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Motivation

10 billion

100 hours/ min

250+ billion

58 photos/ sec

1 TB/ user

Decrease in the cost of
digital cameras
• Large personal visual

data collections

The Internet and social
networking websites
• Visual data shared

with public
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Motivation

How to process and access such big data?
• Manual management is impossible
• Classify data automatically for easy access

• Assign keywords to images

Focus of this thesis: image classification in large image sets
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Standard classification pipeline

positive (giant panda)

negative (other)

Image Classification
Image Description

• Input: Image descriptors and labels
{(xi, yi)} where xi ∈ X and Y = {1, ...,C}

• Goal: Learn a prediction function f : X → [0, 1]C that
predicts the presence/absence of each label

Description: [Csurka et al.’04], [Lazebnik et al.’06], [Zhang et al.’07]
Classification: [Boser et al.’92], [Cortes and Vapnik’95]
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Dimensions of large-scale learning

Scale of a learning problem is
measured through 3 dimensions:

• Descriptor dimensionality (d)
• Number of classes (k)
• Number of images (n)
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Descriptor dimensionality

Fisher Vectors (FV) [Perronnin and Dance’07], [Perronnin et al.’10] use
high order statistics to map images into high dimensional space

Coding and Pooling
(FV with GMM)Local Features

(SIFT)
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Number of classes and images
ImageNet [Deng et al.’09] is an example of large scale datasets
• k = 21, 841 classes and n = 14× 106 labeled images
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State-of-the-art for large-scale learning

1 Handling large descriptor dimensionality (d):
Linear classifiers and descriptor compression
[Perronnin et al.’10], [Jégou et al.’11], [Sánchez et al.’11]

2 Handling large number of classes (k):
Train one classifier at a time with One-vs-Rest SVM
[Rifkin and Klautau’04]

3 Handling large number of images (n):
Process one sample at a time
[Bottou and Bousquet’07], [Shalev-Shwartz et al.’07]
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Contribution 1

Good practices in large-scale learning

• Compare different objective functions for linear SVMs

• Analyze the effects of key parameters
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Scarceness of labeled data

Fine-grained subsets of Imagenet are sparsely populated

• Difficult to harvest images, e.g. from the Internet

• Image labeling can only be done by experts which is costly

Spanish Fly:

Jerboa Kangaroo:

Argentinosaur:

(Some of the least populated classes in ImageNet)
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State-of-the-art for
learning with scarce labeled data

1 Attributes enable parameter
sharing between classes

[Ferrari et al.’07], [Lampert et al.’09]

Ruby-throated
Hummingbird

bill shape::dagger
size::small
underparts color::olive
underparts color::green
back color::grey
upper tail color::rufous
upper tail color::grey

Rufous 
Hummingbird

bill shape::dagger
size::small
wing color::rufous
wing color::orange
upperparts color::rufous
underparts color::pink
back color::grey

member class

[1 1 1 1 1 1 0 0 1 0 0]
attributes

member class

[1 1 0 0 0 0 1 1 1 1 1]
attributes

2 Zero-shot learning:

Direct Attribute Prediction
(DAP) [Lampert et al.’09]
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Contribution 2
Label-embedding for image classification

• Learning with scarce training data

• Embed classes in a Euclidean space with side information

chimpanzee

panda

white

black

IMAGES
IMAGE

FEATURES
CLASS

ATTRIBUTES
CLASS
LABELS
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Outline

1 Good practices in large-scale learning

2 Label-embedding with attributes

3 Conclusion
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Outline

1 Good practices in large-scale learning

2 Label-embedding with attributes

3 Conclusion

Towards Good Practice in Large Scale Learning for Image Classification
F. Perronnin, Z.Akata, Z.Harchaoui, C.Schmid, IEEE CVPR, 2012.

Good Practice in Large Scale Learning for Image Classification
Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, to appear in IEEE TPAMI, 2013.
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Introduction

Accuracy in ImageNet: top-k accuracy
• Correct if actual label appears in the first top-k labels

Query Top-5

House

Bush
Fence
Flowerbed
Greenhouse

Why is top-k accuracy useful?
• Image has multiple objects but a single label is assigned
• k can be adjusted based on the recall target

Top-k accuracy =⇒ rank annotations according to relevance
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Introduction

Alternatives for choosing the objective function

• “ Simple one-vs-rest is as accurate as any other approach “
[Rifkin and Klautau ’04]

• “ Ranking (WSABIE) outperforms all competing methods “
[Weston et al.’10]

→ Compare one-vs-rest and ranking algorithms on large-scale
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Objective functions

• S = {(xi, yi), i = 1 . . .N}, xi ∈ X , yi ∈ Y = {1, ...,C}

• Supervised learning:
min

W
λ
2 Ω(W) + L(S; W)

• Empirical risk:

L(S; W) := 1
N

N∑
i=1

L(xi, yi; W)

• Regularization:

Ω(W) :=
C∑

c=1
‖wc‖2
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One-vs-Rest SVM (OVR)

• Two classes: Y = {−1,+1}

• 0/1 loss: 1(yiwTxi < 0)

• Upper-bounded by:

LOVR(xi, yi; w) = max{0, 1−yiwTxi}

• C classes: train C independent
classifiers z

E(z)

→ Training time scales linearly with the number of classes
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Sample rebalancing

OVR: many more negative samples than the positives

• Standard formulation of OVR without reweighting∑
i∈I+

LOVR(xi, yi; w) +
∑

i∈I−
LOVR(xi, yi; w)

u-OVR
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Sample rebalancing

OVR: many more negative samples than the positives

• Unbalance parameter ρ

ρ
N+

∑
i∈I+

LOVR(xi, yi; w) + 1−ρ
N−

∑
i∈I−

LOVR(xi, yi; w)

u-OVR w-OVR
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Ranking framework

Consider C classes at once: Y = {1, . . . ,C}

Goal:
• Enforce wT

yi
xi > wT

y xi with yi = correct label and y 6= yi

Define:
• αk = penalty of going from rank k to k + 1

• Cumulative penalty `k =
k∑

j=1
αj with α1 ≥ α2 ≥ . . . αC ≥ 0

Objective function:
• `r(x,y) where r(x, y) = rank of label y for sample x

[Usunier et al.’09]
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Ranking algorithms

Loss: `k =
k∑

j=1
αj

1 Multiclass SVM (MUL):
α1 = 1 and αj = 0 for j ≥ 2

[Crammer and Singer’01]

2 Ranking SVM (RNK): αj = 1 , ∀j
[Joachims’02]

3 Weighted Approximate Ranking
(WAR):
αj = 1/j [Weston et al.’10]

MUL RNK

WAR

rank

MUL

RNK

WAR

rank

e loss where

MUL and RNK use an upper bound of the loss while
WAR uses an approximation.
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Optimization

Stochastic Gradient Descent (SGD) for optimization:

1 Choose a sample zt at random at step t
• OVR & MUL: zt is a pair (xi, yi)
• RNK & WAR: zt is a triplet (xi, yi, ȳ), where ȳ 6= yi

2 Update the parameters w using a sample-wise estimate of
the regularized risk R(zt; w)

w(t) = w(t−1) − ηt∇w=w(t−1)R(zt; w)

where ηt is the step size

[Bottou and Bousquet’07], [Shalev-Shwartz et al.’07]
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Datasets used in experiments

# images # classes Example Images

ILSVRC10 1.4M 1,000

ImageNet10K 9M 10,184

→We report results with Top-1 accuracy

[Deng et al.’09, Deng et al.’10]
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Image descriptors used in experiments

• Local features (D = 128) with
SIFT [Lowe’04] + PCA

• Visual vocabulary with Gaussian
Mixture Models (G = 8, ..., 256)

• Aggregating features with BOV
(4K-dim) [Csurka et al.’04] or FV
(130K-dim) [Perronnin and Dance ’07]

• Spatial Pyramids (S = 4)
[Lazebnik et al.’06]

• Compression with Product
Quantization [Jegou et al.’11]

Compression
(Product Quantization)

Local Features
(SIFT)

Coding and Pooling
(FV with GMM)

Spatial Pyramids
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Experiments

1 Regularization λ in min
W

λ
2 Ω(W) + L(S; W)

2 Step size ηt in w(t) = w(t−1) − ηt∇w=w(t−1)R(zt; w)

3 Unbalance parameter ρ in sample rebalancing

4 Descriptor dimensionality d

5 Comparison between different objective functions
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Regularization and step size

1 Is explicit regularization better than implicit regularization?
2 Is decreasing step size better than constant step size?

100 200 300 400 500 600
41.5

42

42.5

43

43.5

44

44.5

45

45.5

Passes through the data

T
op

−
1 

A
cc

ur
ac

y 
(in

 %
)

 

 

λ = 1e−5, η
t
 = 1/(λ (t+t0))

λ = 1e−5, η
t
 = η = 0.1

λ = 0.0, η
t
 = η = 0.1

ILSVRC10 with w-OVR

a) λ > 0 and ηt = 1/(λ(t + t0))

b) λ > 0 and ηt = η

c) λ = 0 and ηt = η

• Implicit regularization with
fixed step size is effective

• It requires one less
parameter to tune
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Data rebalancing

3 Is data rebalancing beneficial in OVR on large scale?

1 2 4 8 16 32 64
0
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25
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35

40

45
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Unbalance β

T
op

−
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A
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ur
ac

y 
(in

 %
)

 

 

BOV: N=1,024 + SP (D=4,096)
FV: N=16 (D=2,048)
FV: N=64 (D=8,192)
FV: N=256 (D=32,768)
FV: N=256 + SP (D=131,072)

ILSVRC10 with w-OVR

• β = (1− ρ)/ρ: number of
negatives sampled for each
positive

• Dashed lines = u-OVR

• Rebalancing is beneficial for
small dimensional features
[Bartlett et al.’03]
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Descriptor dimensionality (d)

4 How do different methods behave with increasing descriptor
dimensionality on large scale?

16 32 64 128 256
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w−OVR
MUL
RNK
WAR

ILSVRC10

• Methods tend to converge

• With the increasing
descriptor dimensionality

• Impact of surrogate loss is
mitigated as capacity of
the classifier increases
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Comparison of all methods

5 Which method works best on large scale?

• Comparison between methods on ILSVRC10

u-OVR w-OVR MUL RNK WAR
BOV 4K 15.8 22.7 20.8 24.1
FV 130K 45.9 45.7 46.1 46.1

• Comparison between methods on ImageNet10K

u-OVR w-OVR MUL RNK WAR
BOV 4K 3.8 6.0 4.4 7.0
FV 130K - - - 17.9

u-OVR: unweighted OVR, w-OVR: weighted OVR
MUL: Multiclass, RNK: Ranking, WAR: Weighted Average Ranking
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Qualitative examples from ImageNet10K

• Some classes with top-1 accuracy higher than 85%

(a) Star Anise (92%) (b) Nest Egg (87%) (c) Geyser (86%)

• Some classes with 75% and 50% top-1 accuracy

(d) Traction engine (77 %) (e) Ready to Wear (76 %) (f) Stonechat (50%)

30 / 56



Qualitative examples from ImageNet10K

• Some classes with 25% and 10% top-1 accuracy

(g) Tortrix (25%) (h) Pyralid (25%) (i) Egyptian cobra (10%)

• Some classes with 5% and 0% top-1 accuracy

(j) Hare (5%) (k) Weasel (5%) (l) Felt fungus (0%)
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Good practices for
large-scale image classification

1 Early stopping: fast training and good generalization
2 Step-size: small constant step-size is sufficient
3 Sample rebalancing: a must in OVR
4 Sufficiently large descriptors: all methods tend to converge
5 OVR: efficient for large-scale classification

Towards Good Practice in Large Scale Learning for Image Classification
F. Perronnin, Z.Akata, Z.Harchaoui, C.Schmid, IEEE CVPR, 2012.

Good Practice in Large Scale Learning for Image Classification
Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, to appear in IEEE TPAMI, 2013.
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Outline

1 Good practices in large-scale learning

2 Label-embedding with attributes

3 Conclusion

Label-Embedding with Attributes
Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, IEEE CVPR, 2013.

Attribute-Based Classification with Label-Embedding
Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, ORL Workshop at NIPS, 2013.

Label-Embedding with Attributes for Image Classification
Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, Submitted to IEEE TPAMI.
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Introduction

Large-scale datasets have fine-grained subsets

Hummingbirds

Fine-grained images can only be distinguished by experts

Anna Hummingbird Rufous Hummingbird Ruby Throated 
Hummingbird

Due to cost of image labeling: scarce labeled data
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Attributes

Visual qualities of objects such as red or striped [Ferrari et al.’07]

• Understandable by humans and interpretable by computers

Human-specified high-level description of objects [Lampert et al.’09]

• Enable parameter sharing between classes

bill shape::dagger
size::small
underparts color::olive
underparts color::green
back color::grey
upper tail color::rufous
upper tail color::grey

bill shape::dagger
size::small
wing color::rufous
wing color::orange
upperparts color::rufous
underparts color::pink
back color::grey

Rufous 
Hummingbird

Ruby-throated
Hummingbird
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Direct Attribute Prediction (DAP)

Image x is assigned to the class y with maximum

p(y|x) ∝
∏E

e=1 p(ae = ρy,e|x)

where ρy,e associates an attribute ae and a class y

[Lampert et al.’09]
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Direct Attribute Prediction (DAP)

State-of-the-art DAP has 3 potential shortcomings

1 Two-step procedure:
• Learn attribute classifiers & combine attribute scores

2 Attributes are costly to obtain:
• Not clear how to integrate other sources of side information

3 Difficult to leverage few additional labeled samples
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Attribute Label Embedding (ALE)

ALE is a novel algorithm that overcomes these problems.

IMAGES
IMAGE

FEATURES
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Attribute Label Embedding (ALE)

Define: Y = {1, . . . ,C} and A = {ai, i = 1 . . .E}

Association between a class y

and an attribute ai: ρy,i

ϕA(y) = [ρy,1, . . . , ρy,E]

chimpanzee

panda

white

black

ϕA(y) models

• Presence/absence of each attribute: ρy,i ∈ {0, 1} or {−1, 1}
• Confidence level of each attribute: ρy,i ∈ R
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Attribute Label Embedding (ALE)

1 Optimizes directly the classification objective

Structured output learning
[Tsochantaridis et al.’05]

f (x; w) = arg maxy∈Y F(x, y; w)

Compatibility function:

F(x, y; W) = θ(x)TWϕ(y)

Input: θ(x) = image features and ϕ(y) = class attributes

Output: W = mapping between θ(x) and ϕ(y)
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Parameter learning

Strategies for optimization

a) Maximize correlation between input and output
[Palatucci et al.’09, Socher et al.’13]

1
N

N∑
i=1

F(xi, yi; W)

• Does not directly optimize object classification

b) Maximize the ranking of the correct label
• Use any ranking method

[Joachims’02], [Crammer and Singer’02], [Weston et al.’10]
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Attribute Label Embedding (ALE)

2 Other sources of side information easily integrated

HLE: Hierarchy Label-Embedding
[Tsochantaridis et al.’05]

ΦH(6) = [1 0 1 0 0 1]

Different sources can be combined
• Early fusion of output embeddings
• Late fusion of scores

6

3

1

2

4 5

42 / 56



Attribute Label Embedding (ALE)

3 Easy to leverage few additional labeled samples

Zero-shot objective: Few-shots objective:
Φ is fixed, W is learned Φ and W are learned
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Datasets used in experiments

# classes # attributes Example images

Animals with
Attributes (AWA)
[Lampert et al.’09]

50 85

Caltech UCSD
Birds (CUB)
[Wah et al.’11]

200 312
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Input and output embeddings

Input embeddings
• 128-dim SIFT and 96-dim color→ 64-dim PCA
• GMM with 16 or 256 Gaussians→ FV(4K or 64K)

Output embeddings

1 Baselines: No side information
• OVR: Φ = C × C identity matrix
• Gaussian LE: Φ is drawn from N (µ, σ2) [Hsu et al.’09]
• WSABIE [Weston et al.’10]: Φ and W are learned

2 Using side information:
• ALE: continuous and discrete attributes (ΦA)
• HLE: hierarchical label embedding (ΦH)
• AHLE: ALE and HLE concatenated (ΦA and ΦH)
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Experiments

1 Discrete vs continuous embeddings

2 Different objectives for learning in ALE

3 ALE vs DAP for object prediction

4 Attributes and Hierarchies for label embedding

5 Determine if side information is beneficial in few-shots
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Discrete vs continuous embeddings

1 In zero-shot learning with ALE, how do discrete and
continuous embeddings compare?

cont {0, 1} {−1, 1}
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AWA (FV=64K)

• `2 norm: each class is
closest to itself→ dot
product similarity

• Continuous embedding
outperforms discrete
embeddings
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Learning framework in ALE

2 Does learning framework make a difference in ALE for
zero-shot learning?

RR MUL WAR
AWA dataset 44.5 47.9
CUB dataset 21.6

RR: Ridge Regression [Hoerl and Kennard’70], MUL: Multiclass [Crammer
and Singer’02], WAR: Weighted Average Ranking [Weston et al.’10]

• ALE: Ranking objective performs the best
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ALE vs DAP

3 How do ALE and DAP compare for object prediction in
zero-shot learning?

DAP ALE cont ALE {0, 1}
AWA dataset 41.0 44.6
CUB dataset 12.3 22.3

• DAP: OVR with log loss for each attribute
• DAP [Lampert et al.’09]: different features + nonlinear kernels
• ALE: with continuous attributes performs the best
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ALE vs HLE

4 How do ALE and HLE compare for zero-shot learning and
do they contain complementary information?

6

3

1

2

4 5

• HLE: Hierarchy Label-Embedding

• AHLE early: ΦH & ΦA concatenated

• AHLE late: ALE & HLE scores
combined

ALE HLE AHLE early AHLE late
AWA dataset 48.5 40.4 46.8
CUB dataset 26.9 18.5 27.1
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Side information in few-shots

5 Is side information beneficial for few-shots learning?
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• Side information is beneficial with scarce training data
• All methods converge with more training data
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Advantages of ALE over DAP

1 Solves directly image classification problem

2 Accommodates other sources of side information
• Improves zero-shot learning with continuous attributes

3 Leverages few additional labeled training data

Label-Embedding with Attributes
Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, IEEE CVPR, 2013.

Attribute-Based Classification with Label-Embedding
Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, ORL Workshop at NIPS, 2013.

Label-Embedding with Attributes for Image Classification
Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, Submitted to IEEE TPAMI.
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Outline

1 Good practices in large-scale learning

2 Label-embedding with attributes

3 Conclusion
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Large-scale image classification

Conclusions
• Comparison of objective functions in large-scale learning
• Set of good practices for large-scale learning

Future work
• Hierarchical loss [Tsochantaridis et al.’05]

• ASGD [Polyak and Juditsky’92], [Bach and Moulines’13]

• Sampling [Loosli et al.’05], [Mineiro and Karampatziakis’13]
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Label-embedding with attributes

Conclusions
• Novel approach for zero-shot learning using attributes
• Several improvements over the state of the art

Future work
• Deep Embedding of ALE and HLE
• Beyond label trees in HLE [Yen et al.’08]

• Text from textual resources [Rohrbach’10], [Frome et al.’13]
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Thank you for your attention!
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Bag of Visual Words (BOV) [Csurka et al.’04]

Visual 
vocabulary

BOV descriptor

image

Bag of Words

• Dense sampling of local features from an image
• Create visual vocabulary with k-means
• Assign each local feature to a visual word
• Calculate frequency of each visual word

56 / 56



Fisher Vectors (FVs) [Perronnin and Dance’07]

• Dense sampling of local features from an image
• Create visual vocabulary with GMMs

p(x|λ) with λ = {πi,µi,Σi, i = 1, ..., k}

• Take gradients w.r.t mixture weight, mean and variance

Gx
λ =

1
N
∇λ log p(x|λ)

• Improves with power, `2 normalization and SPM
• PQ compressed FVs have small memory fooprint
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Multiclass SVM (MUL) [Crammer and Singer’04]

• Convex surrogate loss to ∆(y, ŷ):

ŷi = arg maxy wT
y xi

• Upper bound to misclassification loss:

LMUL(xi, yi; w) = maxy
{

∆(yi, y) + wT
y xi
}
− wT

yi
xi
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Ranking SVM (RNK) [Joachims’02]

• Ordering pairs of documents

• Sample (xi, yi) and label y 6= yi: enforce wyixi > wT
y xi

• Rank of label y for sample x:

r(x, y) =
∑C

c=1 1(wT
c x ≥ wT

y x)

• 1(wT
c x ≥ wT

y x) is upper-bounded by:

Ltri(xi, yi, y; w) = max{0,∆(yi, y)− wT
yi

xi + wT
y xi}

• Overall loss of (xi, yi):

LRNK(xi, yi; w) =
∑C

y=1 max{0,∆(yi, y)− (wyi− wy)
Txi}
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Weighted Average Ranking (WAR) [Weston et al.’10]

• Give more weight to the top of the ranking list

• Ranking loss `r(xi,yi): `k =
∑k

j=1
1
j

• Regularized rank:

r∆(x, y) =
∑C

c=1 1(wT
c x + ∆(y, c) ≥ wT

y x)

• Approximated upper bound to the loss:

LWAR(xi, yi; w) =
∑C

y=1 `r∆(xi,yi)
Ltri(xi,yi,y;w)

r∆(xi,yi)
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Sampling and update equations

Sampling Update
ROVR Draw (xi, yi) from S. δi = 1 if LOVR(xi, yi; w) > 0, 0 otherwise.

w(t) = (1− ηtλ)w(t−1) + ηtδixiyi

RMUL Draw (xi, yi) from S. ȳ = arg maxy ∆(yi, y) + w′yxi and δi =

{
1 if ȳ 6= yi

0 otherwise.

w(t)
y =


w(t−1)

y (1− ηtλ) + δiηtxi if y = yi

w(t−1)
y (1− ηtλ)− δiηtxi if y = ȳ

w(t−1)
y (1− ηtλ) otherwise.

RRNK Draw (xi, yi) from S. δi = 1 if Ltri(xi, yi, ȳ; w) > 0, 0 otherwise.

Draw ȳ 6= yi from Y. w(t)
y =


w(t−1)

y (1− ηtλ) + δiηtxi if y = yi

w(t−1)
y (1− ηtλ)− δiηtxi if y = ȳ

w(t−1)
y (1− ηtλ) otherwise.

RWAR Draw (xi, yi) from S. δi = 1 if ȳ s.t. Ltri(xi, yi, ȳ; w) > 0 was sampled, 0 otherwise.
For k = 1, 2, . . . ,C − 1, do:{

Draw ȳ 6= yi from Y.
If Ltri(xi, yi, ȳ; w) > 0, break.

w(t)
y =


w(t−1)

y (1− ηtλ) + δi`b C−1
k c
ηtxi if y = yi

w(t−1)
y (1− ηtλ)− δi`b C−1

k c
ηtxi if y = ȳ

w(t−1)
y (1− ηtλ) otherwise.
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SGD vs Batch

• Is SGD better than Batch in large scale classification?

SGD vs batch experiments on Ungulate183
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N LibSVM / OVR SGD (sec) SVMlight / MUL SGD (sec)
10 31 / 18 324 / 81
25 175 / 36 441 / 198
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Comparison between methods on ILSVRC10

u-OVR w-OVR MUL RNK WAR

Top-1 BOV 4K 15.8 26.4 22.7 20.8 24.1
FV 130K 45.9 45.7 46.2 46.1 46.1

Top-5 BOV 4K 28.8 46.4 38.4 41.2 44.2
FV 130K 63.7 65.9 64.8 65.8 66.5

• Despite its simplicity and suboptimality in theory, OVR
performs the best
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Attribute Label Embedding

• S = {(xn, yn), n = 1 . . .N}: xn ∈ X and yn ∈ Y
• Learn f : X → Y with 1

N

∑N
n=1 ∆(yn, f (xn))

• 0/1 loss: ∆(y, z) = 0 if y = z, 1 otherwise
• Compatibility function: f (x; w) = arg maxy∈Y F(x, y; w)

• Rewrite in bilinear form: F(x, y; W) = θ(x)′Wϕ(y)

• Attribute Label-Embedding with Attributes (ALE):
• Y = {1, . . . ,C}, A = {ai, i = 1 . . .E}
• association measure between y and ai: ρy,i
• embed class y in attribute space:

ϕA(y) = [ρy,1, . . . , ρy,E]
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Zero-Shot Objective

• Φ fixed, W learned
1
N

∑N
n=1 maxy∈Y `(xn, yn, y)

• where `(xn, yn, y) is defined as:

∆(yn, y) + θ(x)′W[ϕ(y)− ϕ(yn)]
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Few-Shots Objective

• Φ and W learned using ΦA

R(S; W,Φ) + µ
2 ||Φ− ΦA||2

• where R(S; W,Φ) is defined as:

1
N

∑N
n=1

βr∆(xn,yn)

r∆(xn,yn)

∑
y∈Y max{0, `(xn, yn, y)}

• upper-bound on rank of label yn for image xn:

r∆(xn, yn) =
∑

y∈Y 1(`(xn, yn, y) > 0)
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SGD optimization for ALE

• Intitialize W(0) randomly.
• Draw (x,y) randomly from S
• Draw ȳ 6= y from Y
• If `(x, y, ȳ) > 0

• Update W

W(t) = W(t−1) + ηtβb C−1
k c
θ(x)[ϕ(y)− ϕ(ȳ)]′

• Update Φ (not applicable to zero-shot)

ϕ(t)(y) = (1− ηtµ)ϕ(t−1)(y) + ηtµϕ
A(y) + ηtβb C−1

k c
W ′θ(x)

ϕ(t)(ȳ) = (1− ηtµ)ϕ(t−1)(ȳ) + ηtµϕ
A(ȳ)− ηtβb C−1

k c
W ′θ(x)

56 / 56



Attribute prediction
• Are the attributes still interpretable for ALE?

θ(x)′W can be interpreted as a vector of attribute scores of x

Attribute prediction
DAP ALE

AWA 72.7 72.7
CUB 64.8 59.4

Attribute interpretability:

(a) is quadrapedal (b) lives in ocean

(d) lives in plains (e) hibernates

(b) lives in ocean (c) lives on the ground

(e) hibernates (f) is weak
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Attribute Correlation

• Are the attributes correlated for zero-shot learning?
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Sampling
SVD
All attributes
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• SVD vs random attribute sampling
• Significant correlation in output space
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