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Clustering

 Finding a group structure in the data

– Data in one cluster similar to each other

– Data in different clusters dissimilar

 Maps each data point to a discrete cluster index in {1, ... , K}
► “Flat” methods: do not suppose any structure among the clusters
► “Hierarchical” methods: tree structure of groupings



Hierarchical Clustering

 Data set is organized into a tree structure
► Various level of granularity can be obtained by cutting-off the tree 

 Top-down construction

– Start all data in one cluster: root node

– Apply “flat” clustering into K groups

– Recursively cluster the data in each group

 Bottom-up construction

– Start with all points in separate cluster

– Recursively merge nearest clusters

– Distance between clusters A and B
• E.g. min, max, or mean distance 

between elements in A and B



Feature clustering in Bag-Of-Words image representation

● Inspired from bag-of-word document representation
● Vector of word counts in document

● Treat local image descriptors as the “words” 

1) Sample local image patches, either using 
► Interest point detectors (most useful for retrieval)
► Dense regular sampling grid (most useful for classification)

2) Compute descriptors of these regions
► For example SIFT descriptors



Bag-of-words image representation in a nutshell

3) Aggregate the local descriptor statistics into bag-of-word histogram
► Local descriptors are continuous, need to be discretized
► Map each local descriptor to one of K clusters, a.k.a. “visual words”
► Use K-dimensional histogram of visual word counts to represent image

4) Process images based on this representation
► Classification, Retrieval, etc.
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Airplanes

Motorbikes

Faces

Wild Cats

Leafs

People

Bikes

Example visual words found by k-means clustering



Clustering descriptors into visual words

 Off-line clustering: Find groups of similar local descriptors
► Quantization of descriptor space
► Using many descriptors from many training images

 Encoding new images
– Detect local regions
– Compute local descriptors
– Count descriptors in each quantization cell

[5, 2, 3] [3, 6, 1]



k-means clustering

 Given: data set of N points xn, n=1,…,N

 Goal: find K cluster centers mk, k=1,…,K

    that minimize the squared distance to nearest cluster centers

 Clustering = assignment of data points cluster centers

– Indicator variables rnk=1 if xn assgined to mk, rnk=0 otherwise

 Error criterion equals sum of squared distances between each data point 
and assigned cluster center, if assigned to the nearest cluster

E ({mk}k=1
K )=∑n=1

N

∑k=1

K
rnk∥xn−mk∥

2

E ({mk}k=1
K )=∑n=1

N
mink∈{1,... ,K }∥xn−mk∥

2



Examples of k-means clustering

 Data uniformly sampled in unit square

 k-means with 5, 10, 15, and 25 centers



Minimizing the error function

• Goal find centers mk to minimize the error function

• Any set of assignments, not just assignment to closest centers, 

gives an upper-bound on the error:

• The k-means algorithm iteratively minimizes this bound
1) Initialize cluster centers, eg. on randomly selected data points
2) Update assignments rnk for fixed centers mk 

3) Update centers mk for fixed data assignments rnk

4) If cluster centers changed: return to step 2
5) Return cluster centers

E ({mk }k=1
K )=∑n=1

N
mink∈{1,. .. , K }∥xn−mk∥

2

E({mk}k=1
K

)≤F ({mk}, {r nk })=∑n=1

N

∑k=1

K
rnk‖xn−mk‖

2



Minimizing the error bound

• Update assignments rnk for fixed centers mk 

• Constraint: exactly one rnk=1, rest zero

• Decouples over the data points
• Solution: assign to closest center

F ({mk },{rnk })=∑n=1

N

∑k=1

K
rnk‖xn−mk‖

2

∑k
rnk‖xn−mk‖

2



Minimizing the error bound

• Update centers mk for fixed assignments rnk 

• Decouples over the centers
• Set derivative to zero
• Put center at mean of assigned data points

mk=
∑n

r nk xn

∑n
r nk

∑n
rnk∥xn−mk∥

2

∂ F
∂mk

=2∑n
r nk(xn−mk)=0

F ({mk },{rnk })=∑n=1

N

∑k=1

K
rnk∥xn−mk∥

2



Examples of k-means clustering

 Several k-means iterations with two centers

Error function



Minimizing the error function

• K-means iteratively minimizes error bound F in centers and assignments

• K-means iterations monotonically decrease error function E since
– Both steps reduce the error bound
– Error bound matches true error after update of the assignments
– Since finite nr. of assignments, algorithm converges to local minimum

Bound #1
Bound #2

True error

Placement of centers
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Minimum of bound #1

E({mk}k=1
K

)≤F ({mk}, {rnk })=∑n=1

N

∑k=1

K
r nk∥xn−mk∥

2



Limitations k-means clustering

 Results depend on initialization
► Run with different initializations
► Keep result with lowest error



Limitations k-means clustering

 Assignment of data to clusters is only based on the distance to center
– No representation of the shape of the cluster
– Euclidean distance implicitly assumes spherical cluster shape



Clustering with Gaussian mixture density

 Each cluster represented by Gaussian density

– Parameters: center m, covariance matrix C

– Covariance matrix encodes spread around center, 

can be interpreted as defining a non-isotropic distance around center

Two Gaussians in 1 dimension A Gaussian in 2 dimensions



Clustering with Gaussian mixture density

 Each cluster represented by Gaussian density

– Parameters: center m, covariance matrix C

– Covariance matrix encodes spread around center, 

can be interpreted as defining a non-isotropic distance around center

Determinant of
covariance matrix C Quadratic function of

point x and mean m
Mahanalobis distance

N (x∣m ,C )=(2π)
−d /2

|C|
−1 /2 exp(−1

2
(x−m)

T C−1
(x−m))

 Definition of Gaussian density in d dimensions



Mixture of Gaussian (MoG) density

 Mixture density is weighted sum of Gaussian densities

– Mixing weight: importance of each cluster

 Density has to integrate to 1, so we require

p (x )=∑k=1

K
πk N (x∣mk , C k)

πk≥0

∑k=1

K
πk=1

Mixture in 1 dimension Mixture in 2 dimensions

What is wrong with this picture ?!



Sampling data from a MoG distribution

 Let z indicate cluster index
 Sample both z and x from joint distribution

– Select z=k with probability given by mixing weight

– Sample x from the k-th Gaussian

● MoG recovered if we marginalize over the unknown cluster index

p(x )=∑k
p( z=k) p(x∣z=k )=∑k

πk N (x∣mk ,Ck)

p(z=k )=πk

p(x∣z=k )=N ( x∣mk ,Ck)

Color coded model and data of each cluster Mixture model and data from it



Soft assignment of data points to clusters

 Given data point x, infer latent underlying cluster index z

p(z=k∣x )=
p( z=k) p(x∣z=k )

∑k
p (z=k ) p( x∣z=k )

=
πk N (x∣mk ,C k )

∑k
πk N (x∣mk ,C k)

MoG model Data Color-coded
soft-assignments



Clustering with Gaussian mixture density

 Given: data set of N points xn, n=1,…,N

 Find mixture of Gaussians (MoG) that best explains data
► Maximize data log-likelihood w.r.t. parameters of MoG
► Assuming data drawn independently from MoG

 EM algorithm to learn MoG similar to k-means 

– Also an iterative algorithm to find parameters
– Also sensitive to initialization of parameters

L(θ)=∑n=1

N
log p(xn;θ)

θ={π k ,mk ,Ck }k=1
K



Maximum likelihood estimation of single Gaussian

 Given data points xn, n=1,…,N

 Maximize data log-likelihood

 Set derivative of data log-likelihood w.r.t. parameters to zero

 Parameters set as data covariance and mean

L(θ)=∑n=1

N
log p (xn)=∑n=1

N
log N ( xn∣m,C)

∂L(θ)

∂C−1
=∑n=1

N

( 1
2
C−

1
2
(xn−m)( xn−m)

T)=0

C=
1
N
∑n=1

N
( xn−m)(xn−m)

T

∂ L(θ)

∂m
=C−1∑n=1

N

(xn−m )=0

m=
1
N
∑n=1

N
xn

=∑n=1

N

(−d
2

log π−
1
2

log∣C∣−
1
2
(xn−m)T C−1(xn−m))



Maximum likelihood estimation of MoG

 No closed form equations for MoG
 Use EM algorithm

– Initialize MoG parameters 

– E-step: soft assign of data points to clusters
– M-step: update the mixture parameters 
– Repeat EM steps, terminate if converged 

• Convergence: of parameters, assignments, log-likelihood

 E-step: compute soft-assignments: 
 M-step: update Gaussians from weighted data points

πk=
1
N
∑n=1

N
qnk

mk=
1

N πk
∑n=1

N
qnk xn

Ck=
1

N πk
∑n=1

N
qnk (xn−mk)(xn−mk )

T

qnk=p( z=k∣xn)



Maximum likelihood estimation of MoG

 Example of several EM iterations



EM algorithm as iterative bound optimization

 EM algorithm is an iterative bound optimization algorithm, like k-means
– Goal: Maximize data log-likelihood, can not be done in closed form

– Solution: iteratively maximize (easier) bound on the log-likelihood

 Bound uses two information theoretic quantities
– Entropy
– Kullback-Leibler divergence

L(θ)=∑n=1

N
log p(xn)=∑n=1

N
log∑k=1

K
π k N (xn∣mk ,Ck)



Entropy of a distribution

 Entropy captures uncertainty in a distribution
– Maximum for uniform distribution
– Minimum, zero, for delta peak on single value

H (q)=−∑k=1

K
q( z=k )log q( z=k )

Low entropy distribution High entropy distribution



Entropy of a distribution

 Connection to information coding (Noiseless coding theorem, Shannon 1948)
► Frequent messages short code, rare messages long code
► optimal code length is (at least) -log q bits
► Entropy: expected (optimal) code length per message

 Suppose uniform distribution over 8 outcomes: 3 bit code words
 Suppose distribution: 1/2,1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64, entropy 2 bits!

► Code words: 0, 10, 110, 1110, 111100, 111101,111110,111111
 Codewords are “self-delimiting”: 

► Do not need a “space” symbol to separate codewords in a string
► If first zero is encountered after 4 symbols or less, then stop. Otherwise, 

code is of length 6.

H (q)=−∑k=1

K
q( z=k )log q( z=k )



Kullback-Leibler divergence

 Asymmetric dissimilarity between distributions
– Minimum: zero, if distributions are equal
– Maximum: infinity, if p has a zero in support of q 

 Interpretation in coding theory
► Sub-optimality when messages distributed according to q, 

but using codeword lengths derived from p 
► Difference of expected code lengths

– Suppose distribution q: 1/2,1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64
– Coding with p: uniform over the 8 outcomes 
– Cross-entropy: 3 bits
– Optimal expected code length, entropy H(q) = 2 bits
– KL divergence D(q|p) = 1 bit

D (q∥p)=∑k=1

K
q( z=k ) log

q( z=k )

p( z=k )

D (q∥p)=−∑k=1

K
q (z=k ) log p (z=k )−H (q )≥0

Cross-entropy



EM bound on MoG log-likelihood

 We want to bound the log-likelihood of a Gaussian mixture  

 Bound log-likelihood by subtracting KL divergence D(q(z) || p(z|x))
► Inequality follows immediately from non-negativity of KL

► p(z|x) true posterior distribution on cluster assignment 
► q(z) an arbitrary distribution over cluster assignment (similar to 

assignments used in k-means algorithm)

 Sum per-datapoint bounds to bound the log-likelihood of a data set:

ln p(x)=ln∑k=1

K

πk N (x ;mk ,C k)

F (θ , q)=log p(x ;θ)−D (q(z)∥p(z∣x ,θ))≤log p(x ;θ)

F (θ , {qn})=∑n=1

N
log p(xn ;θ)−D (qn(z)∥p(z∣xn ,θ))≤∑n=1

N
log p(xn ;θ)



Maximizing the EM bound on log-likelihood

 E-step: 
► fix model parameters, 
► update distributions qn  to maximize the bound

► KL divergence zero if distributions are equal
► Thus set qn(zn) = p(zn|xn)

► After updating the qn the bound equals the true log-likelihood

F (θ , {qn})=∑n=1

N

[ log p (xn)−D (qn( zn)∥p (zn∣xn)) ]



Maximizing the EM bound on log-likelihood

 M-step: 
► fix the soft-assignments qn, 

► update model parameters

 Terms for each Gaussian decoupled from rest 

F (θ , {qn})=∑n=1

N

[ log p (xn)−D (qn( zn)∥p (zn∣xn)) ]

=∑n=1

N

[ log p ( xn)−∑k
qnk ( log qnk−log p (zn=k∣xn)) ]

=∑n=1

N

[H (qn)+ ∑k
qnk log p (zn=k , xn)]

=∑n=1

N

[H (qn)+ ∑k
qnk ( logπk+ log N (xn ;mk ,Ck)) ]

=∑k=1

K

∑n=1

N
qnk ( log πk+ log N (xn ;mk ,Ck ))+∑n=1

N
H (qn)



Maximizing the EM bound on log-likelihood

 Derive the optimal values for the mixing weights

– Maximize 

– Take into account that weights sum to one, define

– Set derivative for mixing weight j >1 to zero

π1=1−∑k=2

K
πk

∑n=1

N

∑k=1

K
qnk logπk

∂

∂π j
∑n=1

N

∑k=1

K
qnk logπk=

∑n=1

N
qnj

π j
−
∑n=1

N
qn1

π1
=0

∑n=1

N
qnj

π j
=
∑n=1

N
qn1

π1

π1∑n=1

N
qnj=π j∑n=1

N
qn1

π1∑n=1

N

∑ j=2

K
qnj=∑ j=2

K
π j∑n

qn1

π j=
1
N
∑n=1

N
qnj

π1 N=∑n=1

N
qn1



Maximizing the EM bound on log-likelihood

 Derive the optimal values for the MoG parameters

– For each Gaussian maximize

– Compute gradients and set to zero to find optimal parameters 
∑n

qnk log N (xn ;mk ,C k )

log N (x ;m ,C )=
d
2

log(2π)−
1
2

log∣C∣−
1
2
(x n−m)T C−1(x n−m)

∂
∂m

log N (x ;m ,C )=C−1
(x−m)

∂

∂C−1
log N (x ;m ,C )=

1
2
C−

1
2
(x−m)(x−m)T

mk=
∑n

qnk xn

∑n
qnk

C k=
∑n

qnk (xn−m)(xn−m)T

∑n
qnk



F (θ , {qn})=∑n=1

N

[ log p (xn)−D (qn( zn)∥p (zn∣xn)) ]

EM bound on log-likelihood

 L is bound on data log-likelihood for auxiliary distribution q

 Iterative coordinate ascent on F
– E-step optimize q, makes bound tight
– M-step optimize parameters

F (θ , {qn})
F (θ , {qn})

F (θ , {qn})

F (θ , {qn})



Clustering with k-means and MoG

 Assignment:
► K-means: hard assignment, discontinuity at cluster border
► MoG: soft assignment according to posterior p(z|x)

 Cluster representation
– K-means: center only
– MoG: center, covariance matrix, mixing weight

 If mixing weights are equal and

all covariance matrices are constrained to be                 and 

then EM algorithm = k-means algorithm

 For both k-means and MoG clustering
► Number of clusters needs to be fixed in advance
► Results depend on initialization, no optimal learning algorithms
► Can be generalized to other types of distances or densities

C k=ϵ I ϵ→ 0



Reading material

 Questions to expect on exam: 
► Describe objective function for one of these methods
► Derive some of the update equations for the model parameters
► Derive k-means as special case of MoG clustering

 More details on k-means and mixture of Gaussian learning with EM
► Pattern Recognition and Machine Learning, 

Chapter 9

Chris Bishop, 2006, Springer

► R. Neal and G. Hinton

A view of the EM algorithm that justifies incremental, sparse, and other 
variants 

In “Learning in Graphical Models”, Kluwer, 1998, 355-368
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