



# Contributions to Large-Scale Learning for Image Classification

Zeynep Akata

PhD Defense, January 6th 2014

Rapporteur Rapporteur Examinateur Examinateur Directeur de Thése Co-directeur de Thése

Prof Matthieu Cord Prof Christoph Lampert Prof Vittorio Ferrari Dr Georges Quénot Dr Cordelia Schmid Dr Florent Perronnin

# **Motivation**



Decrease in the cost of digital cameras

• Large personal visual data collections

The Internet and social networking websites

• Visual data shared with public

## **Motivation**

How to process and access such big data?

- Manual management is impossible
- Classify data automatically for easy access
  - Assign keywords to images

#### **Motivation**

How to process and access such big data?

- Manual management is impossible
- Classify data automatically for easy access
  - Assign keywords to images

Focus of this thesis: image classification in large image sets

# Standard classification pipeline



- Input: Image descriptors and labels  $\{(\mathbf{x}_i, y_i)\}$  where  $\mathbf{x}_i \in X$  and  $Y = \{1, ..., C\}$
- **Goal:** Learn a prediction function  $f : X \to [0, 1]^C$  that predicts the presence/absence of each label

Description: [Csurka *et al.*'04], [Lazebnik *et al.*'06], [Zhang *et al.*'07] Classification: [Boser *et al.*'92], [Cortes and Vapnik'95]

# Dimensions of large-scale learning

Scale of a learning problem is measured through 3 dimensions:

- Descriptor dimensionality (d)
- Number of classes (k)
- Number of images (n)



# Descriptor dimensionality

Fisher Vectors (FV) [Perronnin and Dance'07], [Perronnin *et al.*'10] USe high order statistics to map images into high dimensional space



#### Number of classes and images

ImageNet [Deng et al.'09] is an example of large scale datasets

• k = 21,841 classes and  $n = 14 \times 10^6$  labeled images



#### State-of-the-art for large-scale learning

 Handling large descriptor dimensionality (d):
Linear classifiers and descriptor compression [Perronnin et al.'10], [Jégou et al.'11], [Sánchez et al.'11]

Pandling large number of classes (k): Train one classifier at a time with One-vs-Rest SVM [Rifkin and Klautau'04]

Handling large number of images (n):
Process one sample at a time
[Bottou and Bousquet'07], [Shalev-Shwartz et al.'07]

#### Good practices in large-scale learning

- Compare different objective functions for linear SVMs
- Analyze the effects of key parameters

#### Scarceness of labeled data

Fine-grained subsets of Imagenet are sparsely populated

- Difficult to harvest images, e.g. from the Internet
- Image labeling can only be done by experts which is costly

Spanish Fly:

Jerboa Kangaroo:

Argentinosaur:



(Some of the least populated classes in ImageNet)

#### State-of-the-art for learning with scarce labeled data

 Attributes enable parameter sharing between classes

[Ferrari et al.'07], [Lampert et al.'09]



#### 2 Zero-shot learning:

# Direct Attribute Prediction (DAP) [Lampert *et al.*'09]



# **Contribution 2**

#### Label-embedding for image classification

- Learning with scarce training data
- Embed classes in a Euclidean space with side information



#### Outline

1 Good practices in large-scale learning

#### 2 Label-embedding with attributes



#### Outline

1 Good practices in large-scale learning

2 Label-embedding with attributes

3 Conclusion

Towards Good Practice in Large Scale Learning for Image Classification F. Perronnin, Z.Akata, Z.Harchaoui, C.Schmid, *IEEE CVPR, 2012.* Good Practice in Large Scale Learning for Image Classification

Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, to appear in IEEE TPAMI, 2013.

Accuracy in ImageNet: top-k accuracy

• Correct if actual label appears in the first top-k labels



Accuracy in ImageNet: top-k accuracy

• Correct if actual label appears in the first top-k labels



Accuracy in ImageNet: top-k accuracy

• Correct if actual label appears in the first top-k labels



Why is top-k accuracy useful?

- · Image has multiple objects but a single label is assigned
- k can be adjusted based on the recall target

Accuracy in ImageNet: top-k accuracy

• Correct if actual label appears in the first top-k labels



Why is top-k accuracy useful?

- · Image has multiple objects but a single label is assigned
- k can be adjusted based on the recall target

Top-k accuracy  $\implies$  rank annotations according to relevance

Alternatives for choosing the objective function

Alternatives for choosing the objective function

• "Simple one-vs-rest is as accurate as any other approach " [Rifkin and Klautau '04]

Alternatives for choosing the objective function

- "Simple one-vs-rest is as accurate as any other approach " [Rifkin and Klautau '04]
- "Ranking (WSABIE) outperforms all competing methods " [Weston *et al.*'10]

Alternatives for choosing the objective function

- "Simple one-vs-rest is as accurate as any other approach " [Rifkin and Klautau '04]
- "Ranking (WSABIE) outperforms all competing methods " [Weston *et al.*'10]

 $\rightarrow$  Compare one-vs-rest and ranking algorithms on large-scale

# **Objective functions**

• 
$$S = \{(\mathbf{x}_i, y_i), i = 1..., N\}, \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y} = \{1, ..., C\}$$

• Supervised learning:

$$\min_{\mathbf{W}} \frac{\lambda}{2} \Omega(\mathbf{W}) + L(S; \mathbf{W})$$

• Empirical risk:

$$L(S; \mathbf{W}) := \frac{1}{N} \sum_{i=1}^{N} L(\mathbf{x}_i, y_i; \mathbf{W})$$

• Regularization:

$$\Omega(\mathbf{W}) := \sum_{c=1}^{C} \|\mathbf{w}_c\|^2$$

# One-vs-Rest SVM (OVR)

- Two classes:  $\mathcal{Y} = \{-1, +1\}$
- 0/1 loss:  $1(y_i \mathbf{w}^T \mathbf{x}_i < 0)$
- Upper-bounded by:

 $L_{\mathsf{OVR}}(\mathbf{x}_i, y_i; \mathbf{w}) = \max\{0, 1 - y_i \mathbf{w}^T \mathbf{x}_i\}$ 

• *C* classes: train *C* independent classifiers



 $\rightarrow$  Training time scales linearly with the number of classes

# Sample rebalancing

OVR: many more negative samples than the positives

Standard formulation of OVR without reweighting

$$\sum_{i \in I_+} L_{\mathsf{OVR}}(\mathbf{x}_i, y_i; \mathbf{w}) + \sum_{i \in I_-} L_{\mathsf{OVR}}(\mathbf{x}_i, y_i; \mathbf{w})$$



u-OVR

## Sample rebalancing

OVR: many more negative samples than the positives

• Unbalance parameter  $\rho$ 

$$\frac{\rho}{N_{+}}\sum_{i\in I_{+}}L_{\mathsf{OVR}}(\mathbf{x}_{i}, y_{i}; \mathbf{w}) + \frac{1-\rho}{N_{-}}\sum_{i\in I_{-}}L_{\mathsf{OVR}}(\mathbf{x}_{i}, y_{i}; \mathbf{w})$$



# Ranking framework

Consider *C* classes at once:  $\mathcal{Y} = \{1, \dots, C\}$ 

Goal:

• Enforce  $\mathbf{w}_{y_i}^T \mathbf{x}_i > \mathbf{w}_y^T \mathbf{x}_i$  with  $y_i = \text{correct label and } y \neq y_i$ 

Define:

- $\alpha_k$  = penalty of going from rank k to k + 1
- Cumulative penalty  $\ell_k = \sum_{j=1}^k \alpha_j$  with  $\alpha_1 \ge \alpha_2 \ge \dots \alpha_C \ge 0$

Objective function:

•  $\ell_{r(\mathbf{x},y)}$  where  $r(\mathbf{x},y) = \text{rank of label } y$  for sample  $\mathbf{x}$ 

[Usunier et al.'09]

# Ranking algorithms

Loss: 
$$\ell_k = \sum_{j=1}^k \alpha_j$$

- 1 Multiclass SVM (MUL):  $\alpha_1 = 1 \text{ and } \alpha_j = 0 \text{ for } j \ge 2$ [Crammer and Singer'01]
- 2 Ranking SVM (RNK):  $\alpha_j = 1$ ,  $\forall j$ [Joachims'02]
- 3 Weighted Approximate Ranking (WAR):  $\alpha_i = 1/j$  [Weston *et al.*'10]



MUL and RNK use an upper bound of the loss while WAR uses an approximation.

# Optimization

Stochastic Gradient Descent (SGD) for optimization:

- **1** Choose a sample  $z_t$  at random at step t
  - OVR & MUL:  $z_t$  is a pair  $(\mathbf{x}_i, y_i)$
  - RNK & WAR:  $z_t$  is a triplet  $(\mathbf{x}_i, y_i, \bar{y})$ , where  $\bar{y} \neq y_i$

**2** Update the parameters **w** using a sample-wise estimate of the regularized risk  $R(z_t; \mathbf{w})$ 

$$\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} - \eta_t \nabla_{\mathbf{w} = \mathbf{w}^{(t-1)}} R(z_t; \mathbf{w})$$

where  $\eta_t$  is the step size

[Bottou and Bousquet'07], [Shalev-Shwartz et al.'07]

# Datasets used in experiments

|             | # images | # classes | Example Images |
|-------------|----------|-----------|----------------|
| ILSVRC10    | 1.4M     | 1,000     |                |
| ImageNet10K | 9M       | 10,184    |                |

 $\rightarrow$  We report results with Top-1 accuracy

[Deng et al.'09, Deng et al.'10]

## Image descriptors used in experiments

- Local features (*D* = 128) with SIFT [Lowe'04] + PCA
- Visual vocabulary with Gaussian Mixture Models (G = 8, ..., 256)
- Aggregating features with BOV (4K-dim) [Csurka *et al.*'04] or FV (130K-dim) [Perronnin and Dance '07]
- Spatial Pyramids (*S* = 4) [Lazebnik *et al.*'06]
- Compression with Product Quantization [Jegou *et al.*'11]



# Experiments

- **1** Regularization  $\lambda$  in  $\min_{\mathbf{W}} \frac{\lambda}{2} \Omega(\mathbf{W}) + L(S; \mathbf{W})$
- 2 Step size  $\eta_t$  in  $\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} \eta_t \nabla_{\mathbf{w} = \mathbf{w}^{(t-1)}} R(z_t; \mathbf{w})$
- **3** Unbalance parameter  $\rho$  in sample rebalancing
- 4 Descriptor dimensionality d
- 6 Comparison between different objective functions

# Regularization and step size

- 1 Is explicit regularization better than implicit regularization?
- Is decreasing step size better than constant step size?

#### Regularization and step size

- **1** Is explicit regularization better than implicit regularization?
- Is decreasing step size better than constant step size?



a)  $\lambda > 0$  and  $\eta_t = 1/(\lambda(t + t_0))$ b)  $\lambda > 0$  and  $\eta_t = \eta$ c)  $\lambda = 0$  and  $\eta_t = \eta$ 

#### Regularization and step size

- Is explicit regularization better than implicit regularization?
- Is decreasing step size better than constant step size?



a)  $\lambda > 0$  and  $\eta_t = 1/(\lambda(t + t_0))$ b)  $\lambda > 0$  and  $\eta_t = \eta$ 

c) 
$$\lambda = 0$$
 and  $\eta_t = \eta$ 

- Implicit regularization with fixed step size is effective
- It requires one less parameter to tune
#### Data rebalancing

3 Is data rebalancing beneficial in OVR on large scale?

#### Data rebalancing

#### Is data rebalancing beneficial in OVR on large scale?



- $\beta = (1 \rho)/\rho$ : number of negatives sampled for each positive
- Dashed lines = u-OVR

#### Data rebalancing

#### Is data rebalancing beneficial in OVR on large scale?



- $\beta = (1 \rho)/\rho$ : number of negatives sampled for each positive
- Dashed lines = u-OVR
- Rebalancing is beneficial for small dimensional features [Bartlett *et al.*'03]

### Descriptor dimensionality (d)

How do different methods behave with increasing descriptor dimensionality on large scale?

#### Descriptor dimensionality (d)

4 How do different methods behave with increasing descriptor dimensionality on large scale?



### Descriptor dimensionality (d)

4 How do different methods behave with increasing descriptor dimensionality on large scale?



- Methods tend to converge
- With the increasing descriptor dimensionality
- Impact of surrogate loss is mitigated as capacity of the classifier increases

**5** Which method works best on large scale?

- **5** Which method works best on large scale?
  - Comparison between methods on ILSVRC10

|         | u-OVR | w-OVR | MUL  | RNK  | WAR  |
|---------|-------|-------|------|------|------|
| BOV 4K  | 15.8  | 26.4  | 22.7 | 20.8 | 24.1 |
| FV 130K | 45.9  | 45.7  | 46.2 | 46.1 | 46.1 |

Comparison between methods on ImageNet10K

|         | u-OVR | w-OVR | MUL | RNK | WAR  |
|---------|-------|-------|-----|-----|------|
| BOV 4K  | 3.8   | 7.5   | 6.0 | 4.4 | 7.0  |
| FV 130K | -     | 19.1  | -   | -   | 17.9 |

u-OVR: unweighted OVR, w-OVR: weighted OVR MUL: Multiclass, RNK: Ranking, WAR: Weighted Average Ranking

- **5** Which method works best on large scale?
  - Comparison between methods on ILSVRC10

|         | u-OVR | w-OVR       | MUL  | RNK  | WAR  |
|---------|-------|-------------|------|------|------|
| BOV 4K  | 15.8  | <b>26.4</b> | 22.7 | 20.8 | 24.1 |
| FV 130K | 45.9  | 45.7        | 46.2 | 46.1 | 46.1 |

Comparison between methods on ImageNet10K

|         | u-OVR | w-OVR | MUL | RNK | WAR  |
|---------|-------|-------|-----|-----|------|
| BOV 4K  | 3.8   | 7.5   | 6.0 | 4.4 | 7.0  |
| FV 130K | -     | 19.1  | -   | -   | 17.9 |

u-OVR: unweighted OVR, w-OVR: weighted OVR MUL: Multiclass, RNK: Ranking, WAR: Weighted Average Ranking

- **5** Which method works best on large scale?
  - Comparison between methods on ILSVRC10

|         | u-OVR | w-OVR       | MUL  | RNK  | WAR  |
|---------|-------|-------------|------|------|------|
| BOV 4K  | 15.8  | <b>26.4</b> | 22.7 | 20.8 | 24.1 |
| FV 130K | 45.9  | 45.7        | 46.2 | 46.1 | 46.1 |

Comparison between methods on ImageNet10K

|         | u-OVR | w-OVR | MUL | RNK | WAR  |
|---------|-------|-------|-----|-----|------|
| BOV 4K  | 3.8   | 7.5   | 6.0 | 4.4 | 7.0  |
| FV 130K | -     | 19.1  | -   | -   | 17.9 |

u-OVR: unweighted OVR, w-OVR: weighted OVR MUL: Multiclass, RNK: Ranking, WAR: Weighted Average Ranking

### Qualitative examples from ImageNet10K

• Some classes with top-1 accuracy higher than 85%



Star Anise (92%)

Nest Egg (87%)

Geyser (86%)

Some classes with 75% and 50% top-1 accuracy



Traction engine (77 %)

Ready to Wear (76 %)

Stonechat (50%)

### Qualitative examples from ImageNet10K

• Some classes with 25% and 10% top-1 accuracy



Tortrix (25%)

Pyralid (25%)

Egyptian cobra (10%)

Some classes with 5% and 0% top-1 accuracy



Hare (5%)

Weasel (5%)

Felt fungus (0%)

#### Good practices for large-scale image classification

- 1 Early stopping: fast training and good generalization
- 2 Step-size: small constant step-size is sufficient
- 3 Sample rebalancing: a must in OVR
- 4 Sufficiently large descriptors: all methods tend to converge
- **5** OVR: efficient for large-scale classification

Towards Good Practice in Large Scale Learning for Image Classification F. Perronnin, Z.Akata, Z.Harchaoui, C.Schmid, *IEEE CVPR*, 2012.

**Good Practice in Large Scale Learning for Image Classification** Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, *to appear in IEEE TPAMI, 2013.* 

### Outline

Good practices in large-scale learning

2 Label-embedding with attributes

3 Conclusion

#### Label-Embedding with Attributes

Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, IEEE CVPR, 2013.

#### Attribute-Based Classification with Label-Embedding

Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, ORL Workshop at NIPS, 2013.

## Label-Embedding with Attributes for Image Classification Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, *Submitted to IEEE TPAMI*.



#### Large-scale datasets have fine-grained subsets

Hummingbirds



#### Introduction

#### Large-scale datasets have fine-grained subsets

Hummingbirds



Fine-grained images can only be distinguished by experts



Due to cost of image labeling: scarce labeled data

#### **Attributes**

Visual qualities of objects such as red or striped [Ferrari et al.'07]

Understandable by humans and interpretable by computers

Human-specified high-level description of objects [Lampert et al.'09]

• Enable parameter sharing between classes

| Rufous<br>Hummingbird        | bill shape::dagger<br>size::small<br>wing color::rufous<br>wing color::orange<br>upperparts color::rufous<br>underparts color::pink<br>back color::grey           |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ruby-throated<br>Hummingbird | bill shape::dagger<br>size::small<br>underparts color::olive<br>underparts color::green<br>back color::grey<br>upper tail color::rufous<br>upper tail color::grey |

#### **Attributes**

Visual qualities of objects such as red or striped [Ferrari et al.'07]

Understandable by humans and interpretable by computers

Human-specified high-level description of objects [Lampert et al.'09]

• Enable parameter sharing between classes



#### **Attributes**

Visual qualities of objects such as red or striped [Ferrari et al.'07]

• Understandable by humans and interpretable by computers

Human-specified high-level description of objects [Lampert et al.'09]

• Enable parameter sharing between classes



#### Direct Attribute Prediction (DAP)

Image *x* is assigned to the class *y* with maximum

$$p(y|x) \propto \prod_{e=1}^{E} p(a_e = \rho_{y,e}|x)$$

where  $\rho_{y,e}$  associates an attribute  $a_e$  and a class y



### Direct Attribute Prediction (DAP)

State-of-the-art DAP has 3 potential shortcomings

- **1** Two-step procedure:
  - Learn attribute classifiers & combine attribute scores
- 2 Attributes are costly to obtain:
  - Not clear how to integrate other sources of side information
- 3 Difficult to leverage few additional labeled samples

### IMAGE IMAGES FEATURES $\tilde{\mathcal{X}}$ $\mathcal{X}$ $x_i$ chimpanzee $\theta(x_i)$ $\theta(x_i)$ $x_i$







Define:  $\mathcal{Y} = \{1, \dots, C\}$  and  $\mathcal{A} = \{a_i, i = 1 \dots E\}$ 

Association between a class *y* and an attribute  $a_i$ :  $\rho_{y,i}$ 

$$\varphi^{\mathcal{A}}(y) = [\rho_{y,1}, \ldots, \rho_{y,E}]$$



 $\varphi^{\mathcal{A}}(\mathbf{y})$  models

- Presence/absence of each attribute:  $\rho_{y,i} \in \{0,1\}$  or  $\{-1,1\}$
- Confidence level of each attribute:  $\rho_{y,i} \in \mathcal{R}$

#### 1 Optimizes directly the classification objective

# Structured output learning [Tsochantaridis *et al.*'05]

$$f(x; w) = \arg \max_{y \in \mathcal{Y}} F(x, y; w)$$

Compatibility function:

$$F(x, y; W) = \theta(x)^T W \varphi(y)$$



Input:  $\theta(x) =$  image features and  $\varphi(y) =$  class attributes Output: W = mapping between  $\theta(x)$  and  $\varphi(y)$ 

#### Parameter learning

Strategies for optimization

a) Maximize correlation between input and output [Palatucci *et al.*'09, Socher *et al.*'13]

$$\frac{1}{N}\sum_{i=1}^{N}F(x_i, y_i; W)$$

- · Does not directly optimize object classification
- b) Maximize the ranking of the correct label
  - Use any ranking method [Joachims'02], [Crammer and Singer'02], [Weston *et al.*'10]

2 Other sources of side information easily integrated

HLE: Hierarchy Label-Embedding [Tsochantaridis *et al.*'05]

 $\Phi^{\mathcal{H}}(6) = [1 \ 0 \ 1 \ 0 \ 0 \ 1]$ 

Different sources can be combined

- Early fusion of output embeddings
- Late fusion of scores



3 Easy to leverage few additional labeled samples



### Datasets used in experiments

|                                                                 | # classes | # attributes | Example images |
|-----------------------------------------------------------------|-----------|--------------|----------------|
| Animals with<br>Attributes (AWA)<br>[Lampert <i>et al.</i> '09] | 50        | 85           |                |
| Caltech UCSD<br>Birds (CUB)<br>[Wah <i>et al.</i> '11]          | 200       | 312          |                |

#### Input and output embeddings

Input embeddings

- + 128-dim SIFT and 96-dim color  $\rightarrow$  64-dim PCA
- GMM with 16 or 256 Gaussians  $\rightarrow$  FV(4K or 64K)

Output embeddings

- 1 Baselines: No side information
  - OVR:  $\Phi = C \times C$  identity matrix
  - Gaussian LE:  $\Phi$  is drawn from  $\mathcal{N}(\mu, \sigma^2)$  [Hsu *et al.*'09]
  - WSABIE [Weston *et al.*'10]:  $\Phi$  and *W* are learned

#### Input and output embeddings

Input embeddings

- + 128-dim SIFT and 96-dim color  $\rightarrow$  64-dim PCA
- GMM with 16 or 256 Gaussians  $\rightarrow$  FV(4K or 64K)

Output embeddings

- 1 Baselines: No side information
  - OVR:  $\Phi = C \times C$  identity matrix
  - Gaussian LE:  $\Phi$  is drawn from  $\mathcal{N}(\mu, \sigma^2)$  [Hsu *et al.*'09]
  - WSABIE [Weston *et al.*'10]:  $\Phi$  and *W* are learned
- **2** Using side information:
  - ALE: continuous and discrete attributes (Φ<sup>A</sup>)
  - HLE: hierarchical label embedding  $(\Phi^{\mathcal{H}})$
  - AHLE: ALE and HLE concatenated ( $\Phi^{\mathcal{A}}$  and  $\Phi^{\mathcal{H}}$ )

### Experiments

- 1 Discrete vs continuous embeddings
- 2 Different objectives for learning in ALE
- **3** ALE vs DAP for object prediction
- 4 Attributes and Hierarchies for label embedding
- **5** Determine if side information is beneficial in few-shots

#### Discrete vs continuous embeddings

1 In zero-shot learning with ALE, how do discrete and continuous embeddings compare?

### Discrete vs continuous embeddings

1 In zero-shot learning with ALE, how do discrete and continuous embeddings compare?



•  $\ell_2$  norm: each class is closest to itself  $\rightarrow$  dot product similarity
# Discrete vs continuous embeddings

1 In zero-shot learning with ALE, how do discrete and continuous embeddings compare?



- $\ell_2$  norm: each class is closest to itself  $\rightarrow$  dot product similarity
- Continuous embedding outperforms discrete embeddings

# Learning framework in ALE

2 Does learning framework make a difference in ALE for zero-shot learning?

# Learning framework in ALE

2 Does learning framework make a difference in ALE for zero-shot learning?

|             | RR   | MUL  | WAR  |
|-------------|------|------|------|
| AWA dataset | 44.5 | 47.9 | 48.5 |
| CUB dataset | 21.6 | 26.3 | 26.3 |

RR: Ridge Regression [Hoerl and Kennard'70], MUL: Multiclass [Crammer and Singer'02], WAR: Weighted Average Ranking [Weston *et al.*'10]

# Learning framework in ALE

2 Does learning framework make a difference in ALE for zero-shot learning?

|             | RR   | MUL  | WAR  |
|-------------|------|------|------|
| AWA dataset | 44.5 | 47.9 | 48.5 |
| CUB dataset | 21.6 | 26.3 | 26.3 |

• ALE: Ranking objective performs the best

RR: Ridge Regression [Hoerl and Kennard'70], MUL: Multiclass [Crammer and Singer'02], WAR: Weighted Average Ranking [Weston *et al.*'10]

### ALE vs DAP

How do ALE and DAP compare for object prediction in zero-shot learning?

### ALE vs DAP

How do ALE and DAP compare for object prediction in zero-shot learning?

|             | DAP  | ALE cont | <b>ALE</b> {0, 1} |
|-------------|------|----------|-------------------|
| AWA dataset | 41.0 | 48.5     | 44.6              |
| CUB dataset | 12.3 | 26.3     | 22.3              |

- DAP: OVR with log loss for each attribute
- DAP [Lampert et al.'09]: different features + nonlinear kernels

### ALE vs DAP

How do ALE and DAP compare for object prediction in zero-shot learning?

|             | DAP  | ALE cont | <b>ALE</b> {0, 1} |
|-------------|------|----------|-------------------|
| AWA dataset | 41.0 | 48.5     | 44.6              |
| CUB dataset | 12.3 | 26.3     | 22.3              |

- DAP: OVR with log loss for each attribute
- DAP [Lampert et al.'09]: different features + nonlinear kernels
- ALE: with continuous attributes performs the best

# ALE vs HLE

How do ALE and HLE compare for zero-shot learning and do they contain complementary information?



- HLE: Hierarchy Label-Embedding
- AHLE early:  $\Phi^{\mathcal{H}}$  &  $\Phi^{\mathcal{A}}$  concatenated
- AHLE late: ALE & HLE scores combined

# ALE vs HLE

How do ALE and HLE compare for zero-shot learning and do they contain complementary information?



- HLE: Hierarchy Label-Embedding
- AHLE early:  $\Phi^{\mathcal{H}}$  &  $\Phi^{\mathcal{A}}$  concatenated
- AHLE late: ALE & HLE scores combined

|             | ALE  | HLE  | AHLE early | AHLE late |
|-------------|------|------|------------|-----------|
| AWA dataset | 48.5 | 40.4 | 46.8       | 49.4      |
| CUB dataset | 26.9 | 18.5 | 27.1       | 27.3      |

# ALE vs HLE

How do ALE and HLE compare for zero-shot learning and do they contain complementary information?



- HLE: Hierarchy Label-Embedding
- AHLE early:  $\Phi^{\mathcal{H}}$  &  $\Phi^{\mathcal{A}}$  concatenated
- AHLE late: ALE & HLE scores combined

|             | ALE  | HLE  | AHLE early | AHLE late |
|-------------|------|------|------------|-----------|
| AWA dataset | 48.5 | 40.4 | 46.8       | 49.4      |
| CUB dataset | 26.9 | 18.5 | 27.1       | 27.3      |

## Side information in few-shots

**5** Is side information beneficial for few-shots learning?

## Side information in few-shots

#### 6 Is side information beneficial for few-shots learning?



# Side information in few-shots

#### 6 Is side information beneficial for few-shots learning?



- · Side information is beneficial with scarce training data
- · All methods converge with more training data

### Advantages of ALE over DAP

1 Solves directly image classification problem

- 2 Accommodates other sources of side information
  - · Improves zero-shot learning with continuous attributes
- 3 Leverages few additional labeled training data

Label-Embedding with Attributes Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, *IEEE CVPR, 2013.* 

Attribute-Based Classification with Label-Embedding Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, ORL Workshop at NIPS, 2013.

Label-Embedding with Attributes for Image Classification Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, *Submitted to IEEE TPAMI*.

### Outline

1 Good practices in large-scale learning

2 Label-embedding with attributes



# Large-scale image classification

#### Conclusions

- Comparison of objective functions in large-scale learning
- Set of good practices for large-scale learning

# Large-scale image classification

#### Conclusions

- Comparison of objective functions in large-scale learning
- Set of good practices for large-scale learning

#### Future work

- Hierarchical loss [Tsochantaridis et al.'05]
- ASGD [Polyak and Juditsky'92], [Bach and Moulines'13]
- Sampling [Loosli et al.'05], [Mineiro and Karampatziakis'13]

# Label-embedding with attributes

#### Conclusions

- Novel approach for zero-shot learning using attributes
- · Several improvements over the state of the art

# Label-embedding with attributes

#### Conclusions

- Novel approach for zero-shot learning using attributes
- · Several improvements over the state of the art

#### Future work

- Deep Embedding of ALE and HLE
- Beyond label trees in HLE [Yen et al.'08]
- Text from textual resources [Rohrbach'10], [Frome et al.'13]

# Thank you for your attention!

# Bag of Visual Words (BOV) [Csurka et al.'04]



- Dense sampling of local features from an image
- · Create visual vocabulary with k-means
- · Assign each local feature to a visual word
- · Calculate frequency of each visual word

### Fisher Vectors (FVs) [Perronnin and Dance'07]

- · Dense sampling of local features from an image
- Create visual vocabulary with GMMs

$$p(\mathbf{x}|\lambda)$$
 with  $\lambda = \{\pi_i, \boldsymbol{\mu}_i, \Sigma_i, i = 1, ..., k\}$ 

• Take gradients w.r.t mixture weight, mean and variance

$$G_{\lambda}^{\mathbf{x}} = \frac{1}{N} \nabla_{\lambda} \log p(\mathbf{x}|\lambda)$$

- Improves with power,  $\ell_2$  normalization and SPM
- · PQ compressed FVs have small memory fooprint

Multiclass SVM (MUL) [Crammer and Singer'04]

• Convex surrogate loss to  $\Delta(y, \hat{y})$ :

$$\hat{y}_i = \arg \max_y \mathbf{w}_y^T x_i$$

• Upper bound to misclassification loss:

$$L_{\mathsf{MUL}}(\mathbf{x}_i, y_i; \mathbf{w}) = \max_{y} \left\{ \Delta(y_i, y) + \mathbf{w}_{y}^T x_i \right\} - \mathbf{w}_{y_i}^T x_i$$

# Ranking SVM (RNK) [Joachims'02]

- Ordering pairs of documents
- Sample  $(\mathbf{x}_i, y_i)$  and label  $y \neq y_i$ : enforce  $\mathbf{w}_{y_i} \mathbf{x}_i > \mathbf{w}_y^T \mathbf{x}_i$
- Rank of label *y* for sample **x**:

$$r(\mathbf{x}, y) = \sum_{c=1}^{C} \mathbb{1}(\mathbf{w}_{c}^{T}\mathbf{x} \ge \mathbf{w}_{y}^{T}\mathbf{x})$$

•  $1(\mathbf{w}_c^T \mathbf{x} \ge \mathbf{w}_y^T \mathbf{x})$  is upper-bounded by:

$$L_{\mathsf{tri}}(\mathbf{x}_i, y_i, y; \mathbf{w}) = \max\{0, \Delta(y_i, y) - \mathbf{w}_{y_i}^T \mathbf{x}_i + \mathbf{w}_y^T \mathbf{x}_i\}$$

• Overall loss of  $(\mathbf{x}_i, y_i)$ :

$$L_{\mathsf{RNK}}(\mathbf{x}_i, y_i; \mathbf{w}) = \sum_{y=1}^{C} \max\{0, \Delta(y_i, y) - (\mathbf{w}_{y_i} - \mathbf{w}_y)^T \mathbf{x}_i\}$$

### Weighted Average Ranking (WAR) [Weston et al.'10]

- Give more weight to the top of the ranking list
- Ranking loss  $\ell_{r(\mathbf{x}_i, y_i)}$ :  $\ell_k = \sum_{j=1}^k \frac{1}{j}$
- Regularized rank:

$$r_{\Delta}(\mathbf{x}, y) = \sum_{c=1}^{C} \mathbb{1}(\mathbf{w}_{c}^{T}x + \Delta(y, c) \ge \mathbf{w}_{y}^{T}x)$$

• Approximated upper bound to the loss:

$$L_{\text{WAR}}(\mathbf{x}_i, y_i; \mathbf{w}) = \sum_{y=1}^{C} \ell_{r_{\Delta}(\mathbf{x}_i, y_i)} \frac{L_{\text{tri}}(\mathbf{x}_i, y_i, y; \mathbf{w})}{r_{\Delta}(\mathbf{x}_i, y_i)}$$

# Sampling and update equations

|                  | Sampling                                                                                                                                                                      | Update                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R <sub>OVR</sub> | Draw $(\mathbf{x}_i, y_i)$ from S.                                                                                                                                            | $\delta_i = 1$ if $L_{\text{OVR}}(\mathbf{x}_i, y_i; \mathbf{w}) > 0, 0$ otherwise.                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                               | $\mathbf{w}^{(t)} = (1 - \eta_t \lambda) \mathbf{w}^{(t-1)} + \eta_t \delta_i \mathbf{x}_i y_i$                                                                                                                                                                                                                                                                                                      |
| R <sub>MUL</sub> | Draw $(\mathbf{x}_i, y_i)$ from <i>S</i> .                                                                                                                                    | $\bar{y} = \arg \max_{y} \Delta(y_i, y) + \mathbf{w}'_y \mathbf{x}_i \text{ and } \delta_i = \begin{cases} 1 & \text{if } \bar{y} \neq y_i \\ 0 & \text{otherwise.} \end{cases}$                                                                                                                                                                                                                     |
|                  |                                                                                                                                                                               | $\mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda) + \delta_{i}\eta_{t}\mathbf{x}_{i}  \text{if } y = y_{i}$                                                                                                                                                                                                                                                                                                 |
|                  |                                                                                                                                                                               | $\mathbf{w}_{y}^{(t)} = \begin{cases} \mathbf{w}_{y}^{(t-1)}(1 - \eta_{t}\lambda) + \delta_{i}\eta_{t}\mathbf{x}_{i} & \text{if } y = y_{i} \\ \mathbf{w}_{y}^{(t-1)}(1 - \eta_{t}\lambda) - \delta_{i}\eta_{t}\mathbf{x}_{i} & \text{if } y = \bar{y} \\ \mathbf{w}_{y}^{(t-1)}(1 - \eta_{t}\lambda) & \text{otherwise.} \end{cases}$                                                               |
| R <sub>RNK</sub> | Draw $(\mathbf{x}_i, y_i)$ from S.                                                                                                                                            | $\delta_i = 1$ if $L_{tri}(\mathbf{x}_i, y_i, \overline{y}; \mathbf{w}) > 0, 0$ otherwise.                                                                                                                                                                                                                                                                                                           |
|                  |                                                                                                                                                                               | $\left( \mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda)+\delta_{i}\eta_{t}\mathbf{x}_{i} \text{ if } y=y_{i} \right)$                                                                                                                                                                                                                                                                                      |
|                  | Draw $\bar{y} \neq y_i$ from $\mathcal{Y}$ .                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  |                                                                                                                                                                               | $\mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda)$ otherwise.                                                                                                                                                                                                                                                                                                                                               |
| R <sub>WAR</sub> | Draw $(\mathbf{x}_i, y_i)$ from S.                                                                                                                                            | $\delta_i = 1$ if $\bar{y}$ s.t. $L_{tri}(\mathbf{x}_i, y_i, \bar{y}; \mathbf{w}) > 0$ was sampled, 0 otherwise.                                                                                                                                                                                                                                                                                     |
|                  | Earl 10 C 1 day                                                                                                                                                               | $\int \mathbf{w}_{\mathbf{y}}^{(t-1)}(1-\eta_t \lambda) + \delta_i \ell_{ \underline{c}-1 } \eta_t \mathbf{x}_i  \text{if } \mathbf{y} = \mathbf{y}_i$                                                                                                                                                                                                                                               |
|                  | $\begin{cases} \text{Draw } \bar{y} \neq y_i \text{ from } \mathcal{Y}. \\ \text{If } L_{\text{tri}}(\mathbf{x}_i, y_i, \bar{y}; \mathbf{w}) > 0, \text{ break.} \end{cases}$ | $\mathbf{w}_{y}^{(t)} = \begin{cases} \mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda) - \delta_{i}\ell_{ \underline{c}-1 }\eta_{t}\mathbf{x}_{i} & \text{if } y = \bar{y} \end{cases}$                                                                                                                                                                                                                     |
|                  | $( II L_{tri}(\mathbf{x}_i, y_i, y; \mathbf{w}) > 0, \text{ break}.$                                                                                                          | $\mathbf{w}_{y}^{(t)} = \begin{cases} \mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda) + \delta_{i}\ell_{\lfloor\frac{c-1}{k}\rfloor}\eta_{t}\mathbf{x}_{i} & \text{if } y = y_{i} \\ \mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda) - \delta_{i}\ell_{\lfloor\frac{c-1}{k}\rfloor}\eta_{t}\mathbf{x}_{i} & \text{if } y = \bar{y} \\ \mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda) & \text{otherwise.} \end{cases}$ |

# SGD vs Batch

• Is SGD better than Batch in large scale classification?

SGD vs batch experiments on Ungulate183



# Comparison between methods on ILSVRC10

|              |         | u-OVR | w-OVR | MUL  | RNK  | WAR  |
|--------------|---------|-------|-------|------|------|------|
| Ton-1        | BOV 4K  | 15.8  | 26.4  | 22.7 | 20.8 | 24.1 |
|              | FV 130K | 45.9  | 45.7  | 46.2 | 46.1 | 46.1 |
| Top-5        | BOV 4K  | 28.8  | 46.4  | 38.4 | 41.2 | 44.2 |
| 17 11 1 - 11 | FV 130K | 63.7  | 65.9  | 64.8 | 65.8 | 66.5 |

Despite its simplicity and suboptimality in theory, OVR performs the best

### Attribute Label Embedding

- $S = \{(x_n, y_n), n = 1 \dots N\}$ :  $x_n \in \mathcal{X}$  and  $y_n \in \mathcal{Y}$
- Learn  $f : \mathcal{X} \to \mathcal{Y}$  with  $\frac{1}{N} \sum_{n=1}^{N} \Delta(y_n, f(x_n))$
- 0/1 loss:  $\Delta(y, z) = 0$  if y = z, 1 otherwise
- Compatibility function:  $f(x; w) = \arg \max_{y \in \mathcal{Y}} F(x, y; w)$
- Rewrite in bilinear form:  $F(x, y; W) = \theta(x)'W\varphi(y)$
- Attribute Label-Embedding with Attributes (ALE):

• 
$$\mathcal{Y} = \{1, ..., C\}, \, \mathcal{A} = \{a_i, i = 1 ... E\}$$

- association measure between y and a<sub>i</sub>: ρ<sub>y,i</sub>
- embed class y in attribute space:

$$\varphi^{\mathcal{A}}(\mathbf{y}) = [\rho_{\mathbf{y},1},\ldots,\rho_{\mathbf{y},E}]$$

# **Zero-Shot Objective**

•  $\Phi$  fixed, W learned

$$\frac{1}{N}\sum_{n=1}^{N}\max_{y\in\mathcal{Y}}\ell(x_n,y_n,y)$$

• where  $\ell(x_n, y_n, y)$  is defined as:

$$\Delta(y_n, y) + \theta(x)' W[\varphi(y) - \varphi(y_n)]$$

### **Few-Shots Objective**

•  $\Phi$  and W learned using  $\Phi^{\mathcal{A}}$ 

$$R(\mathcal{S}; W, \Phi) + \frac{\mu}{2} ||\Phi - \Phi^{\mathcal{A}}||^2$$

• where  $R(S; W, \Phi)$  is defined as:

$$\frac{1}{N}\sum_{n=1}^{N}\frac{\beta_{r_{\Delta}(x_{n},y_{n})}}{r_{\Delta(x_{n},y_{n})}}\sum_{y\in\mathcal{Y}}\max\{0,\ell(x_{n},y_{n},y)\}$$

• upper-bound on rank of label *y<sub>n</sub>* for image *x<sub>n</sub>*:

$$r_{\Delta}(x_n, y_n) = \sum_{y \in \mathcal{Y}} \mathbb{1}(\ell(x_n, y_n, y) > 0)$$

# SGD optimization for ALE

- Intitialize  $W^{(0)}$  randomly.
- Draw (x,y) randomly from S
- Draw  $\bar{y} \neq y$  from  $\mathcal{Y}$
- If  $\ell(x, y, \overline{y}) > 0$ 
  - Update W

$$W^{(t)} = W^{(t-1)} + \eta_t \beta_{\lfloor \frac{C-1}{k} \rfloor} \theta(x) [\varphi(y) - \varphi(\bar{y})]'$$

• Update  $\Phi$  (not applicable to zero-shot)

$$\varphi^{(t)}(\mathbf{y}) = (1 - \eta_t \mu)\varphi^{(t-1)}(\mathbf{y}) + \eta_t \mu \varphi^{\mathcal{A}}(\mathbf{y}) + \eta_t \beta_{\lfloor \frac{C-1}{k} \rfloor} W' \theta(\mathbf{x})$$
$$\varphi^{(t)}(\bar{\mathbf{y}}) = (1 - \eta_t \mu)\varphi^{(t-1)}(\bar{\mathbf{y}}) + \eta_t \mu \varphi^{\mathcal{A}}(\bar{\mathbf{y}}) - \eta_t \beta_{\lfloor \frac{C-1}{k} \rfloor} W' \theta(\mathbf{x})$$

# Attribute prediction

• Are the attributes still interpretable for ALE?

 $\theta(x)'W$  can be interpreted as a vector of attribute scores of  $\mathbf{x}$ 

|     | Attribute prediction |      |  |
|-----|----------------------|------|--|
|     | DAP ALE              |      |  |
| AWA | 72.7                 | 72.7 |  |
| CUB | 64.8                 | 59.4 |  |

#### Attribute interpretability:



lives in ocean



hibernates

is quadrapedal

is weak



56/56

## **Attribute Correlation**



Are the attributes correlated for zero-shot learning?

- SVD vs random attribute sampling
- Significant correlation in output space