Overview

- Optical flow
- Video classification
 - Bag of spatio-temporal features
- Action localization
 - Spatio-temporal human localization

State of the art for video classification

- Space-time interest points [Laptev, IJCV'05]
- Dense trajectories [Wang and Schmid, ICCV'13]
- Video-level CNN features

Space-time interest points (STIP)

• Space-time corner detector [Laptev, IJCV 2005]

$$H = \det(\mu) + k \operatorname{tr}^{3}(\mu)$$

$$\mu = \begin{pmatrix} I_x I_x & I_x I_y & I_x I_t \\ I_x I_y & I_y I_y & I_y I_t \\ I_x I_t & I_y I_t & I_t I_t \end{pmatrix} * g(\cdot; \sigma, \tau)$$

STIP descriptors

Space-time interest points

Action classification

• Bag of space-time features + SVM [Schuldt'04, Niebles'06, Zhang'07]

Collection of space-time patches

Visual words: k-means clustering

• Group similar STIP descriptors together with k-means

Action classification

Test episodes from movies "The Graduate", "It's a Wonderful Life", "Indiana Jones and the Last Crusade"

State of the art for video description

• Dense trajectories [Wang et al., IJCV'13] and Fisher vector encoding [Perronnin et al. ECCV'10]

• Orderless representation

Dense trajectories [Wang et al., IJCV'13]

- Dense sampling at several scales
- Feature tracking based on optical flow for several scales
- Length 15 frames, to avoid drift

Example for dense trajectories

Descriptors for dense trajectory

- Histogram of gradients (HOG: 2x2x3x8)
- Histogram of optical flow (HOF: 2x2x3x9)

Descriptors for dense trajectory

- Motion-boundary histogram (MBHx + MBHy: 2x2x3x8)
 - spatial derivatives are calculated separately for optical flow in x and y, quantized into a histogram
 - captures relative dynamics of different regions
 - suppresses constant motions

Dense trajectories

- Advantages:
- Captures the intrinsic dynamic structures in videos
- MBH is robust to certain camera motion
- Disadvantages:
 - Generates irrelevant trajectories in background due to camera motion
 - Motion descriptors are modified by camera motion, e.g., HOF, MBH

Improved dense trajectories

- Improve dense trajectories by explicit camera motion estimation
- Detect humans to remove outlier matches for homography estimation
- Stabilize optical flow to eliminate camera motion

[Wang and Schmid. Action recognition with improved trajectories. ICCV'13]

Camera motion estimation

- Find the correspondences between two consecutive frames:
- Extract and match SURF features (robust to motion blur)
- Use optical flow, remove uninformative points
- Combine SURF (green) and optical flow (red) results in a more balanced distribution
- Use RANSAC to estimate a homography from all feature matches

Inlier matches of the homography

Remove inconsistent matches due to humans

- Human motion is not constrained by camera motion, thus generates outlier matches
- Apply a human detector in each frame, and track the human bounding box forward and backward to join detections
- Remove feature matches inside the human bounding box during homography estimation

Inlier matches and warped flow, without or with HD

Remove background trajectories

- Remove trajectories by thresholding the maximal magnitude of stabilized motion vectors
- Our method works well under various camera motions, such as pan, zoom, tilt

Successful examples

Failure cases

Removed trajectories (white) and foreground ones (green)

• Failure due to severe motion blur; the homography is not correctly estimated due to unreliable feature matches

Experimental setting

• Motion stabilized trajectories and features (HOG, HOF, MBH)

• Normalization for each descriptor, then PCA to reduce its dimension by a factor of two

- Use Fisher vector to encode each descriptor separately, set the number of Gaussians to K=256
- Use Power+L2 normalization for FV, and linear SVM with one-against-rest for multi-class classification

Datasets

- Hollywood2: 12 classes from 69 movies, report mAP
- HMDB51: 51 classes, report accuracy on three splits
- UCF101: 101 classes, report accuracy on three splits

Hollywood dataset [Marszalek et al.'09]

Hollywood2: 12 classes from 69 movies, report mAP

HMDB 51 dataset [Kuehne et al.'11]

push-up

cartwheel

sword-exercice

HMDB51: 51 classes, report accuracy on three splits

UCF 101 dataset [Soomro et al.'12]

haircut

archery

ice-dancing

UCF101: 101 classes, report accuracy on three splits

Impact of feature encoding on improved trajectories

Datasets	Fisher vector		
	DTF	ITF wo	ITF w
		human	human
Hollywood2	63.6%	66.1%	66.8%
HMDB51	55.9%	59.3%	60.1%
UCF101	83.5%	85.7%	86.0%

Compare DTF and ITF with and without human detection using HOG+HOF+MBH and Fisher encoding

- IDT significantly improvement over DT
- Human detection always helps. For Hollywood2 and HMDB51, the difference is more significant, as there are more humans present.
- Source code: http://lear.inrialpes.fr/~wang/improved_trajectories

TrecVid MED 2011

• 15 categories

Attempt a board trick

Feed an animal

Landing a fish

Wedding ceremony

Working on a wood project

Birthday party

TrecVid MED 2011

- 15 categories
- ~100 positive video clips per event category, 9600 negative video clips
- Testing on 32000 videos clips, i.e., 1000 hours
- Videos come from publicly available, user-generated content on various Internet sites
- Descriptors: MBH, SIFT, audio, text & speech recognition

Performance of all channels (mAP)

Channel	mAP
Motion	44.65
Static	33.97
Audio	18.15
OCR	10.85
ASR	8.21
Visual=Motion+Static	47.22
Visual+Audio	50.41
Visual+OCR	48.97
Visual+ASR	48.28
Visual+Audio+OCR+ASR	52.28

Performance of all channels	rthday rty	
Channel	mAP	Bi
Motion Static Audio OCR ASR	$\begin{array}{c} 44.65 \\ 33.97 \\ 18.15 \\ 10.85 \\ 8.21 \end{array}$	$30.7 \\ 25.9 \\ 33.3 \\ 10.1 \\ 3.6$
Visual=Motion+Static Visual+Audio Visual+OCR Visual+ASR Visual+ASR	$\begin{array}{c} 47.22 \\ 50.41 \\ 48.97 \\ 48.28 \\ 52.28 \end{array}$	$34.8 \\ 47.7 \\ 35.8 \\ 35.0 \\ 48.4$

Performance of all channels Channel	(mAP) mAP	Birthday party	Repair appliance
Motion Static Audio OCR ASR	$\begin{array}{c} 44.65 \\ 33.97 \\ 18.15 \\ 10.85 \\ 8.21 \end{array}$	$30.7 \\ 25.9 \\ 33.3 \\ 10.1 \\ 3.6$	$\begin{array}{c} 42.6 \\ 43.6 \\ 43.3 \\ 32.1 \\ 39.2 \end{array}$
Visual=Motion+Static Visual+Audio Visual+OCR Visual+ASR Visual+Audio+OCR+ASR	$\begin{array}{r} 47.22 \\ 50.41 \\ 48.97 \\ 48.28 \\ 52.28 \end{array}$	$\begin{array}{c} 34.8 \\ 47.7 \\ 35.8 \\ 35.0 \\ 48.4 \end{array}$	$47.5 \\ 54.5 \\ 50.8 \\ 54.5 \\ 57.2$

Performance of all channels Channel	(mAP) mAP	Birthday party	Repair appliance	Make sandwich
Motion Static Audio OCR ASR	$\begin{array}{c} 44.65 \\ 33.97 \\ 18.15 \\ 10.85 \\ 8.21 \end{array}$	30.7 25.9 33.3 10.1 3.6	$\begin{array}{c} 42.6 \\ 43.6 \\ 43.3 \\ 32.1 \\ 39.2 \end{array}$	$22.5 \\ 21.5 \\ 11.2 \\ 19.4 \\ 6.7$
Visual=Motion+Static Visual+Audio Visual+OCR Visual+ASR Visual+ASR	$\begin{array}{r} 47.22 \\ 50.41 \\ 48.97 \\ 48.28 \\ 52.28 \end{array}$	$\begin{array}{r} 34.8 \\ 47.7 \\ 35.8 \\ 35.0 \\ 48.4 \end{array}$	47.5 54.5 50.8 54.5 57.2	$27.8 \\ 27.3 \\ 35.7 \\ 28.8 \\ 35.4$

Experimental results

• Example results

rank 1

rank 2

Highest ranked results for the event «horse riding competition»

Experimental results

• Example results

rank 1

rank 2

rank 3

Highest ranked results for the event «tuning a musical instrument»

Recent CNN methods

Two-Stream Convolutional Networks for Action Recognition in Videos [Simonyan and Zisserman NIPS14]

Learning Spatiotemporal Features with 3D Convolutional Networks [Tran et al. ICCV15]

Inception Module (Inc.)

Quo vadis action recognition? A new model and the Kinetics dataset [Carreira et al. CVPR17]

Recent CNN methods

Learning Spatiotemporal Features with 3D Convolutional Networks [Tran et al. ICCV15]

Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results in another volume, preserving temporal information of the input signal.

Recent CNN methods

Quo vadis, action recognition? A new model and the Kinetics dataset [Carreira et al. CVPR17]

Pre-training on the large-scale Kinetics dataset 240k training videos \rightarrow significant performance grain

Overview

- Optical flow
- Video classification
 - Bag of spatio-temporal features
- Action localization
 - Spatio-temporal human localization

Spatio-temporal action localization

Initial approach: space-time sliding window

Spatio-temporal features selection with a cascade [Laptev & Perez, ICCV'07]

Learning to track for spatio-temporal action localization

[Learning to track for spatio-temporal action localization, P. Weinzaepfel, Z. Harchaoui, C. Schmid, ICCV 2015]

Frame-level candidates

- For each frame
 - Compute object proposals: EdgeBoxes [Zitnick et al. 2014]

Frame-level candidates

- For each frame
 - Compute object proposals: EdgeBoxes [Zitnick et al. 2014]
 - Extraction of salient boxes based on edgeness

Frame-level candidates

- For each frame
 - Compute object proposals (EdgeBoxes [Zitnick et al. 2014])
 - Extract CNN features (training similar to R-CNN [Girshicket al. 2014])
 - Score each object proposal

[Gkioxari and Malik'15, Simonyan and Zisserman'14]

Extracting action tubes - tracking

- Tracking an action detection (select highest scoring proposal)
 - Learn an instance-level detector mining negatives in the same frame
 - For each frame:
 - Perform a sliding-window and select the best box according to the class-level detector and the instance-level detector
 - Update instance-level detector

Extracting action tubes

- Start with the highest scored action detection in the video
- Track forward and the backward
- Once tracking is done, delete detections with high overlap
- Restart from the highest scored remaining action detection
- Class-level → robustness to drastic change in poses (Diving, Swinging)
- Instance-level \rightarrow models specific appearance

Rescoring and temporal sliding window

- To capture the dynamics
 - Dense trajectories [Wang et Schmid, ICCV'13]
- Temporal sliding window

Datasets (spatial localization)

	UCF-Sports [Rodriguez et al. 2008]	J-HMDB [Jhuang et al. 2013]
Number of videos	150	928
Number of classes	10	21
Average length	63 frames	34 frames

- UCF-101 [Soomro et al. 2012]
 - ► Spatio-temporal localization for a subset of the dataset
 - ► 3207 videos, 24 classes
 - ► Average length: 176 frames

Experimental results

Impact of the tracker

Detectors in the tracker	mAP			
	UCF-Sports	J-HMDB (split 1)		
instance-level + class-level	95.1%	65.0%		
instance-level	77.5%	61.1%		
class-level	91.0%	60.6%		
Comparison to the state of the art				
Gkioxari & Malik, 15	75.8%	53.3%		

Quantitative evaluation on UCF-101

mAP	0.2	0.3
Ours	46.7	37.8

Spatio-temporal action localization

