
Generative and discriminative classification techniques

Machine Learning and Category Representation 2014-2015

Jakob Verbeek, December 12, 2014

Course website:

http://lear.inrialpes.fr/~verbeek/MLCR.14.15



Classification

 Given training data labeled for two or more classes

 Determine a surface that separates those classes

 Use that surface to predict the class membership of new data



Classification

 Goal is to predict for a test data input the corresponding class label.
– Data input x, eg. image but could be anything, format may be vector or other
– Class label y, can take one out of at least 2 discrete values, can be more

► In binary classification we often refer to one class as “positive”, and the 
other as “negative”

 Classifier: function f(x) that assigns a class to x, or probabilities over the 
classes.

 Training data: pairs (x,y) of inputs x, and corresponding class label y.

 Learning a classifier: determine function f(x) from some family of functions 
based on the available training data.

 Classifier partitions the input space into regions where data is assigned to a 
given class

– Specific form of these boundaries will depend on the family of classifiers used



Generative classification: principle

 Model the class conditional distribution over data x for each class y:
► Data of the class can be sampled (generated) from this distribution 

 Estimate the a-priori probability that a class will appear

 Infer the probability over classes using Bayes' rule of conditional probability

 Unconditional distribution on x is obtained by marginalizing over the class y

p ( y∣x)=
p ( y) p(x∣y)

p (x)

p(x)=∑y
p( y) p(x∣y)

p(x∣y)

p( y)



Generative classification: practice

 In order to apply Bayes' rule, we need to estimate two distributions.

 A-priori class distribution
► In some cases the class prior probabilities are known in advance.
► If the frequencies in the training data set are representative for the true 

class probabilities, then estimate the prior by these frequencies.
► More elaborate methods exist, but not discussed here.

 Class conditional data distributions
► Select a class of density models

 Parametric model, e.g. Gaussian, Bernoulli, …
 Semi-parametric models: mixtures of Gaussian, Bernoulli, ...
 Non-parametric models: histograms, nearest-neighbor method, …
 Or more structured models taking problem knowledge into account.

► Estimate the parameters of the model using the data in the training set 
associated with that class.



Estimation of the class conditional model

 Given a set of n samples from a certain class, and a family of distributions.

 Question how do we quantify the fit of a certain model to the data, and how 
do we find the best model defined in this sense?

 Maximum a-posteriori (MAP) estimation: use Bayes' rule again as follows:
► Assume a prior distribution over the parameters of the model
► Then the posterior likelihood of the model given the data is 

► Find the most likely model given the observed data

 Maximum likelihood parameter estimation: assume prior over parameters is 
uniform (for bounded parameter spaces), or “near uniform” so that its effect 
is negligible for the posterior on the parameters.
► In this case the MAP estimator is given by 
► For i.id. samples: 

p(θ)

X={x1, ... , xn} P={pθ(x);θ∈Θ}

p(θ∣X)=p(x∣θ) p(θ)/ p(X)

θ̂=argmaxθ p(θ∣X )=argmaxθ{ln p(θ)+ln p(X∣θ)}

θ̂=argmaxθ∏i=1

n
p(x i∣θ)=argmaxθ∑i=1

n
ln p(xi∣θ)

θ̂=argmaxθ p(X∣θ)



Summary generative classification methods

 (Semi-) Parametric models, e.g. p(x|y) is Gaussian, or mixture of …
► Pros: no need to store training data, just the class conditional models
► Cons: may fit the data poorly, and might therefore lead to poor 

classification result 

 Non-parametric models: 
► Pros: flexibility, no assumptions distribution shape, “learning” is trivial. 

KNN can be used for anything that comes with a distance.
► Cons of histograms:

• Only practical in low dimensional data (<5 or so), application in high 
dimensional data leads to exponentially many and mostly empty cells

• Naïve Bayes modeling in higher dimensional cases
– Cons of k-nearest neighbors

• Need to store all training data (memory cost)
• Computing nearest neighbors (computational cost)



Discriminative classification methods

 Generative classification models
– Model the density of inputs x from each class p(x|y)
– Estimate class prior probability p(y)
– Use Bayes’ rule to infer distribution over class given input

 In discriminative classification methods we directly estimate class probability 
given input: p(y|x) 
► Choose class of decision functions in feature space
► Estimate function that maximizes performance on the training set 
► Classify a new pattern on the basis of this decision rule.



Binary linear classifier

 Decision function is linear in the features:

 Classification based on the sign of f(x)

 Orientation is determined by w 
► w is the surface normal

 Offset from origin is determined by b

 Decision surface is (d-1) dimensional 

hyper-plane orthogonal to w, given by

 Exercise: What happens in 3d with w=(1,0,0) and b = - 1?

w

f(x)=0
f ( x)=wT x+ b=b+ ∑i=1

d
w i xi

f ( x)=wT x+ b=0



Binary linear classifier

 Decision surface for w=(1,0,0) and b = -1

w

f(x)=0

b+∑i=1

d
wi xi=0

f ( x)=wT x+ b=0

x1−1=0

x1=1



Common loss functions for classification

 Assign class label using
 Measure model quality using loss function

► Zero-One loss:

► Hinge loss:

► Logistic loss:

L( y i , f (x i))=[ y i f (xi)≤0]

L( y i , f (x i))=max (0,1− y i f (xi))

L( y i , f (x i))=log2 (1+e−yi f ( xi))

y=sign (f (x))



Common loss functions for classification

 Assign class label using
► Zero-One loss:
► Hinge loss:
► Logistic loss:

 The zero-one loss counts the number of misclassifications, which is 
the “ideal” empirical loss.
► Discontinuity at zero makes optimization intractable.

 Hinge and logistic loss provide continuous and convex 
upperbounds, which can be optimized in tractable manner.

 Convexity does, however, not guarantee better performance than 
non-convex counterparts in practice!

L( y i , f (x i))=[ y i f (xi)≥0]
L( y i , f (x i))=max (0,1− y i f (xi))
L( y i , f (x i))=log2 (1+e−yi f ( xi))

y=sign (f (x))



Dealing with more than two classes

 First idea: construction from multiple binary classifiers
► Learn binary “base” classifiers independently

 One vs rest approach: 
► 1 vs (2 & 3)
► 2 vs (1 & 3)
► 3 vs (1 & 2)

 Problem: Region claimed by several classes



Dealing with more than two classes

 First idea: construction from multiple binary classifiers
► Learn binary “base” classifiers independently

 One vs one approach: 
► 1 vs 2 
► 1 vs 3
► 2 vs 3

 Problem: conflicts in some regions



Dealing with more than two classes

 Instead: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value 

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points 

assigned to a class is convex
► If two points fall in the region, then also all points on connecting line 

f k (x)=wk
T x+ bk

y=argmaxk f k (x )



Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function

► For binary classification problem, we have by definition

► Exercise: show that 

► Therefore:

p( y=+ 1∣x)=σ(wT x+ b)

p( y=−1∣x)=1−p ( y=+ 1∣x)

p( y=−1∣x)=σ (−(wT x+b))

p( y∣x)=σ( y (wT x+b))



Logistic discriminant for two classes

 Map linear score function to class probabilities with sigmoid function
 The class boundary is obtained for p(y|x)=1/2, thus by setting linear 

function in exponent to zero

w

p(y|x)=1/2

f(x)=-5

f(x)=+5



Multi-class logistic discriminant

 Map score function of each class to class probabilities with “soft-max” function
► Absorb bias into w and x

► The class probability estimates are non-negative, and sum to one.
► Relative probability of most likely class increases exponentially with the 

difference in the linear score functions

► For any given pair of classes we find that they are 

equally likely on a hyperplane in the feature space

p( y=c∣x)=
exp( f c (x))

∑k=1

K
exp( f k( x))

f k (x)=wk
T x

p( y=c∣x)
p ( y=k∣x)

=
exp( f c (x))

exp ( f k (x))
=exp( f c( x)−f k (x ))



Maximum likelihood parameter estimation

 Maximize the log-likelihood of predicting the correct class label for training data
► Predictions are made independently, so sum log-likelihood of all training data

 Derivative of log-likelihood as intuitive interpretation

 No closed-form solution, but log-likelihood is concave in parameters
► no local optima, use general purpose convex optimization methods
► For example: gradient-based method started from w=0

 w is linear combination of data points

Expected value of each 
feature, weighting 

points by p(y|x), should 
equal empirical 

expectation.

Indicator function
1 if y

n
=k, else 0

L=∑n=1

N
log p ( yn∣xn)

∂ L
∂wk

=∑n=1

N
([ yn=k ]−p( y=k∣xn))xn



Maximum a-posteriori (MAP) parameter estimation

 Let us assume a zero-mean Gaussian prior distribution on w
► We expect “small” weight vectors

 Find w that maximizes posterior likelihood

 Can be rewritten as following “penalized” maximum likelihood estimator:

► where non-negative lambda is the inverse variance of the Gaussian prior

 Penalty for “large” w, bounds the scale of w in case of separable data

 Exercise: show that for separable data the norm of the optimal w's would be 
infinite without using the penalty term.

ŵ=argmaxw∑n=1

N
ln p ( yn∣xn ,w)+∑k

ln p (wk)

ŵ=argmaxw∑n=1

N
ln p( yn∣xn ,w)−λ

1
2 ∑k

∥w k∥2
2



Support Vector Machines

 Find linear function to separate positive and negative examples
 Which function best separates the samples ?

► Function inducing the largest margin

y i=+1 : wT x i+b>0

y i=−1 : wT xi+b<0



Support vector machines

 Witout loss of generality, define function value at the margin as +/- 1 
 Now constrain w to that all points fall on correct side of the margin:

 By construction we have that the “support vectors”, the ones that define the 
margin, have function values

 Express the size of the margin

in terms of w.

Margin
Support vectors

y i(w
T x i+b)≥1

wT x i+b=y i

f(x)=+1

f(x)=0

f(x)=-1



Support vector machines

 Let's consider a support vector x from the positive class
 Let z be its projection on the decision plane

► Since w is normal vector to the decision plane, we have
► and since z is on the decision plane

 Solve for alpha

 Margin is twice distance from x to z

MarginSupport vectors

f ( x)=wT x+ b=1

z=x−αw

f (z)=wT
(x−αw)+b=0

∥x−z∥2=∥x−(x−αw)∥2

∥αw∥2=α∥w∥2

∥w∥2

∥w∥2
2=

1
∥w∥2

wT
(x−αw)+b=0

wT x+b−αwTw=0
αwTw=1

α=
1

∥w∥2
2



Support vector machines

 To find the maximum-margin separating hyperplane, we 
► Maximize the margin, while ensuring correct classification
► Minimize the norm of w, s.t.

 Solve using quadratic program with linear inequality constraints over 
p+1 variables

Margin
Support vectors

∀ i : y i(w
T x i+b)≥1

f(x)=+1

f(x)=0

f(x)=-1

argminw ,b
1
2
wTw

subject to y i(w
T xi+b)≥1



Support vector machines: inseperable classes

 For non-separable classes we incorporate hinge-loss 

 Recall: convex and piecewise linear upper bound on zero/one loss.
► Zero if point on the correct side of the margin
► Otherwise given by absolute difference from score at margin

L( y i , f (x i))=max (0,1− y i f (xi))



Support vector machines: inseperable classes

 Minimize penalized loss function

► Quadratic function, plus piecewise linear functions.

 Transformation into a quadratic program
► Define “slack variables” that measure the loss for each data point
► Should be non-negative, and at least as large as the loss

 Solution of the quadratic program has the property that w is a linear 
combination of the data points.

minw ,b λ
1
2
wTw + ∑i

max (0,1− yi(w
T xi+b))

minw ,b , {ξi} λ
1
2
wTw + ∑i

ξi

subject to ∀i : ξi≥0  and ξi≥1− yi(w
T x i+b)



SVM solution properties

 Optimal w is a linear combination of data points 

 Weights (alpha) are zero for all points on the correct side of the margin
► Points on the margin also have non-zero weight

 Classification function thus has form

► relies only on inner products between the test point x and data points 
with non-zero alpha's

 Solving the optimization problem also requires access to the data only in 
terms of inner products xi · xj between pairs of training points

w=∑n=1

N
αn yn xn

f ( x)=wT x+ b=∑n=1

N
αn yn xn

T x+ b



Relation SVM and logistic regression

 A classification error occurs when sign of the function does not match the 
sign of the class label: the zero-one loss

 Consider error minimized when training classifier:
– Non-separable SVM, hinge loss:
– Logistic  loss:

z= yi f (xi)≤0

ξi=max (0,1− y i f (x i))=max (0,1−z)

−log p ( yi∣xi)=−log σ( yi f (x i))=log(1+ exp(−z))

 L2 penalty for SVM motivated by 
margin between the classes

 For Logistic discriminant we find it via 
MAP estimation with a Gaussian prior

 Both lead to efficient optimization
► Hinge-loss is piece-wise linear: 

quadratic programming
► Logistic loss is smooth : smooth 

convex optimization methods

Loss

z



Summary of discriminative linear classification

 Two most widely used linear classifiers in practice:
► Logistic discriminant (supports more than 2 classes directly)
► Support vector machines (multi-class extensions possible) 

 For both, in the case of binary classification 
► Criterion that is minimized is a convex bound on zero-one loss
► weight vector w is a linear combination of the data points

 This means that we only need the inner-products between data points to 
calculate the linear functions

► The “kernel” function k( , ) computes the inner products 

w=∑n=1

N
αn xn

f ( x)=wT x+ b

=∑n=1

N
αn xn

T x+ b

=∑n=1

N
αn k (xn , x)+ b



• 1 dimensional data that is linearly separable 

• But what if the data is not linearly seperable? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear Classification

Slide credit: Andrew Moore



Φ:  x → φ(x)

Kernels for non-linear classification

 General idea: map the original input space to some higher-dimensional 
feature space where the training set is separable

 Exercise: find features that could separate the 2d data linearly 

Slide credit: Andrew Moore



Nonlinear classification with kernels

 The kernel trick: instead of explicitly computing the feature transformation 
φ(x), define a kernel function K such that

       

 Conversely, if a kernel satisfies Mercer’s condition then it computes an inner 
product in some feature space, possibly with large or infinite number of 
dimensions

► Mercer's Condition: The square N x N matrix K with kernel evaluations 
for any arbitrary N data points should always be a positive definite.

 This gives a nonlinear decision boundary in the original space:

f (x) = b+wTϕ(x)=b+∑i
αiϕ(xi)

Tϕ(x)

= b+∑i
αik (xi , x)

aT K a=∑i=1

N

∑ j=1

N
aia j [K ]ij≥0

k (xi , x j)=〈ϕ(xi),ϕ(x j)〉



Kernels for non-linear classification

 What is the kernel function that corresponds to this feature mapping ?

Φ:  x → φ(x)

ϕ(x)=(
x1

2

x2
2

√2 x1 x2
)

k (x , y)=〈ϕ(x) ,ϕ( y)〉=?

=x1
2 y1

2
+ x2

2 y2
2
+ 2x1 x2 y1 y2

=(x1 y1+ x2 y2)
2

=(xT y )
2



Kernels for non-linear classification

 Suppose we also want to keep the original features to be able to still 
implement linear functions

Φ:  x → φ(x)

ϕ(x )=(
1

√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k (x , y)=〈ϕ(x) ,ϕ( y)〉=?

=1+ 2xT y+ (xT y )
2

=(xT y+ 1)
2



Kernels for non-linear classification

 What happens if we use the same kernel for higher dimensional data
► Which feature vector            corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D-1)/2 features ! 
► But the kernel is computed as efficiently as dot-product in original space

( xT y )
2
=( x1 y1+ ...+ xD yD)

2

k ( x , y)=( xT y+ 1 )
2
=1+ 2xT y+ (xT y )

2

=∑d=1

D
( xd yd)

2
+ 2∑d=1

D

∑i=d+ 1

D
( xd yd)(xi yi)

=∑d=1

D
xd

2 yd
2
+ 2∑d=1

D

∑i=d+ 1

D
( xd xi)( yd yi)

ϕ(x )=(1 ,√2 x1 ,√2 x2, ... ,√2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... ,√2 x1 xD , ... ,√2 xD−1 xD )

T

Original features Squares Products of two distinct elements

ϕ(x )



Common kernels for bag-of-word histograms

 Hellinger kernel:

 Histogram intersection kernel:

► Exercise: find the feature transformation ?

 Generalized Gaussian kernel:

► d can be Euclidean distance, χ2 distance, Earth Mover’s Distance, etc.

See also:
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,
Local features and kernels for classification of texture and object categories: a 
comprehensive study. Int. Journal of Computer Vision, 2007

k (h1 ,h2)=∑d
min(h1(d ) ,h2(d ))

k (h1 , h2)=exp(− 1
A
d (h1 , h2))

k (h1 ,h2)=∑d √h1(i)×√h2(i)



Logistic discriminant with kernels

 Let us assume a given kernel, and let us express the classifier 
functions for each class c as

► Where 

 Consider the L2 penalty on the weight vector for 

► Where and

 MAP estimation of the alpha's and b's amounts to maximize

f c(x j)=bc+∑i=1

n
αic 〈ϕ(xi) ,ϕ(x j)〉=bc+∑i=1

n
αic k (xi , x j)=bc+α c

T k j

w c=∑i=1

n
αicϕ(xi)

〈w c ,wc 〉=∑i=1

n

∑ j=1

n
αicα jc k (xi , x j)=αc

T K αc

∑i=1

n
ln p( yi∣xi)−λ

1
2∑c=1

C
α c
T K α c

α c=(α1c , ... ,αnc )
T

[K ]ij=k (xi , x j)

k j=(k (x j , x1) , ... , k (x j , xn))
T



Logistic discriminant with kernels

 Recall that and 

 Therefore we want to maximize

 Consider the partial derivative of this function with respect to the b's, 
and the gradient with respect to the alpha vectors

► Essentially the same gradients as in the linear case, feature 
vector is replace with a column of the kernel matrix

p( yi∣xi)=
exp ( f yi(x i))

∑c
exp f c(xi)

∂E
∂bc

=∑i=1

n

([ y i=c ]−p(c∣xi))

∇α c
E=∑i=1

n

([ yi=c ]−p(c∣xi))k i−K αc

E ({αc}, {bc})=∑i=1

n

( f y i(xi)−ln∑c
exp f y i(xi))−λ

1
2∑c

αc
T K α c

f c(xi)=bc+α c
T k i



Support vector machines with kernels

 Minimize quadratic program

 Let us again define the classification function in terms of kernel 
evaluations

 Then we obtain a quadratic program in b, alpha, and the slack 
variables xi

minw , b , {ξi}
λ

1
2

wT w + ∑i
ξi

subject to ∀i : ξi≥0  and ξi≥1− yi f (xi)

f (xi)=b+α
T k i

minw , b , {ξi}
λ

1
2

αT K α + ∑i
ξi

subject to∀i : ξi≥0  and ξi≥1− yi (b+αT ki )



SVM with kernels

 Recall that and 

 Therefore we want to maximize

 Consider the partial derivative of this function with respect to the b's, 
and the gradient with respect to the alpha vectors

► Essentially the same gradients as in the linear case, feature 
vector is replace with a column of the kernel matrix

p( yi∣xi)=
exp ( f yi(x i))

∑c
exp f c(xi)

∂E
∂bc

=∑i=1

n

([ y i=c ]−p(c∣xi))

∇α c
E=∑i=1

n

([ yi=c ]−p(c∣xi))k i−K αc

E ({αc}, {bc})=∑i=1

n

( f y i(xi)−ln∑c
exp f y i(xi))−λ

1
2∑c

αc
T K α c

f c(xi)=bc+α c
T k i



Summary linear classification & kernels

 Linear classifiers learned by minimizing convex cost functions
– Logistic discriminant: smooth objective, minimized using gradient descend
– Support vector machines: piecewise linear objective, quadratic programming
– Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new 
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-dimensional 

spaces, can even be infinite dimensional in some cases.

 Using kernel functions non-linear classification has drawbacks
– Requires storing the support vectors, may cost lots of memory in practice
– Computing kernel between new data point and support vectors may be 

computationally expensive (at least more expensive than linear classifier)

 The “kernel trick” also applies for other linear data analysis techniques
– Principle component analysis, k-means clustering, …



Reading material

 A good book that covers all machine learning aspects of the course is 
► Pattern recognition & machine learning

Chris Bishop, Springer, 2006

 For clustering with k-means & mixture of Gaussians read
► Section 2.3.9
► Chapter 9, except 9.3.4 
► Optionally, Section 1.6 on information theory

 For classification read
► Section 2.5, except 2.5.1 
► Section 4.1.1 & 4.1.2
► Section 4.2.1 & 4.2.2
► Section 4.3.2 & 4.3.4
► Section 6.2
► Section 7.1 start + 7.1.1 & 7.1.2


