Clustering with k-means and Gaussian mixture distributions

Machine Learning and Object Recognition 2017-2018 Jakob Verbeek

Clustering

- Finding a group structure in the data
 - Data in one cluster similar to each other
 - Data in different clusters dissimilar
- Maps each data point to a discrete cluster index in {1, ... , K}
 - "Flat" methods: do not suppose any structure among the clusters
 - "Hierarchical" methods: tree structure of groupings

Hierarchical Clustering

- Data set is organized into a tree structure
 - Various level of granularity can be obtained by cutting-off the tree
- Top-down construction
 - Start all data in one cluster: root node
 - Apply "flat" clustering into K groups
 - Recursively cluster the data in each group
- Bottom-up construction
 - Start with all points in separate cluster
 - Recursively merge nearest clusters
 - Distance between clusters A and B
 - E.g. min, max, or mean distance between elements in A and B

Feature clustering in Bag-Of-Words image representation

- Inspired from bag-of-word document representation
 - Vector of word counts in document
- Treat local image descriptors as the "words"
- 1) Sample local image patches, either using
 - Interest point detectors (most useful for retrieval)
 - Dense regular sampling grid (most useful for classification)
- 2) Compute descriptors of these regions
 - For example SIFT descriptors

Bag-of-words image representation in a nutshell

- 3) Aggregate the local descriptor statistics into bag-of-word histogram
 - Local descriptors are continuous, need to be discretized
 - Map each local descriptor to one of K clusters, a.k.a. "visual words"
 - Use K-dimensional histogram of visual word counts to represent image
- 4) Process images based on this representation
 - Classification, Retrieval, etc.

Example visual words found by k-means clustering

Clustering descriptors into visual words

- **Off-line clustering**: Find groups of similar local descriptors
 - Quantization of descriptor space
 - Using many descriptors from many training images

• Encoding new images

- Detect local regions
- Compute local descriptors
- Count descriptors in each quantization cell

k-means clustering

• Given: data set of N points x_n , n=1,...,N

 Goal: find K cluster centers m_k, k=1,...,K that minimize the squared distance to nearest cluster centers

$$E(\{m_k\}_{k=1}^{K}) = \sum_{n=1}^{N} \min_{k \in \{1, \dots, K\}} ||x_n - m_k||^2$$

- **Clustering = assignment** of data points cluster centers
 - Indicator variables $r_{nk}=1$ if x_n assgined to m_k , $r_{nk}=0$ otherwise
- Error criterion equals sum of squared distances between each data point and assigned cluster center, if assigned to the nearest cluster

$$E(\{m_k\}_{k=1}^{K}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - m_k||^2$$

Examples of k-means clustering

0.4 0.5 0.6 0.7 0.8 0.9

#

0.4 0.5 0.6 0.7 0.8 0.9

#

#

#

- Data uniformly sampled in unit square
- k-means with 5, 10, 15, and 25 centers

informatics mathematics

Minimizing the error function

- Goal find centers m_k to minimize the error function $E(\{m_k\}_{k=1}^K) = \sum_{n=1}^N \min_{k \in \{1, \dots, K\}} ||x_n - m_k||^2$
- Any set of assignments, not just assignment to closest centers, gives an upper-bound on the error:

$$E(\{m_k\}_{k=1}^{K}) \leq F(\{m_k\},\{r_{nk}\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - m_k||^2$$

- The **k-means algorithm** iteratively minimizes this bound
 - 1) Initialize cluster centers, eg. on randomly selected data points
 - **2)** Update assignments r_{nk} for fixed centers m_k
 - 3) Update centers m_k for fixed data assignments r_{nk}
 - 4) If cluster centers changed: return to step 2
 - 5) Return cluster centers

Minimizing the error bound

$$F(\{m_k\},\{r_{nk}\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - m_k||^2$$

- Update assignments r_{nk} for fixed centers m_k
 - Constraint: exactly one r_{nk}=1, rest zero
 - Decouples over the data points
 - Solution: assign to closest center

$$\sum_{k} r_{nk} \|x_n - m_k\|^2$$

Minimizing the error bound

$$F(\{m_k\},\{r_{nk}\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - m_k||^2$$

- Update centers m_k for fixed assignments r_{nk}
 - Decouples over the centers
 - Set derivative to zero
 - Put center at mean of assigned data points

$$\frac{\partial F}{\partial m_k} = 2\sum_n r_{nk} (x_n - m_k) = 0$$
$$m_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}$$

$$\sum_{n} r_{nk} \|x_n - m_k\|^2$$

Examples of k-means clustering

• Several k-means iterations with two centers

Minimizing the error function

• K-means iteratively minimizes error bound F in centers and assignments

$$E(\{m_k\}_{k=1}^{K}) \leq F(\{m_k\},\{r_{nk}\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - m_k||^2$$

- K-means iterations monotonically decrease error function E since
 - Both steps reduce the error bound
 - Error bound matches true error after update of the assignments
 - Since finite nr. of assignments, algorithm converges to local minimum

Limitations k-means clustering

- Results depend on initialization
 - Run with different initializations
 - Keep result with lowest error

informatics mathe

Limitations k-means clustering

- Assignment of data to clusters is only based on the distance to center
 - No representation of the shape of the cluster
 - Euclidean distance implicitly assumes spherical cluster shape

Clustering with Gaussian mixture density

- Each cluster represented by Gaussian density
 - Parameters: center m, covariance matrix C
 - Covariance matrix encodes spread around center, can be interpreted as defining a non-isotropic distance around center

Clustering with Gaussian mixture density

- Each cluster represented by Gaussian density
 - Parameters: center m, covariance matrix C
 - Covariance matrix encodes spread around center,
 can be interpreted as defining a non-isotropic distance around center

• Definition of Gaussian density in d dimensions

$$N(x|m,C) = (2\pi)^{-d/2} |C|^{-1/2} \exp\left(-\frac{1}{2}(x-m)^T C^{-1}(x-m)\right)$$
Determinant of
covariance matrix C
Quadratic function of
point x and mean m
Mahanalobis distance

Mixture of Gaussian (MoG) density

- Mixture density is weighted sum of Gaussian densities
 - Mixing weight: importance of each cluster

$$p(x) = \sum_{k=1}^{K} \pi_k N(x|m_k, C_k)$$

• Density has to integrate to 1, so we require

$$\pi_k \ge 0$$
$$\sum_{k=1}^{K} \pi_k = 1$$

Sampling data from a MoG distribution

- Let z indicate cluster index
- Sample both z and x from joint distribution
 - Select z=k with probability given by mixing weight $p(z\!=\!k)\!=\!\pi_k$
 - Sample x from the k-th Gaussian $p(x|z=k)=N(x|m_k,C_k)$
- MoG recovered if we marginalize over the unknown cluster index

$$p(x) = \sum_{k} p(z=k) p(x|z=k) = \sum_{k} \pi_{k} N(x|m_{k}, C_{k})$$

Mixture model and data from it

0.5

0

(b)

0

0.5

1

Soft assignment of data points to clusters

• Given data point x, infer latent underlying cluster index z

$$p(z=k|x) = \frac{p(z=k) p(x|z=k)}{\sum_{k} p(z=k) p(x|z=k)} = \frac{\pi_{k} N(x|m_{k}, C_{k})}{\sum_{k} \pi_{k} N(x|m_{k}, C_{k})}$$

Clustering with Gaussian mixture density

- Given: data set of N points x_n , n=1,...,N
- Find mixture of Gaussians (MoG) that best explains data
 - Maximize data log-likelihood w.r.t. parameters of MoG
 - Assuming data drawn independently from MoG

$$L(\theta) = \sum_{n=1}^{N} \log p(x_n; \theta)$$
$$\theta = \{\pi_k, m_k, C_k\}_{k=1}^{K}$$

- EM algorithm to learn MoG similar to k-means
 - Also an iterative algorithm to find parameters
 - Also sensitive to initialization of parameters

Maximum likelihood estimation of single Gaussian

- Given data points x_n , n=1,...,N
- Maximize data log-likelihood

$$L(\theta) = \sum_{n=1}^{N} \log p(x_n) = \sum_{n=1}^{N} \log N(x_n | m, C)$$

= $\sum_{n=1}^{N} \left(-\frac{d}{2} \log \pi - \frac{1}{2} \log |C| - \frac{1}{2} (x_n - m)^T C^{-1} (x_n - m) \right)$

• Set derivative of data log-likelihood w.r.t. parameters to zero

$$\frac{\partial L(\theta)}{\partial m} = C^{-1} \sum_{n=1}^{N} (x_n - m) = 0 \qquad \qquad \frac{\partial L(\theta)}{\partial C^{-1}} = \sum_{n=1}^{N} \left(\frac{1}{2} C - \frac{1}{2} (x_n - m) (x_n - m)^T \right) = 0$$
$$m = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad \qquad C = \frac{1}{N} \sum_{n=1}^{N} (x_n - m) (x_n - m)^T$$

• Parameters set as data covariance and mean

Maximum likelihood estimation of MoG

- No closed form equations for MoG
- Use EM algorithm
 - Initialize MoG parameters
 - E-step: soft assign of data points to clusters
 - M-step: update the mixture parameters
 - Repeat EM steps, terminate if converged
 - Convergence: of parameters, assignments, log-likelihood
- E-step: compute **soft-assignments**: $q_{nk} = p(z = k | x_n)$
- M-step: update Gaussians from weighted data points

$$\pi_{k} = \frac{1}{N} \sum_{n=1}^{N} q_{nk}$$

$$m_{k} = \frac{1}{N \pi_{k}} \sum_{n=1}^{N} q_{nk} x_{n}$$

$$C_{k} = \frac{1}{N \pi_{k}} \sum_{n=1}^{N} q_{nk} (x_{n} - m_{k}) (x_{n} - m_{k})^{T}$$

Maximum likelihood estimation of MoG

• Example of several EM iterations

nformatics a

mathematics

-2 0 (f) 2

EM algorithm as iterative bound optimization

- EM algorithm is an iterative bound optimization algorithm, like k-means
 - Goal: Maximize data log-likelihood, can not be done in closed form

$$L(\theta) = \sum_{n=1}^{N} \log p(x_n) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k N(x_n | m_k, C_k)$$

- Solution: iteratively maximize (easier) bound on the log-likelihood

- Bound uses two information theoretic quantities
 - Entropy
 - Kullback-Leibler divergence

Entropy of a distribution

- Entropy captures uncertainty in a distribution
 - Maximum for uniform distribution
 - Minimum, zero, for delta peak on single value

$$H(q) = -\sum_{k=1}^{K} q(z=k) \log q(z=k)$$

Entropy of a distribution

$$H(q) = -\sum_{k=1}^{K} q(z=k) \log q(z=k)$$

• Connection to information coding (Noiseless coding theorem, Shannon 1948)

- Frequent messages short code, rare messages long code
- optimal code length is (at least) -log q bits
- Entropy: expected (optimal) code length per message
- Suppose uniform distribution over 8 outcomes: 3 bit code words
- Suppose distribution: 1/2,1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64, entropy 2 bits!
 - Code words: 0, 10, 110, 1110, 111100, 111101,111110,111111
- Codewords are "self-delimiting":
 - Do not need a "space" symbol to separate codewords in a string
 - If first zero is encountered after 4 symbols or less, then stop. Otherwise, code is of length 6.

Kullback-Leibler divergence

- Asymmetric dissimilarity between distributions
 - Minimum: zero, if distributions are equal
 - Maximum: infinity, if p has a zero in support of q

$$D(q||p) = \sum_{k=1}^{K} q(z=k) \log \frac{q(z=k)}{p(z=k)}$$

- Interpretation in coding theory
 - Sub-optimality when messages distributed according to q, but using codeword lengths derived from p
 - Difference of expected code lengths

$$D(q||p) = -\sum_{k=1}^{K} q(z=k) \log p(z=k) - H(q) \ge 0$$

Cross-entropy

- Suppose distribution q: 1/2,1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64
- Coding with p: uniform over the 8 outcomes
- Cross-entropy: 3 bits
- Optimal expected code length, entropy H(q) = 2 bits
- KL divergence D(q|p) = 1 bit

EM bound on MoG log-likelihood

- We want to bound the log-likelihood of a Gaussian mixture $\ln p(x) = \ln \sum_{k=1}^{K} \pi_k N(x; m_k, C_k)$
- Bound log-likelihood by subtracting KL divergence D(q(z) || p(z|x))
 - Inequality follows immediately from non-negativity of KL

 $F(\theta,q) = \log p(x;\theta) - D(q(z) || p(z|x,\theta)) \le \log p(x;\theta)$

- p(z|x) true posterior distribution on cluster assignment
- q(z) an arbitrary distribution over cluster assignment (similar to assignments used in k-means algorithm)
- Sum per-datapoint bounds to bound the log-likelihood of a data set: $F(\theta, \{q_n\}) = \sum_{n=1}^{N} \log p(x_n; \theta) - D(q_n(z) || p(z|x_n, \theta)) \le \sum_{n=1}^{N} \log p(x_n; \theta)$

• E-step:

- fix model parameters,
- update distributions q_n to maximize the bound

$$F(\theta, \{q_n\}) = \sum_{n=1}^{N} \left[\log p(x_n) - D(q_n(z_n) || p(z_n | x_n)) \right]$$

- KL divergence zero if distributions are equal
- Thus set $q_n(z_n) = p(z_n|x_n)$
- After updating the q_n the bound equals the true log-likelihood

- M-step:
 - ▶ fix the soft-assignments q_n,
 - update model parameters

$$\begin{split} F(\theta, \{q_n\}) &= \sum_{n=1}^{N} \left[\log p(x_n) - D(q_n(z_n) || p(z_n | x_n)) \right] \\ &= \sum_{n=1}^{N} \left[\log p(x_n) - \sum_k q_{nk} \left(\log q_{nk} - \log p(z_n = k | x_n) \right) \right] \\ &= \sum_{n=1}^{N} \left[H(q_n) + \sum_k q_{nk} \log p(z_n = k, x_n) \right] \\ &= \sum_{n=1}^{N} \left[H(q_n) + \sum_k q_{nk} \left(\log \pi_k + \log N(x_n; m_k, C_k) \right) \right] \\ &= \sum_{k=1}^{K} \sum_{n=1}^{N} q_{nk} \left(\log \pi_k + \log N(x_n; m_k, C_k) \right) + \sum_{n=1}^{N} H(q_n) \end{split}$$

• Terms for each Gaussian decoupled from rest

 $\pi_1 = 1 - \sum_{k=2}^{K} \pi_k$

- Derive the optimal values for the mixing weights
 - Maximize $\sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \pi_k$
 - Take into account that weights sum to one, define
 - Set derivative for mixing weight j >1 to zero

$$\frac{\partial}{\partial \pi_{j}} \sum_{n=1}^{N} \sum_{k=1}^{K} q_{nk} \log \pi_{k} = \frac{\sum_{n=1}^{N} q_{nj}}{\pi_{j}} - \frac{\sum_{n=1}^{N} q_{n1}}{\pi_{1}} = 0$$

$$\frac{\sum_{n=1}^{N} q_{nj}}{\pi_{j}} = \frac{\sum_{n=1}^{N} q_{n1}}{\pi_{1}}$$

$$\pi_{1} \sum_{n=1}^{N} q_{nj} = \pi_{j} \sum_{n=1}^{N} q_{n1}$$

$$\pi_{1} \sum_{n=1}^{K} \sum_{j=2}^{K} q_{nj} = \sum_{j=2}^{K} \pi_{j} \sum_{n} q_{n1}$$

$$\pi_{1} N = \sum_{n=1}^{N} q_{n1}$$

$$\pi_{j} = \frac{1}{N} \sum_{n=1}^{N} q_{nj}$$

- Derive the optimal values for the MoG parameters
 - For each Gaussian maximize $\sum_{n} q_{nk} \log N(x_n; m_k, C_k)$
 - Compute gradients and set to zero to find optimal parameters

$$\log N(x;m,C) = \frac{d}{2} \log(2\pi) - \frac{1}{2} \log|C| - \frac{1}{2} (x_n - m)^T C^{-1} (x_n - m)$$
$$\frac{\partial}{\partial m} \log N(x;m,C) = C^{-1} (x - m)$$
$$m_k = \frac{\sum_n q_{nk} x_n}{\sum_n q_{nk}}$$

$$\frac{\partial}{\partial C^{-1}} \log N(x;m,C) = \frac{1}{2}C - \frac{1}{2}(x-m)(x-m)^{T}$$

$$C_{k} = \frac{\sum_{n} q_{nk} (x_{n} - m) (x_{n} - m)^{T}}{\sum_{n} q_{nk}}$$

EM bound on log-likelihood

• L is bound on data log-likelihood for auxiliary distribution q

$$E(\theta, \{q_n\}) = \sum_{n=1}^{N} \left[\log p(x_n) - D(q_n(z_n) || p(z_n | x_n)) \right]$$

- Iterative coordinate ascent on F
 - E-step optimize q, makes bound tight
 - M-step optimize parameters

Clustering with k-means and MoG

- Assignment:
 - K-means: hard assignment, discontinuity at cluster border
 - MoG: soft assignment according to posterior p(z|x)
- Cluster representation
 - K-means: center only
 - MoG: center, covariance matrix, mixing weight
- If mixing weights are equal and all covariance matrices are constrained to be $C_k = \epsilon I$ and $\epsilon \rightarrow 0$ then EM algorithm = k-means algorithm
- For both k-means and MoG clustering
 - Number of clusters needs to be fixed in advance
 - Results depend on initialization, no optimal learning algorithms
 - Can be generalized to other types of distances or densities

Reading material

- Questions to expect on exam:
 - Describe objective function for one of these methods
 - Derive some of the update equations for the model parameters
 - Derive k-means as special case of MoG clustering
- More details on k-means and mixture of Gaussian learning with EM
 - Pattern Recognition and Machine Learning, Chapter 9
 Chris Bishop, 2006, Springer
 - R. Neal and G. Hinton

A view of the EM algorithm that justifies incremental, sparse, and other variants

In "Learning in Graphical Models", Kluwer, 1998, 355-368

