	is	
	
where		 Clique	potential	



Clique	potentials	
•  Defines	a	mapping	from	an	assignment	of	
random	variables	to	a	real	number	

•  Encodes	a	preference	for	assignments	to	the	
random	variables	(lower	is	better)	

•  Parameterized	as	

Parameters	



Clique	potentials	

•  Arity	



Clique	potentials	

•  Arity	



Reason	1:	Texture	modelling		

Test	image	 Test	image	(60%	Noise)	Training	images	

Result	MRF	
9-connected	

(7	attractive;	2	repulsive)	

Result	MRF	
4-connected	

Result	MRF	
4-connected	
(neighbours)	



Reason2:	Discretization	artefacts	

	higher-connectivity	can	model	
true	Euclidean	length		

4-connected	
Euclidean	

8-connected	
Euclidean	

[Boykov	et	al.	’03;	’05]	



Graphical	representation	

•  Example	



Graphical	representation	

•  Example	



Graphical	representation	

•  Example	


