Fisher Vector image representation

Machine Learning and Object Recognition 2017-2018

Jakob Verbeek
A brief recap on kernel methods

- A way to achieve non-linear classification by using a kernel that computes inner products of data after non-linear transformation.
 - Given the transformation, we can derive the kernel function.

- Conversely, if a kernel is positive definite, it is known to compute a dot-product in a (not necessarily finite dimensional) feature space.
 - Given the kernel, we can determine the feature mapping function.

\[k(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle \]

\[\Phi: x \rightarrow \phi(x) \]
A brief recap on kernel methods

- So far, we considered starting with data in a vector space, and mapping it into another vector space to facilitate linear classification.

- Kernels can also be used to represent non-vectorial data, and to make them amenable to linear classification (or other linear data analysis) techniques.

- For example, suppose we want to classify sets of points in a vector space, where the size of each set may vary.

 \[X = \{ x_1, x_2, \ldots, x_N \} \text{ with } x_i \in \mathbb{R}^d \]

- We can, for example, define a representation of sets by concatenating the mean and variance of the set in each dimension:

 \[\phi(X) = \begin{pmatrix} \text{mean}(X) \\ \text{var}(X) \end{pmatrix} \]

 - Fixed size representation of sets in 2d dimensions
 - Use kernel to compare different sets:

 \[k(X_1, X_2) = \langle \phi(X_1), \phi(X_2) \rangle \]
Fisher kernels

- Motivated by the need to represent variably sized objects in a vector space, such as sequences, sets, trees, graphs, etc., such that they become amenable to be used with linear classifiers, and other data analysis tools.

- A generic method to define kernels over arbitrary data types based on statistical model of the items we want to represent:
 \[p(x; \theta), \quad x \in X, \quad \theta \in \mathbb{R}^D \]

- Parameters and/or structure of the model \(p(x) \) estimated from data:
 - Typically in unsupervised manner.

- Automatic data-driven configuration of kernel instead of manual design:
 - Kernel typically used for supervised task.

Fisher kernels

- Given a generative data model \(p(x; \theta), \ x \in X, \ \theta \in \mathbb{R}^D \)
- Data representation with gradient of the data log-likelihood, or “Fisher score”

\[
g(x) = \nabla_\theta \ln p(x), \quad g(x) \in \mathbb{R}^D
\]

- Define a kernel over \(X \) by taking the scaled inner product between the Fisher score vectors:

\[
k(x, y) = g(x)^T F^{-1} g(y)
\]

- Where \(F \) is the Fisher information matrix \(F \):

\[
F = E_{p(x)} [g(x)g(x)^T]
\]

- \(F \) is positive definite since

\[
\alpha^T F \alpha = E_{p(x)} [(g(x)^T \alpha)^2] > 0
\]
Fisher vector

- Since \(F \) is positive definite we can decompose its inverse as

\[
F^{-1} = L^T L
\]

- Therefore, we can write the kernel as

\[
k(x_i, x_j) = g(x_i)^T F^{-1} g(x_j) = \phi(x_i)^T \phi(x_j)
\]

 Where \(\phi \) is known as the **Fisher vector**

\[
\phi(x_i) = L g(x_i)
\]

- From this explicit finite-dimensional data embedding it follows immediately that the Fisher kernel is a positive-semidefinite

- Since \(F \) is covariance of Fisher score, normalization by \(L \) makes the Fisher vector have unit covariance matrix under \(p(x) \)
Normalization with inverse Fisher information matrix

- Gradient of log-likelihood w.r.t. parameters \(g(x) = \nabla_\theta \ln p(x) \)
- Fisher information matrix \(F_\theta = \int g(x) g(x)^T p(x) \, dx \)
- Normalized Fisher kernel \(k(x_1, x_2) = g(x_1)^T F_\theta^{-1} g(x_2) \)
 - Renders Fisher kernel invariant for parametrization
- Consider different parametrization given by some invertible function \(\lambda = f(\theta) \)
- Jacobian matrix relating the parametrizations \([J]_{ij} = \frac{\partial \theta_j}{\partial \lambda_i} \)
- Gradient of log-likelihood w.r.t. new parameters, via chainrule \(h(x) = \nabla_\lambda \ln p(x) = J \nabla_\theta \ln p(x) = J g(x) \)
- Fisher information matrix \(F_\lambda = \int h(x) h(x)^T p(x) \, dx = J F_\theta J^T \)
- Normalized Fisher kernel \(h(x_1)^T F_\lambda^{-1} h(x_2) = g(x_1)^T J^T (JF_\theta J^T)^{-1} J g(x_2) \)
 \[= g(x_1)^T J^T J^{-T} F_\theta^{-1} J^{-1} J g(x_2) \]
 \[= g(x_1)^T F_\theta^{-1} g(x_2) \]
Suppose we make use of generative model for classification via Bayes' rule

\[p(y|x) = p(x|y)p(y)/p(x), \]
\[p(x) = \sum_{k=1}^{K} p(y=k)p(x|y=k) \]

and

\[p(x|y) = p(x; \theta_y), \]
\[p(y=k) = \pi_k = \frac{\exp(\alpha_k)}{\sum_{k'=1}^{K} \exp(\alpha_{k'})} \]

Classification with the Fisher kernel obtained using the marginal distribution \(p(x) \) is at least as powerful as classification with Bayes' rule.

This becomes useful when the class conditional models are poorly estimated, either due to bias or variance type of errors.

In practice often used without class-conditional models, but direct generative model for the marginal distribution on \(X \).
Fisher kernels – relation to generative classification

- Consider the Fisher score vector with respect to the marginal distribution on X

\[\nabla_\theta \ln p(x) = \frac{1}{p(x)} \nabla_\theta \sum_{k=1}^{K} p(x, y=k) \]

\[= \frac{1}{p(x)} \sum_{k=1}^{K} p(x, y=k) \nabla_\theta \ln p(x, y=k) \]

\[= \sum_{k=1}^{K} p(y=k|x) [\nabla_\theta \ln p(y=k) + \nabla_\theta \ln p(x|y=k)] \]

- In particular for the alpha that model the class prior probabilities we have

\[\frac{\partial \ln p(x)}{\partial \alpha_k} = p(y=k|x) - \pi_k \]
Fisher kernels – relation to generative classification

\[\frac{\partial \ln p(x)}{\partial \alpha_k} = p(y=k|x) - \pi_k \]

\[g(x) = \nabla_\theta \ln p(x) = \left(\frac{\partial \ln p(x)}{\partial \alpha_1}, ..., \frac{\partial \ln p(x)}{\partial \alpha_K}, ... \right) \]

- Consider discriminative multi-class classifier.
- Let the weight vector for the k-th class to be zero, except for the position that corresponds to the alpha of the k-th class where it is one. And let the bias term for the k-th class be equal to the prior probability of that class.
- Then \(f_k(x) = w_k^T g(x) + b_k = p(y=k|x) \)
 and thus \(\text{argmax}_k f_k(x) = \text{argmax}_k p(y=k|x) \)
- Thus the Fisher kernel based classifier can implement classification via Bayes' rule, and generalizes it to other classification functions.
Fisher vector GMM image representation: Motivation

• Suppose we want to refine a given visual vocabulary to obtain a richer image representation

• Bag-of-word histogram stores # patches assigned to each word
 – Need more words to refine the representation
 – But this directly increases the computational cost
 – And leads to many empty bins: redundancy
Fisher vector representation in a nutshell

- Fisher Vector derived from Gaussian mixture also records the mean and variance of the points per dimension in each cell
 - More information for same # visual words
 - Does not increase computational time significantly
 - Leads to high-dimensional feature vectors

- Even when the counts are the same, the position and variance of the points in the cell can vary
Application of FV for Gaussian mixture model of local features

- Gaussian mixture models for local image descriptors
 - [Perronnin & Dance, CVPR 2007]
 - State-of-the-art feature pooling for image/video classification/retrieval

- Offline: Train k-component GMM on collection of local features
 \[p(x) = \sum_{k=1}^{K} \pi_k N(x; \mu_k, \sigma_k) \]

- Each mixture component corresponds to a visual word
 - Parameters of each component: mean, variance, mixing weight
 - We use diagonal covariance matrix for simplicity
 - Coordinates assumed independent, per Gaussian
Application of FV for Gaussian mixture model of local features

- Representation: gradient of data log-likelihood

- For the means and variances we have:

\[
F^{-1/2} \nabla_{\mu_k} \ln p(x_{1:N}) = \frac{1}{\sqrt{\pi_k}} \sum_{n=1}^{N} p(k|x_n) \frac{(x_n - \mu_k)}{\sigma_k}
\]

\[
F^{-1/2} \nabla_{\sigma_k} \ln p(x_{1:N}) = \frac{1}{\sqrt{2 \pi_k}} \sum_{n=1}^{N} p(k|x_n) \left\{ \frac{(x_n - \mu_k)^2}{\sigma_k^2} - 1 \right\}
\]

- Soft-assignments given by component posteriors

\[
p(k|x_n) = \frac{\pi_k N(x_n; \mu_k, \sigma_k)}{p(x_n)}
\]
Image representation using Fisher kernels

- **Data representation**

 \[G(X, \Theta) = F^{-1/2} \left(\frac{\partial L}{\partial \alpha_1}, \ldots, \frac{\partial L}{\partial \alpha_K}, \nabla_{\mu_1} L, \ldots, \nabla_{\mu_K} L, \nabla_{\sigma_1} L, \ldots, \nabla_{\sigma_K} L \right)^T \]

- In total \(K(1+2D) \) dimensional representation, since for each visual word / Gaussian we have
 - Mixing weight (1 scalar)
 - Mean (D dimensions)
 - Variances (D dimensions, since single variance per dimension)

- Gradient with respect to mixing weights often dropped in practice since it adds little discriminative information for classification.
 - Results in \(2KD \) dimensional image descriptor
Illustration of gradient w.r.t. means of Gaussians
Fisher vectors: classification performance VOC'07

• Fisher vector representation yields better performance for a given number of Gaussians / visual words than Bag-of-words.

• For a fixed dimensionality Fisher vectors perform better, and are more efficient to compute.
Normalization of the Fisher vector

- Inverse Fisher information matrix F
 - Renders FV invariant for re-parametrization
 - Linear projection, analytical approximation for MoG gives diagonal matrix
 [Jaakkola, Haussler, NIPS 1999], [Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

- Power-normalization, applied independently per dimension
 - Renders Fisher vector less sparse (typically $\rho=0.5$)
 $f(x) \leftarrow \text{sign}(f(x)) |f(x)|^\rho$
 [Perronnin, Sanchez, Mensink, ECCV'10]
 - Corrects for poor independence assumption on local descriptors
 [Cinbis, Verbeek, Schmid, PAMI'15]

- L2-normalization
 - Makes representation invariant to number of local features
 - Among other Lp norms the most effective with linear classifier
 [Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

\[
F = E[g(x)g(x)^T] = \frac{1}{2} g(x)
\]

\[
f(x) = F^{-1/2} g(x)
\]

\[
f(x) \leftarrow \text{sign}(f(x)) |f(x)|^\rho
\]

\[
f(x) \leftarrow \frac{f(x)}{\sqrt{f(x)^T f(x)}}
\]
Effect of power and L2 normalization in practice

- Classification results on the PASCAL VOC 2007 benchmark dataset.
- Regular dense sampling of local SIFT descriptors in the image
 - PCA projected to 64 dimensions to de-correlate and compress
- Using mixture of 256 Gaussians over the SIFT descriptors
 - FV dimensionality: 2*64*256 = 32 * 1024

<table>
<thead>
<tr>
<th>Power Normalization</th>
<th>L2 normalization</th>
<th>Performance (mAP)</th>
<th>Improvement over baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>51.5</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>59.8</td>
<td>8.3</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>57.3</td>
<td>5.8</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>61.8</td>
<td>10.3</td>
</tr>
</tbody>
</table>
PCA dimension reduction of local descriptors

- We use diagonal covariance model in GMM for simplicity and efficiency
- But dimensions might be correlated
- Apply PCA projection to
 - De-correlate features
 - Reduce dimension of final FV
- FV with 256 Gaussians over local SIFT descriptors of dimension 128

Results on PASCAL VOC’07:
Bag-of-words vs. Fisher vector representation

- Bag-of-words image representation
 - k-means clustering
 - histogram of visual word counts, K dimensions

- Fisher vector image representation
 - GMM clustering
 - Local first and second order moments, 2KD dimensions

- For a given dimension of the representation
 - FV needs less clusters, and is faster to compute
 - FV gives better performance since it is a smoother function of the local descriptors.

- Review article on Fisher Vector image representation
 Image Classification with the Fisher Vector: Theory and Practice
 Sanchez, Perronnin, Mensink, Verbeek
 International Journal of Computer Vision, 2013