#### **Introduction to Neural Networks**

Jakob Verbeek

2017-2018

### **Biological motivation**

- Neuron is basic computational unit of the brain
  - about 10^11 neurons in human brain
- Simplified neuron model as linear threshold unit (McCulloch & Pitts, 1943)
  - Firing rate of electrical spikes modeled as continuous output quantity
  - Connection strength modeled by multiplicative weight
  - Cell activation given by sum of inputs
  - Output is non linear function of activation
- Basic component in neural circuits for complex tasks



### **1957: Rosenblatt's Perceptron**

- Binary classification based on sign of generalized linear function
  - Weight vector w learned using special purpose machines
  - Fixed associative units in first layer, sign activation prevents learning





20x20 pixel sensor



Random wiring of associative units

### **Multi-Layer Perceptron (MLP)**

- Instead of using a generalized linear function, learn the features as well
- Each unit in MLP computes
  - Linear function of features in previous layer
  - Followed by scalar non-linearity
- Do **not** use the "step" non-linear activation function of original perceptron

$$z_{j} = h\left(\sum_{i} x_{i} w_{ij}^{(1)}\right)$$
$$z = h(W^{(1)}x)$$

$$y_{k} = \sigma(\sum_{j} z_{j} w_{jk}^{(2)})$$
$$y = \sigma(W^{(2)} z)$$



### **Multi-Layer Perceptron (MLP)**

- Linear activation function leads to composition of linear functions
  - Remains a linear model, layers just induce a certain factorization
- Two-layer MLP can uniformly approximate any continuous function on a compact input domain to arbitrary accuracy provided the network has a sufficiently large number of hidden units
  - Holds for many non-linearities, but not for polynomials



#### **Feed-forward neural networks**

- MLP Architecture can be generalized
  - More than two layers of computation
  - Skip-connections from previous layers
- Feed-forward nets are restricted to directed acyclic graphs of connections
  - Ensures that output can be computed from the input in a single feedforward pass from the input to the output
- Important issues in practice
  - Designing network architecture
    - Nr nodes, layers, non-linearities, etc
  - Learning the network parameters
    - Non-convex optimization
  - Sufficient training data
    - Data augmentation, synthesis









### Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Most commonly used today

# **ReLU** (Rectified Linear Unit)

#### [Nair & Hinton, 2010]



- Does not saturate: will not "die"
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)

 $f(x) = \max(0.01x, x)$ 

[Mass et al., 2013] [He et al., 2015]



Maxout

 $\max(w_1^T x, w_2^T x)$ 

- Does not saturate: will not "die"
- Computationally efficient
- Maxout networks can implement ReLU networks and vice-versa
- More parameters per node

[Goodfellow et al., 2013]

### **Training feed-forward neural network**

- Non-convex optimization problem in general
  - Typically number of weights is very large (millions in vision applications)
  - Seems that many different local minima exist with similar quality

$$\frac{1}{N}\sum_{i=1}^{N}L(f(x_{i}), y_{i}; W) + \lambda \Omega(W)$$

- Regularization
  - L2 regularization: sum of squares of weights
  - "Drop-out": deactivate random subset of weights in each iteration
    - Similar to using many networks with less weights (shared among them)
- Training using simple gradient descend techniques
  - Stochastic gradient descend for large datasets (large N)
  - Estimate gradient of loss terms by averaging over a relatively small number of samples

#### **Training the network: forward propagation**

- Forward propagation from input nodes to output nodes
  - Accumulate inputs via weighted sum into activation
  - Apply non-linear activation function f to compute output
- Use Pre(j) to denote all nodes feeding into j



$$a_j = \sum_{i \in Pre(j)} w_{ij} x_i$$

 $x_j = f(a_j)$ 

### **Training the network: backward propagation**

• Node activation and output

$$a_{j} = \sum_{i \in Pre(j)} w_{ij} x_{j}$$
$$x_{j} = f(a_{j})$$

• Partial derivative of loss w.r.t. activation

$$g_j = \frac{\partial L}{\partial a_j}$$

• Partial derivative w.r.t. learnable weights

$$\frac{\partial L}{\partial w_{ij}} = \frac{\partial L}{\partial a_j} \frac{\partial a_j}{\partial w_{ij}} = g_j x_i$$

• Gradient of weight matrix between two layers given by outer-product of x and g



#### **Training the network: backward propagation**

- Back-propagation layer-by-layer of gradient from loss to internal nodes
  - Application of chain-rule of derivatives
- Accumulate gradients from downstream nodes
  - Post(i) denotes all nodes that i feeds into
  - Weights propagate gradient back
- Multiply with derivative of local activation function





 $a_j = \sum_{i \in Pre(j)} w_{ij} x_i$ 

$$\frac{\partial L}{\partial x_i} = \sum_{j \in Post(i)} \frac{\partial L}{\partial a_j} \frac{\partial a_j}{\partial x_i}$$
$$= \sum_{j \in Post(i)} g_j w_{ij}$$

$$g_{i} = \frac{\partial x_{i}}{\partial a_{i}} \frac{\partial L}{\partial x_{i}}$$
$$= f'(a_{i}) \sum_{j \in Post(i)} w_{ij} g_{j}$$

### Training the network: forward and backward propagation

• Special case for Rectified Linear Unit (ReLU) activations

f(a) = max(0, a)

• Sub-gradient is step function

 $f'(a) = \begin{cases} 0 & \text{if } a \le 0 \\ 1 & \text{otherwise} \end{cases}$ 

• Sum gradients from downstream nodes

 $g_i = \begin{cases} 0 & \text{if } a_i \leq 0 \\ \sum_{j \in Post(i)} w_{ij} g_j & \text{otherwise} \end{cases}$ 

- Set to zero if in ReLU zero-regime
- Compute sum only for active units
- Gradient on incoming weights is "killed" by inactive units
  - Generates tendency for those units to remain inactive

$$\frac{\partial L}{\partial w_{ij}} = \frac{\partial L}{\partial a_j} \frac{\partial a_j}{\partial w_{ij}} = g_j x_i$$



## **Convolutional Neural Networks**



#### How to represent the image at the network input?



#### Output example: class label

| airplane   | dog   |
|------------|-------|
| automobile | frog  |
| bird       | horse |
| cat        | ship  |
| deer       | truck |

#### Input example : an image

### **Convolutional neural networks**

- A convolutional neural network is a feedforward network where
  - Hidden units are organizes into images or "response maps"
  - Linear mapping from layer to layer is replaced by convolution



### **Convolutional neural networks**

- Local connections: motivation from findings in early vision
  - Simple cells detect local features
  - Complex cells pool simple cells in retinotopic region
- Convolutions: motivated by translation invariance
  - Same processing should be useful in different image regions



**Preview:** ConvNet is a sequence of Convolution Layers, interspersed with activation functions



**Preview:** ConvNet is a sequence of Convolutional Layers, interspersed with activation functions



### The convolution operation



## The convolution operation



### Local connectivity

Fully connected layer as used in MLP



### **Convolutional neural networks**

- Hidden units form another "image" or "response map"
  - Followed by point-wise non-linearity as in MLP
- Both input and output of the convolution can have multiple channels
  - E.g. three channels for an RGB input image
- Sharing of weights across spatial positions decouples the number of parameters from input and representation size
  - Enables training of models for large input images



32x32x3 image



#### 32x32x3 image



### 5x5x3 filter

**Convolve** the filter with the image i.e. "slide over the image spatially, computing dot products"



Filters always extend the full depth of the input volume

**Convolve** the filter with the image i.e. "slide over the image spatially, computing dot products"







For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:



We stack these up to get a "new image" of size 28x28x6!

### Convolution with 1x1 filters makes perfect sense



### Stride



Ν



Output size: (N - F) / stride + 1

e.g. N = 7, F = 3:  
stride 1 => 
$$(7 - 3)/1 + 1 = 5$$
  
stride 2 =>  $(7 - 3)/2 + 1 = 3$   
stride 3 =>  $(7 - 3)/3 + 1 = 2.33$  :\

## (Zero)-Padding





## Zero-Padding: common to the border



e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

#### 7x7 output!

In general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially) e.g. F = 3 => zero pad with 1 F = 5 => zero pad with 2 F = 7 => zero pad with 3

### Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Output volume size: ?



### Input volume: 32x32x3 10 5x5 filters with stride 1, pad 2

Output volume size: (32+2\*2-5)/1+1 = 32 spatially, so 32x32x10



### Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?



Input volume: **32x32x3 10 5x5** filters with stride 1, pad 2





#### Common settings:

Summary. To summarize, the Conv Layer:

- Accepts a volume of size  $W_1 imes H_1 imes D_1$
- Requires four hyperparameters:
  - $\circ$  Number of filters K,
  - $\circ\;$  their spatial extent F ,
  - $\circ\;$  the stride S ,
  - $\circ\;$  the amount of zero padding P.
- Produces a volume of size  $W_2 imes H_2 imes D_2$  where:

• 
$$W_2 = (W_1 - F + 2P)/S + 1$$

K = (powers of 2, e.g. 32, 64, 128, 512)

- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)

•  $H_2 = (H_1 - F + 2P)/S + 1$  (i.e. width and height are computed equally by symmetry) •  $D_2 = K$ 

- With parameter sharing, it introduces F · F · D<sub>1</sub> weights per filter, for a total of (F · F · D<sub>1</sub>) · K weights and K biases.
- In the output volume, the d-th depth slice (of size  $W_2 \times H_2$ ) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

## Pooling



Effect = invariance to small translations of the input

## Pooling

- Makes representation smaller and computationally less expensive
- Operates over each activation map independently



## Summary

#### Common settings:

- Accepts a volume of size  $W_1 imes H_1 imes D_1$
- Requires three hyperparameters:
  - $\circ\;$  their spatial extent F ,
  - $\circ\;$  the stride S ,
- Produces a volume of size  $W_2 imes H_2 imes D_2$  where:
  - $\circ W_2 = (W_1 F)/S + 1$
  - $\circ H_2 = (H_1 F)/S + 1$
  - $\circ \ D_2 = D_1$
- · Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

F = 2, S = 2 F = 3, S = 2

### **Receptive fields**

- "Receptive field" is area in original image impacting a certain unit
  - Later layers can capture more complex patterns over larger areas
- Receptive field size grows linearly over convolutional layers
  - If we use a convolutional filter of size w x w, then each layer the receptive field increases by (w-1)
- Receptive field size increases exponentially over layers with striding
  - Regardless whether they do pooling or convolution



### **Fully connected layers**

- Convolutional and pooling layers typically followed by several "fully connected" (FC) layers, i.e. a standard MLP
  - FC layer connects all units in previous layer to all units in next layer
  - Assembles all local information into global vectorial representation
- FC layers followed by softmax for classification
- First FC layer that connects response map to vector has many parameters
  - Conv layer of size 16x16x256 with following FC layer with 4096 units leads to a connection with 256 million parameters !
  - Large 16x16 filter without padding gives 1x1 sized output map



### **Convolutional neural network architectures**

- LeNet by LeCun et al 1998
- Surprisingly little difference between todays architectures and those of late eighties and nineties
  - Convolutional layers, same
  - Nonlinearities: ReLU dominant now, tanh before
  - Subsampling: more strided convolution now than max/average pooling



Handwritten digit recognition network. LeCun, Bottou, Bengio, Haffner, Proceedings IEEE, 1998

### **Convolutional neural network architectures**

#### Classification: ImageNet Challenge top-5 error



Figure: Kaiming He

#### **Convolutional neural network architectures**

- Recent success with deeper networks
  - 19 layers in Simonyan & Zisserman, ICLR 2015
  - Hundreds of layers in residual networks, He et al. ECCV 2016
- More filters per layer: hundreds to thousands instead of tens
- More parameters: tens or hundreds of millions



#### **Other factors that matter**

- More training data
  - 1.2 millions of 1000 classes in ImageNet challenge
  - 200 million faces in Schroff et al, CVPR 2015
- GPU-based implementations
  - Massively parallel computation of convolutions
  - Krizhevsky & Hinton, 2012: six days of training on two GPUs
  - Rapid progress in GPU compute performance



Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge

### **Understanding convolutional neural network activations**

- Patches generating highest response for a selection of convolutional filters,
  - Showing 9 patches per filter
  - Zeiler and Fergus, ECCV 2014
- Layer 1: simple edges and color detectors



• Layer 2: corners, center-surround, ...



#### **Understanding convolutional neural network activations**

• Layer 3: various object parts



### **Understanding convolutional neural network activations**

• Layer 4+5: selective units for entire objects or large parts of them





### **Convolutional neural networks for other tasks**

Object category localization



• Semantic segmentation



- Assign each pixel to an object or background category
  - Consider running CNN on small image patch to determine its category
  - Train by optimizing per-pixel classification loss
- Similar to SPP-net: want to avoid wasteful computation of convolutional filters
  - Compute convolutional layers once per image
  - Here all local image patches are at the same scale
  - Many more local regions: dense, at every pixel



- Interpret fully connected layers as 1x1 sized convolutions
  - Function of features in previous layer, but only at own position
  - Still same function is applied across all positions
- Five sub-sampling layers reduce the resolution of output map by factor 32



- Idea 1: up-sampling via bi-linear interpolation
  - Gives blurry predictions
- Idea 2: weighted sum of response maps at different resolutions
  - Upsampling of the later and coarser layer
  - Concatenate fine layers and upsampled coarser ones for prediction



### **Upsampling of coarse activation maps**

- Simplest form: use bilinear interpolation or nearest neighbor interpolation
  - Note that these can be seen as upsampling by zero-padding, followed by convolution with specific filters, no channel interactions
- Idea can be generalized by learning the convolutional filter
  - No need to hand-pick the interpolation scheme
  - Can include channel interactions, if those turn out be useful



- Resolution-increasing counterpart of strided convolution
  - Average and max pooling can be written in terms of convolutions
  - See: "Convolutional Neural Fabrics", Saxena & Verbeek, NIPS 2016.

- Results obtained at different resolutions
  - Detail better preserved at finer resolutions

