Generative and discriminative classification techniques
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Classification

® Given training data labeled for two or more classes

® Determine a surface that separates those classes

® Use that surface to predict the class membership of new data
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Classification

® (Goal is to predict for a test data input the corresponding class label.
— Data input x, eg. image but could be anything, format may be vector or other
— Class label y, can take one out of at least 2 discrete values, can be more

> In binary classification we often refer to one class as “positive”, and the
other as “negative”

® C(Classifier: function f(x) that assigns a class to x, or probabilities over the
classes.

® Training data: pairs (x,y) of inputs X, and corresponding class label y.

® | earning a classifier: determine function f(x) from some family of functions
based on the available training data.

® Classifier partitions the input space into regions where data is assigned to a
given class

— Specific form of these boundaries will depend on the family of classifiers used
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Generative classification: principle

p(x|Cz2)

class densities

p(z|Cy)

1.2

Model the class conditional distribution over data x for each classy: p(x|y)
» Data of the class can be sampled (generated) from this distribution
Estimate the a-priori probability that a class will appear p(y)

Infer the probability over classes using Bayes' rule of conditional probability
_ply)p(xly)

Unconditional distribution on x is obtained by marginalizing over the class y

p(Cilz)

p(Calz)




Generative classification: practice

® In order to apply Bayes' rule, we need to estimate two distributions.

® A-priori class distribution

>

In some cases the class prior probabilities are known in advance.

If the frequencies in the training data set are representative for the true
class probabilities, then estimate the prior by these frequencies.

More elaborate methods exist, but not discussed here.

>

| 2

® (Class conditional data distributions

» Select a class of density models
Parametric model, e.g. Gaussian, Bernoulli, ...
Semi-parametric models: mixtures of Gaussian, Bernoulli, ...
Non-parametric models: histograms, nearest-neighbor method, ...

Or more structured models taking problem knowledge into account.

Estimate the parameters of the model using the data in the training set
. associated with that class.

1

Grenoble INP

informatics g”mathematics EN 5] mA g l
A —

>

I



V4

&1/,-

Estimation of the class conditional model

Given a set of n samples from a certain class, and a family of distributions.
X={x, ...,X,] P={p,(x);0€0]

Question how do we guantify the fit of a certain model to the data, and how
do we find the best model defined in this sense?

Maximum a-posteriori (MAP) estimation: use Bayes' rule again as follows:
» Assume a prior distribution over the parameters of the model p(6)
> Then the posterior likelihood of the model given the data is
p(6]X)=p(x]0)p(0)/p(X)
> Find the most likely model given the observed data
p=argmax, p(6|X )=argmax,{In p(8)+In p(X|0)]
Maximum likelihood parameter estimation: assume prior over parameters is

uniform (for bounded parameter spaces), or “near uniform” so that its effect
Is negligible for the posterior on the parameters.

> In this case the MAP estimator is given by §=argmax, p(X|6)
> For l.id. samples

)
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Summary generative classification methods

® (Semi-) Parametric models, e.g. p(x|y) is Gaussian, or mixture of ...
> Pros: no need to store training data, just the class conditional models

> Cons: may fit the data poorly, and might therefore lead to poor
classification result

® Non-parametric models:

> Pros: flexibility, no assumptions distribution shape, “learning” is trivial.
KNN can be used for anything that comes with a distance.
> Cons of histograms:

* Only practical in low dimensional data (<5 or so), application in high
dimensional data leads to exponentially many and mostly empty cells

* Nailve Bayes modeling in higher dimensional cases
— Cons of k-nearest neighbors

* Need to store all training data (memory cost)

* Computing nearest neighbors (computational cost)
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Discriminative classification methods

® (Generative classification models
— Model the density of inputs x from each class p(x|y)
— Estimate class prior probability p(y)
— Use Bayes' rule to infer distribution over class given input

® In discriminative classification methods we directly estimate class probability
given input: p(y|x)
» Choose class of decision functions in feature space
» Estimate function that maximizes performance on the training set
» Classify a new pattern on the basis of this decision rule.

p((Cs)

class densities

p(z[C1)




Binary linear classifier

® Decision function is linear in the features:

f(x)=w' x+ b=b+ ijlwixi 2

® Classification based on the sign of f(x) o .

® Qrientation is determined by w © o o
> W is the surface normal W . °®
¢ Offset from origin is determined by b

® Decision surface is (d-1) dimensional
hyper-plane orthogonal to w, given by

f(x)=w' x+b=0

e Exercise: What happens in 3d with w=(1,0,0) and b= - 1? \
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Binary linear classifier

® Decision surface for w=(1,0,0) and b =-1

f(x)=w' x+ b=0 A
d
b+ Zl_: w; x;=0
x;—1=0
x,=1
>
W
\
7 Grenoble INP
Informatics P mathematic Ensimng, I‘ '
&1«’3&0/— }



Common loss functions for classification

® Assign class label using y =sign|f (x)]
® Measure model quality using loss function

- Zero-Oneloss: Ly, f(x,))=[y,f(x)=<0]

> Hinge loss:

> LOgiStiC loss: L(yi,f(xi>):10g2(1+e_}’if(xi)

L(yz':f(xi)>:max(0:1_yz'f(xi))

- - -zero-one loss
—hinge loss

—logistic loss




Common loss functions for classification

® Assign class label using y=sign( (x )
~ Zero-Oneloss: L(y.,f(x,))=[y.f(x.)=0]
> Hinge loss: Ly, f(x l.))—max 0,1—y,f(x;),

» Logistic loss:  L(y,,f(x;))=log,[1+e™”" Xi))

® The zero-one loss counts the number of misclassifications, which is
the “ideal” empirical loss.

> Discontinuity at zero makes optimization intractable.

® Hinge and logistic loss provide continuous and convex
upperbounds, which can be optimized in tractable manner.

® Convexity does, however, not guarantee better performance than
non-convex counterparts in practice! .
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Dealing with more than two classes

® Firstidea: construction from multiple binary classifiers
> Learn binary “base” classifiers independently

®* One vs rest approach:

> 1vs(2&3)
» 2vs(1&3)
> 3vs(1&2)

® Problem: Region claimed by several classes R
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Dealing with more than two classes

® Firstidea: construction from multiple binary classifiers
> Learn binary “base” classifiers independently

® One vs one approach:

» 1vs2
» 1vs3
» 2vs3

® Problem: conflicts in some regions
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Dealing with more than two classes

® |Instead: define a separate linear score function for each class

fk(x>:Wl:<rX+ b,

® Assign sample to the class of the function with maximum value

® Exercise 1: give the expression for points ’
where two classes have equal score Ri
R
® Exercise 2: show that the set of points
P x5 o2

V4

2

y:argmaxkfk(x)

—® X B

assigned to a class is convex
> If two points fall in the region, then also all points on connecting line

informatics g”mathematics
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Logistic discriminant for two classes

® Map linear score function to class probabilities with sigmoid function
ply=+1|x)=c(w' x+b)

» For binary classification problem, we have by definition

ply=—1[x)=1-p(y=+1[x)

» EXxercise: show that

ply==1lx)=c(=(w' x+b)) 1
0.8
> Therefore: 06l
plylx)=c(y(w' x+b)) 04
0.2}
0 . —o(2) ]
-5 0 5
p \
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Logistic discriminant for two classes

® Map linear score function to class probabilities with sigmoid function
® The class boundary is obtained for p(y|x)=1/2, thus by setting linear
function in exponent to zero

T2
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Multi-class logistic discriminant

® Map score function of each class to class probabilities with “soft-max” function
> Absorb bias into w and x

exp(f, (%))

fk(x):w,fx p(y=c|x): X

2 exp(filx))

» The class probability estimates are non-negative, and sum to one.

> Relative probability of most likely class increases exponentially with the
difference in the linear score functions

ply=c|x) _exp(f.(x))

ply=klx) ~exp(f, (x)) P eX) =)

» For any given pair of classes we find that they are
equally likely on a hyperplane in the feature space




Maximum likelihood parameter estimation

Maximize the log-likelihood of predicting the correct class label for training data
> Predictions are made independently, so sum log-likelihood of all training data

N
L=, logp(y,lx,)

Derivative of log-likelihood as intuitive interpretation

Expected value of each
feature, weighting
points by p(y|x), should
equal empirical
expectation.

Indicator function
71 if y =k, else 0
N

OL S ([y,Zk]-ply=kx,))x,© © O

ow, =

No closed-form solution, but log-likelinood is concave in parameters
> no local optima, use general purpose convex optimization methods
» For example: gradient-based method started from w=0

w is linear combination of data points
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Maximum a-posteriori (MAP) parameter estimation

Let us assume a zero-mean Gaussian prior distribution on w
> We expect “small” weight vectors

Find w that maximizes posterior likelihood

w=argmax,, Z Inp(y |xn,w)+zklnp(wk)

Can be rewritten as foIIowing “penalized” maximum likelihood estimator:
w=argmax,, Z Inp(y —Aho Z w1

> where non-negative lambda is the inverse variance of the Gaussian prior
Penalty for “large” w, bounds the scale of w in case of separable data

Exercise: show that for separable data the norm of the optimal w's would be
infinite without using the penalty term.

1
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Support Vector Machines

® Find linear function to separate positive and negative examples

® Which function best separates the samples ?
> Function inducing the largest

y,=+1 : w' x,+b>0
v w' x,+b<0

I
|
—
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Support vector machines

® Witout loss of generality, define function value at the margin as +/- 1
® Now constrain w to that all points fall on correct side of the margin:
y.(w' x.+b)>1

® By construction we have that the “support vectors”, the ones that define the
margin, have function values

w' x+b=y, f(x)=-1 O

® Express the size of the margin

in terms of w. O
®
@
@
7
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Support vector machines

Let's consider a support vector x from the positive class ~ f(x)= w' x+ b=1
Let z be its projection on the decision plane

» Since w is normal vector to the decision plane, we have zZ=x—ow

> and since z is on the decision plane f(z)=w' (x—aw)+b=0

Solve foralpha  w'(x—aw)+b=0 > °
w x+b—aw' w=0
aw w=1
_ 1 O
Iwll;
Margin is twice distance from x to z ° ®
Ix—z[|,=llx—(x—aw)l,
loew|l,= af[wl], 3
wil, _ 1 o
|w|§_||W||2 Support vectors " Margin
\
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Support vector machines

® To find the maximum-margin separating hyperplane, we
» Maximize the margin, while ensuring correct classification
> Minimize the norm of w, s.t. V.: y.(w'x,+b)>1

® Solve using quadratic program with linear inequality constraints over
p+1 variables

: 1 _
argmin,, > w'w fx)=0 N

subject to y.(w' x,+b)>1

@
®
@
@
4
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® [or non-separable classes we incorporate hinge-loss

Support vector machines: inseperable classes

L(yz'>f(xi)):max(oal_)’if(xi))

® Recall: convex and piecewise linear upper bound on zero/one loss.

| 2

>

Zero if point on the correct side of the margin

Otherwise given by absolute difference from score at margin

3.5

- --zero—one loss
—hinge loss




Support vector machines: inseperable classes

® Minimize penalized loss function
min,, , K%WTW + Zi max(0,1—y.(w' x,+b))

» Quadratic function, plus piecewise linear functions.

® Transformation into a quadratic program
> Define “slack variables” that measure the loss for each data point
» Should be non-negative, and at least as large as the loss

minw’b,{gi} k%wTW + Zi?_f,l.

subjecttoV,: £>0 and £ >1—y.(w' x,+b)

® Solution of the quadratic program has the property that w is a linear
combination of the data points.

|}
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SVM solution properties

. . . L . N
® Optimal w is a linear combination of data points W:E oy, X
n=1 nhJ nn

® \Weights (alpha) are zero for all points on the correct side of the margin
> Points on the margin also have non-zero weight

. . T N T
* Classification function thus has form  f(x)=w" x+ b—anlanynxnx+ b

> relies only on inner products between the test point x and data points
with non-zero alpha's

® Solving the optimization problem also requires access to the data only in
terms of inner products Xx; - x; between pairs of training points

1
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Relation SVM and logistic regression

® A classification error occurs when sign of the function does not match the
sign of the class label: the zero-one loss z=y.f(x,)<0

® Consider error minimized when training classifier:
— Non-separable SVM, hinge loss: & =max(0,1—y.f(x,))=max(0,1—z)
~ Logistic loss: ~log p(y,[x,)=—loga/(y,f(x))=log(1+ exp(~z))

® |2 penalty for SVM motivated by
margin between the classes

- --zero-one loss o o
—hinge loss || ® For Logistic discriminant we find it via

— logistic loss MAP estimation with a Gaussian prior

| e Both lead to efficient optimization
| » Hinge-loss is piece-wise linear:
guadratic programming

N IR 1 » Logistic loss is smooth : smooth
| convex optimization methods

Loss

: 1
7 -3 L ' 0. ‘ l 1 ' Grenoble]NP\
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Summary of discriminative linear classification

Two most widely used linear classifiers in practice:
> Logistic discriminant (supports more than 2 classes directly)
> Support vector machines (multi-class extensions possible)

For both, in the case of binary classification
> Criterion that Is minimized is a convex bound on zero-one loss
> weight vector w is a linear combination of the data points W= anl On X

This means that we only need the inner-products between data points to
calculate the linear functions  £(x)=yw" x+ b
N

:anl (xnx;‘fx+ b
Zzlil o k(x ,x)+b

> The “kernel” function k( , ) computes the inner products
Grenoble IN
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Nonlinear Classification

« 1 dimensional data that is linearly separable

 But what if the data is not linearly seperable?

@ o *—0— 20—0—0—0—0—>
0 X

« We can map it to a higher-dimensional space:

[ ]
[ ]
|}
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Kernels for non-linear classification

General idea: map the original input space to some higher-dimensional

feature space where the training set is separable

Exercise: find features that could separate the 2d data linearly
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Nonlinear classification with kernels

The kernel trick: instead of explicitly computing the feature transformation
¢(x), define a kernel function K such that

K(xx,)=(o(x), 0(x,)

Conversely, if a kernel satisfies Mercer’s condition then it computes an inner
product in some feature space, possibly with large or infinite number of
dimensions

> Mercer's Condition: The square N x N matrix K with kernel evaluations
for any arbitrary N data points should always be a positive definite.

a Ka= 211211 1 J U_O

This gives a nonlinear decision boundary in the original space:

f(x) = b+wcp b+z o, ¢ x (x)

— b+Z- OLl-k Xl-,X> Grenoble INP
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Kernels for non-linear classification

® What is the kernel function that corresponds to this feature mapping ?

X k(x,y)=(o(x),0(y))="?
X )= 2 2 2. 2 2
(p< ) \/,XZ =X1Y1t X Yot 2X X, V1 Y
2
2X1X, :(X1Y1+ Xz)’z)
T 2
=[x"y]
| ®
°
®
®e ot ® o ° o
L ®
O ° o o ® O
® °
: o |o ° " ° “e y .
°
° . ® e . : ‘ © o ,. ® :
o 7 e o \
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Kernels for non-linear classification

® Suppose we also want to keep the original features to be able to still
Implement linear functions
P k(x,y)=(o(x),0(y))="?
1

T T |2
J2 x =1+ 2x y+(x y)
1 =(x"y+ 1]
\/§x2 =|x y+1
CP(X)— 2
X1
2
Xy
V2x.x,| ¢
142 °
)
e
e 1. e
o ool ® ° e o
|l
*r - . )
o ® e e w7 s ® e
[ > e e
o |o ® ° ® . R
® e )
o e g ® e 1
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Kernels for non-linear classification

® \What happens if we use the same kernel for higher dimensional data
> Which feature vector ¢(x) corresponds to it ?

k(x,y)=[x"y+1] =14 2x" y+ (X" y[

»  First term, encodes an additional 1 in each feature vector

» Second term, encodes scaling of the original features by sqrt(2)
. . . T 2_ )

> Let's consider the third term(x y) —(X1y1+ .t Xp )’D)

D D D
:Zd N\ XaYa 2+22d 12, g1 (X4ya)(x;y:)
_Zd 1Xdyd sz 12, —d+1 (xgx)(yayi)

> Intotal we have 1 + 2D + D(D-1)/2 features !
But the kernel is computed as efficiently as dot-product in original space

v

cp(x):(l,\/Exl,\/ixl...,\/EXD,xf,xg,...,x%,\/Exlxz,...,\/§x1xD,...,\/§xD_1xD)T

Original features Squares Products of two distinct elements 1
y 4
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Common kernels for bag-of-word histograms

®* Hellinger kernel:
k(h,,h)=2_ ~vh,(i)x<Vh,(i)

® Histogram intersection kernel:
h,)=2_.,min(h,(d),h,(d))

» Exercise: find the feature transformation ?

® Generalized Gaussian kernel:

k(hl’hz):exp

1
_Zd<h1’h2))
» d can be Euclidean distance, x? distance, Earth Mover’s Distance, etc.

See also:

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,

Local features and kernels for classification of texture and object categories: a

comprehensive study. Int. Journal of Computer Vision, 2007 1
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Logistic discriminant with kernels

® | etus assume a given kernel, and let us express the classifier
functions for each class c as

=b +Z, 1 lC<(p > b +Zl— Xi J b +a k
> Where kJ:(k<XJ:X1>) k(‘x]’xn)T

® Consider the L2 penalty on the weight vector for wC:Zizl o @ x
<WC’W > Zl 1 Z alca]Ck Xl’xj) GZKGC

" and [KJ;=k(x;,x;)

y

> Where aCZ(oclc,...,och

® MAP estimation of the alpha's and b's amounts to maximize

. Zn Inp(y|x) }‘chc o, .
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Logistic discriminant with kernels

e Recallthat p(yilx;)= exp(fyi(xm and f.(x,)=b.+o.k,
. expf.(x,)

® Therefore we want to maximize

E({ac},{bc}):zlnl( )=In Y expf, (x;)|-7 Z o'Ka,

® Consider the partial derivative of this function with respect to the b's,
and the gradient with respect to the alpha vectors

_Zl 1
VOLJE:Z,.:1 [y,=

plclx,)]

_p(c|xi>)k1‘_Kac

> Essentially the same gradients as in the linear case, feature
vector is replace with a column of the kernel matrix

|
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Support vector machines with kernels

® Minimize quadratic program
min,, , k%wTw + Zl_ g
subject toV,: £>0 and E>1—y.f(x,)

® | et us again define the classification function in terms of kernel
evaluations .
f(x;)=b+a k,

® Then we obtain a quadratic program in b, alpha, and the slack
variables xi

minw,b’[gi} )\%OLTKOL + Ziii

subject toV.: £>0 and Eizl—yi(bﬂkai)

|}
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SVM with kernels

Recall that  p(yix;)= explf, (%) and f.(x;)=b.+a’k.
() i1 X; )= (0 3
> expf,(x;)

® Therefore we want to maximize

E({ac},{bc}):zlnl( )=In Y expf, (x;)|-7 Z o'Ka,

® Consider the partial derivative of this function with respect to the b's,
and the gradient with respect to the alpha vectors

_Zl 1
VOLJE:Z,.:1 [y,=

plclx,)]

_p(c|xi>)k1‘_Kac

> Essentially the same gradients as in the linear case, feature
vector is replace with a column of the kernel matrix

|
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Summary linear classification & kernels

® Linear classifiers learned by minimizing convex cost functions
— Logistic discriminant: smooth objective, minimized using gradient descend
— Support vector machines: piecewise linear objective, quadratic programming
— Both require only computing inner product between data points

® Non-linear classification can be done with linear classifiers over new
features that are non-linear functions of the original features

> Kernel functions efficiently compute inner products in (very) high-dimensional
spaces, can even be infinite dimensional in some cases.

® Using kernel functions non-linear classification has drawbacks
— Requires storing the support vectors, may cost lots of memory in practice

— Computing kernel between new data point and support vectors may be
computationally expensive (at least more expensive than linear classifier)

® The “kernel trick” also applies for other linear data analysis techniques

— Principle component analysis, k-means clustering, ... .
7 Grenoble INF\
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Reading material

Pattern recognition & machine learning

Chris Bishop, Springer, 2006

For clustering with k-means & mixture of Gaussians read

Section 2.3.9
Chapter 9, except 9.3.4

Optionally, Section 1.6 on information theory

For classification read

Section 2.5, except 2.5.1
Section 4.1.1 & 4.1.2

Section 4.2.1 & 4.2.2

Section 4.3.2 & 4.3.4

Section 6.2
Section7.1start+7.1.1&7.1.2

informatics g”mathematics
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A good book that covers all machine learning aspects of the course is
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