Instance-level recognition

1) Local invariant features

2) Matching and recognition with local features

- 3) Efficient visual search
- 4) Very large scale indexing

Matching and 3D reconstruction

• Establish correspondence between two (or more) images

[Schaffalitzky and Zisserman ECCV 2002]

Matching and 3D reconstruction

• Establish correspondence between two (or more) images

[Schaffalitzky and Zisserman ECCV 2002]

Building Rome in a Day

Object recognition

• Establish correspondence between the target image and (multiple) images in the model database

Model database

Target image

[D. Lowe, 1999]

Visual search

 Establish correspondence between the query image and all images from the database depicting the same object or scene

• Find the nearest neighbor in the second image for each descriptor, for example SIFT

Need to solve some variant of the "nearest neighbor problem" for all feature vectors, $\mathbf{x}_i \in \mathcal{R}^{128}$, in the query image:

$$\forall j \ NN(j) = \arg\min_{i} ||\mathbf{x}_{i} - \mathbf{x}_{j}||,$$

where, $\mathbf{x}_i \in \mathcal{R}^{128}$, are features in the target image.

- Pruning strategies
 - Ratio with respect to the second best match (d1/d2 << 1) [Lowe, '04]

If the 2nd nearest neighbour is much further than the 1st nearest neighbour, the match is more "unique" or discriminative.

Measure this by the ratio: $r = d_{1NN} / d_{2NN}$

r is between 0 and 1 r is small the match is more unique.

- Pruning strategies
 - Ratio with respect to the second best match (d1/d2 << 1)
 - Local neighborhood constraints (semi-local constraints)

Neighbors of the point have to match and angles have to correspond. Note that in practice not all neighbors have to be matched correctly.

- Pruning strategies
 - Ratio with respect to the second best match (d1/d2 << 1)
 - Local neighborhood constraints (semi-local constraints)
 - Backwards matching (matches are NN in both directions)

- Pruning strategies
 - Ratio with respect to the second best match (d1/d2 << 1)
 - Local neighborhood constraints (semi-local constraints)
 - Backwards matching (matches are NN in both directions)
- Geometric verification with global constraint
 - All matches must be consistent with a global geometric transformation
 - However, there are many incorrect matches
 - Need to estimate simultaneously the geometric transformation and the set of consistent matches

Geometric verification with global constraint

• Example of a geometric verification

Examples of global constraints

1 view and known 3D model.

• Consistency with a (known) 3D model.

- Epipolar constraint
- 2D transformations
 - Similarity transformation
 - Affine transformation
 - Projective transformation

N-views

Are images consistent with a 3D model?

- Geometric verification with global constraint
 - All matches must be consistent with a global geometric transformation
 - However, there are many incorrect matches
 - Need to estimate simultaneously the geometric transformation and the set of consistent matches
- Robust estimation of global constraints
 - RANSAC (RANdom Sampling Consensus) [Fishler&Bolles'81]
 - Hough transform [Lowe'04]

RANSAC: Example of robust line estimation

Fit a line to 2D data containing outliers

There are two problems

- 1. a line fit which minimizes perpendicular distance
- a classification into inliers (valid points) and outliers
 Solution: use robust statistical estimation algorithm RANSAC
 (RANdom Sample Consensus) [Fishler & Bolles, 1981]

RANSAC robust line estimation

Repeat

- 1. Select random sample of 2 points
- 2. Compute the line through these points
- 3. Measure support (number of points within threshold distance of the line)

Choose the line with the largest number of inliers

• Compute least squares fit of line to inliers (regression)

Algorithm RANSAC

- Robust estimation with RANSAC of a homography
 - Repeat
 - Select 4 point matches
 - Compute 3x3 homography
 - Measure support (number of inliers within threshold, i.e. $d_{transfer}^2 < t$)

- Choose (H with the largest number of inliers)
- Re-estimate H with all inliers

- Geometric verification with global constraint
 - All matches must be consistent with a global geometric transformation
 - However, there are many incorrect matches
 - Need to estimate simultaneously the geometric transformation and the set of consistent matches
- Robust estimation of global constraint
 - RANSAC (RANdom Sampling Consensus) [Fishler&Bolles'81]
 - Hough transform [Lowe'04]

Strategy 2: Hough transform

- General outline:
 - Discretize parameter space into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - Find bins that have the most votes

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Hough transform for object recognition

Suppose our features are scale- and rotation-covariant

• Then a single feature match provides an alignment hypothesis (translation, scale, orientation)

Target image

David G. Lowe. "Distinctive image features from scaleinvariant keypoints", *IJCV* 60 (2), pp. 91-110, 2004.

Hough transform for object recognition

Suppose our features are scale- and rotation-covariant

- Then a single feature match provides an alignment hypothesis (translation, scale, orientation)
- Of course, a hypothesis obtained from a single match is unreliable
- Solution: Coarsely quantize the transformation space. Let each match vote for its hypothesis in the quantized space.

David G. Lowe. "Distinctive image features from scaleinvariant keypoints", *IJCV* 60 (2), pp. 91-110, 2004.

model

Similarity transformation is specified by four parameters: scale factor s, rotation θ , and translations t_x and t_y.

$$\begin{bmatrix} x'\\y' \end{bmatrix} = sR(\theta) \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} t_x\\t_y \end{bmatrix} \qquad \blacksquare \blacklozenge \checkmark$$

 \wedge

Recall, each SIFT detection has: position (x_i, y_i) , scale s_i , and orientation θ_i .

How many correspondences are needed to compute similarity transformation?

Compute similarity transformation from a single correspondence:

$$(x_A, y_A, s_A, \theta_A) \leftrightarrow (x'_A, y'_A, s'_A, \theta'_A)$$

$$\theta = \theta'_A - \theta_A$$

$$s = s'_A / s_A$$

$$t_x = x'_A - sR(\theta)x_A$$

$$t_y = y'_A - sR(\theta)y_A$$

Basic algorithm outline

- 1. Initialize accumulator H to all zeros
- 2. For each tentative match compute transformation hypothesis: tx, ty, s, θ H(tx,ty,s,θ) = H(tx,ty,s,θ) + 1 end end

ty

- Find all bins (tx,ty,s,θ) where H(tx,ty,s,θ) has at least three votes
- Correct matches will consistently vote for the same transformation while mismatches will spread votes.
- Cost: Linear scan through the matches (step 2), followed by a linear scan through the accumulator (step 3).

Fitting an affine transformation

Assume we know the correspondences, how do we get the transformation?

Fitting an affine transformation

Linear system with six unknowns

Each match gives us two linearly independent equations: need at least three to solve for the transformation parameters

Comparison

Hough Transform

•Advantages

- Can handle high percentage of outliers (>95%)
- Extracts groupings from clutter in linear time
- Disadvantages
 - Quantization issues
 - Only practical for small number of dimensions (up to 4)
- •Improvements available
 - Probabilistic Extensions
 - Continuous Voting Space
 - Can be generalized to arbitrary shapes and objects

RANSAC

•Advantages

- General method suited to large range of problems
- Easy to implement
- "Independent" of number of dimensions

•Disadvantages

- Basic version only handles moderate number of outliers (<50%)
- •Many variants available, e.g.
 - PROSAC: Progressive RANSAC [Chum05]
 - Preemptive RANSAC [Nister05]

Summary

Finding correspondences in images is useful for

- Image matching, panorama stitching
- Object recognition
- Large scale image search: next part of the lecture

Beyond local point matching

- Semi-local relations
- Global geometric relations:
 - Epipolar constraint
 - 3D constraint (when 3D model is available)
 - 2D tnfs: Similarity / Affine / Homography
- Algorithms:
 - RANSAC
 - Hough transform

