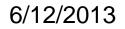
Segmentation as selective search for object recognition

0

Elie Cattan

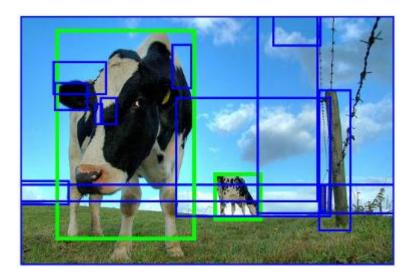


Introduction

- Object recognition
- Exhaustive search
 - Quick computation needed
- Selective search

Introduction

- This paper
 - Coarse location
 - Emphasizing recall
 - Fast to compute



State of the art – exhaustive search

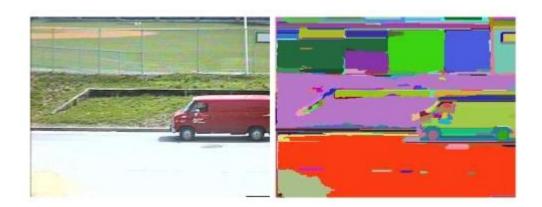
- Search object and part of the objects (Felzenszwalb et al.)
- Branch and bound (Lampert et al.)
- Use of random (Alexe et al.)
- Class dependent vs class independent

State of the art – selective search

- Gu et al. Work
 - But only a single hierarchy
- Foreground/Background
 segmentations (Carreira et al.)
 With precise object delineations

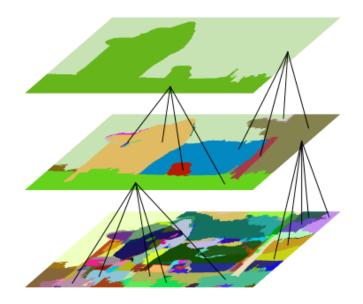
Algorithm

The oversegmentation
 Felzenszwalb et al.



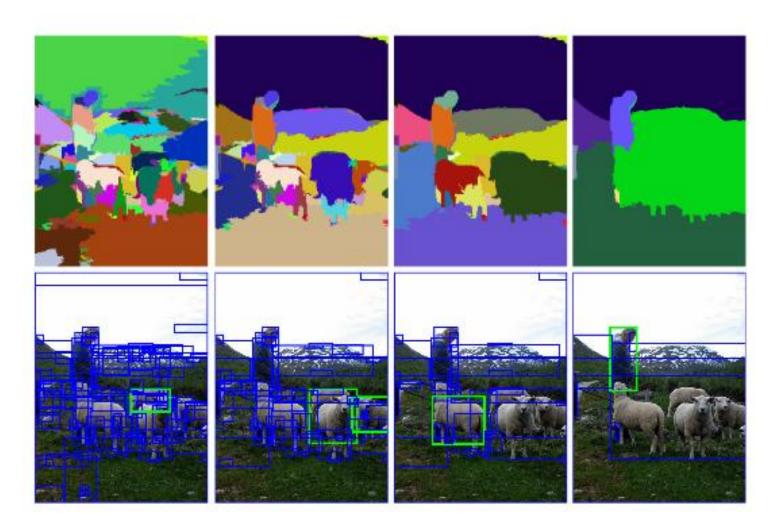
Algorithm

- Group similar regions
 S = Ssize + Stexture
- Multiple color spaces



Algorithm

• Results :



Object recognition system

Bag of feature

- SIFT + OpponentSIFT + RGB-SIFT
- 4096 words
- Training + retraining

- Flat vs hierarchical
- Object recognition
- Object delineation

Accuracy

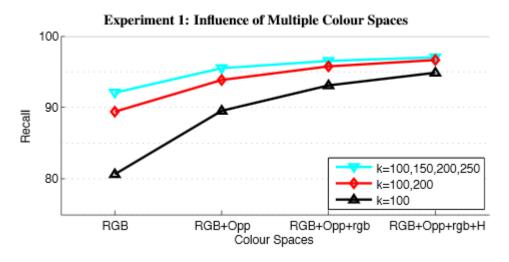
Flat vs Hierarchical

Experiment 1: Multiple Flat segmentations	versus Hierarchy
--	------------------

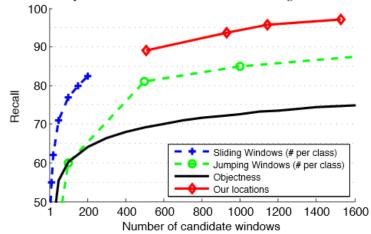
	Max. recall (%)	# windows
$[10] k = 100, 150 \dots 1000$	84.8	665
$[10] k = 100, 110 \dots 1000$	87.7	1159
Hierarchical $k = 100$	80.6	362
Hierarchical $k = 100, 200$	89.4	511

Table 1. Comparison of multiple flat segmentations versus a hierarchy in terms of recall and the number of windows per image.

Multiple colour spaces



• This paper vs State of the art – object recognition



Experiment 2: Maximum Recall of Selective Search for Recognition

	Max. recall (%)	# windows				
Sliding Windows [13]	83.0	200 per class				
Jumping Windows [27]	94.0	10,000 per class				
'Objectness' [1]	82.4	10,000				
Our hypotheses	96.7	1,536				

Table 2. Comparison of maximum recall between our method and [1, 13, 27]. We achieve the highest recall of 96.7%. Second comes [27] with 94.0% but using an order of magnitude more locations.

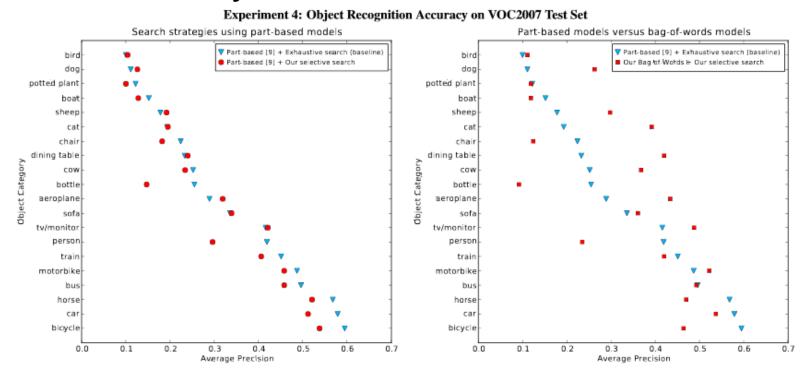
This paper vs State of the art – object delineation

Experiment 5: Recan of Selective Search for Segmentation									
	Max. recall (%)	# windows	Time (s)						
Carreira [3]	78.2	697	432						
Endres [7]	82.2	1,989	226						
Our hypotheses	79.8	1,973	8						
Combination	90.1	4,659	666						

Experiment 2. Decall of Colective Course for Commentation

Table 3. Comparison of our paper with [3, 7] in terms of recall on the Pascal VOC 2007 segmentation task. Our method has competitive recall while being more than an order of magnitude faster.

Accuracy



Experiment 4: Object Recogniton Accur	acy on VOC2010 Test Set
---------------------------------------	-------------------------

System	plane	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	motor	person	plant	sheep	sofa	train	tv
NLPR	.533	.553	.192	.210	.300	.544	.467	.412	.200	.315	.207	.303	.486	.553	.465	.102	.344	.265	.503	.403
MIT UCLA [29]	.542	.485	.157	.192	.292	.555	.435	.417	.169	.285	.267	.309	.483	.550	.417	.097	.358	.308	.472	.408
NUS	.491	.524	.178	.120	.306	.535	.328	.373	.177	.306	.277	.295	.519	.563	.442	.096	.148	.279	.495	.384
UoCTTI [9]	.524	.543	.130	.156	.351	.542	<u>.491</u>	.318	.155	.262	.135	.215	.454	.516	.475	.091	.351	.194	.466	.380
This paper	.582	.419	.192	.140	.143	.448	.367	.488	.129	.281	.287	.394	.441	.525	.258	.141	.388	.342	.431	.426

Table 4. Results from the Pascal VOC 2010 detection task test set, comparing the approach from this paper to the current state-of-the-art. We improve the state-of-the-art up to 0.085 AP for 8 categories and equal the state-of-the-art for one more category.

Conclusion

- Many approximate locations
- Set of complementary segmentations
- Very effective for object recognition

