Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

State of th art

Method

Evaluation

Conclusions

Segmentation Driven Object Detection with Fisher Vectors

Camille BRASSEUR

20 décembre 2013

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

- State of th art
- Method
- Evaluation
- Conclusions

1 Introduction

- State of the art
- 3 Method
- 4 Evaluation
- **5** Conclusions

ヘロト 人間ト 人造ト 人造トー

æ.

Aim of the work

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

State of the art

Method

Evaluation

Conclusions

Object detection :

The aim is to determine for an object :

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- its location (bounding box) and
- its category

Aim of the work

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

- State of the art
- Method
- Evaluation
- Conclusions

Object detection :

The aim is to determine for an object :

- its location (bounding box) and
- its category

Used tools :

- Ficher Vector
- SIFT descriptor
- color descriptor

Tests on datasets :

- PASCAL VOC 2007
- PASCAL VOC 2010

Segmentation Driven Object Detection with Fisher Vectors

Camille BRASSEUR

Introduction

State of the art Method Evaluation

Conclusions

Introduction

2 State of the art

3 Method

4 Evaluation

・ロト ・四ト ・ヨト ・ヨト

æ.

Object detection

Segmentation Driven Object Detection with Fisher Vectors

Camille BRASSEUR

Introduction

- State of the art
- Method
- Evaluation
- Conclusions

Sliding Window approaches

Detection windows of various scale and aspect ratios evaluated at many positions accress the image.

- \bullet (Viola and Jones) : cascade \Rightarrow less windows to examine
- two or three-stage approaches : windows are discarded at each stage + richer features
- branch and bound scheme (non-exhaustive search)
- prune the set of candidate windows without using class specific information by relying on low-level contours and image segmentation

The last idea is used there.

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

State of the art

ivietnoa

Evaluation

Conclusions

Contributions

Fisher Vector

They were already used in previous approaches. But here, normalization of the FVs.

Segmentation

- image segmentation created for the detection
- computation of a mask with a weight for each pixel linked with its contribution to the descriptors.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• suppression of the background

Segmentation

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

State of the art

Method

Evaluation

Conclusions

State of the art

- extraction of explicit segmentation for each object detection hypothesis
- scoring superpixels individually and then assemble them into object detections
- use of the output from a semantic segmentation to improve object detection.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Here :

segmentation incorporated into the feature extraction step

Segmentation Driven Object Detection with Fisher Vectors

Camille BRASSEUR

Introduction

State of the art

Method

Evaluation Conclusions

1 Introduction

2 State of the art

3 Method

4 Evaluation

・ロト ・四ト ・ヨト ・ヨト

æ

Segmentation

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUF

Introductior

State of the art

Method

Evaluation

Conclusions

Steps

- partition of the image into superpixels
- hierarchically group the superpixel into a segmentation tree (merging neighboring and visually similar segments)

This is repeated eight times with

- 4 different color spaces and
- 2 different scale parameters

to compure the superpixels.

 \Rightarrow rich set of segments of varying sizes and shapes

(around 1500 object windows per image)

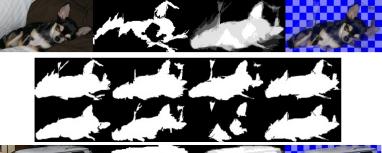
It is far less windows than in a sliding window approach.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

10/21 Correct examples

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

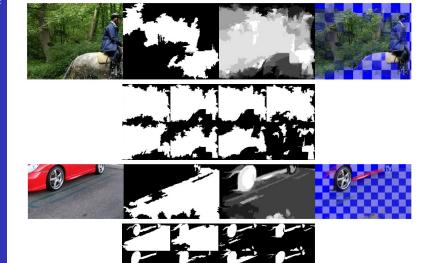

Introduction

State of th art

Method

Evaluation

Conclusions


11/21 Incorrect examples

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction State of the art

Method Evaluation Conclusions

12/21	Feature extraction
Segmentation Driven Object Detection with Fisher Vectors	
Camille Brasseur	local features :
Introduction	• SIFT
State of the art	• color descriptor
Method	
Evaluation	
Conclusions	
	Aggregation
	Using Fisher vector representation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Fisher vector

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

State of th art

Method

Evaluation

Conclusions

Normalized gradients

$$\frac{\partial \ln p(x)}{\partial \mu_{kd}} = \frac{p(k|x)}{\sqrt{\pi_k}} \left(\frac{x_d - \mu_{kd}}{\sigma_{kd}}\right) \tag{1}$$

$$\frac{\partial \ln p(x)}{\partial \sigma_{kd}} = \frac{p(k|x)}{\sqrt{\pi_k}} \left(\frac{(x_d - \mu_{kd})^2}{\sigma_{kd}^2} - 1 \right)$$
(2)

x local descriptor

 μ_{kd} and σ_{kd} mean and standard derivation of the k-th Gaussian in dimension d

 π_k mixing weight of the k-th Gaussian

p(k|x) soft assignment of x to the k-th Gaussian

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

State of the art

Method

Evaluation

Conclusions

Representation :

- sum the normalized gradients
- Weight the contribution of local descriptors by the averaged segmentation masks

Final window descriptor :

- concatenation of FV obtained over color and SIFT
- FV over the full image to capture global scene context

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

State of th art

Method

Evaluation

Conclusions

used tools

Compression

• Product Quantization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Blosc compression

Segmentation Driven Object Detection with Fisher Vectors

Camille BRASSEUR

Introduction

State of th art

Method

Evaluation

Conclusions

1 Introduction

State of the art

B Method

4 Evaluation

/21 First test

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

State of th art

Method

Evaluation

Conclusions

Performance on the development set with different descriptors regions and with/without SPM

Desc.	Regions	Norm.	SPM	bus	cat	mbike	sheep	mAP
S	W	object	no	22.2	35.8	26.3	16.6	25.2
S	W	object	yes	47.6	45.0	54.2	30.0	44.2
S	W	cell	yes	48.0	47.2	53.0	32.0	45.0
S	G (train on W)	cell	yes	35.7	46.3	43.2	17.0	35.5
S	M (train on W)	cell	yes	41.1	47.8	52.7	19.2	40.2
S	M	cell	yes	44.0	48.8	51.4	30.8	43.8
S	W+M	cell	yes	48.5	49.2	54.3	33.8	46.4
S+C	W	cell	yes	47.3	48.2	54.4	35.8	46.4
S+C	W+M	cell	yes	48.1	51.1	55.5	40.0	48.7
S+C	W+M+F	cell	yes	50.3	51.6	54.8	41.9	49.6

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Second test

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

State of the art

Method

Evaluation

Conclusions

Performance on VOC07 with different descriptors and regions.

		aero	bicy	bird	boa	bot	bus	car	cat	cha	cow	dtab	dog	hors	mbik	pers	plnt	she	sofa	trai	tv	mAP
S	W	46.7	48.7	14.1	19.4	15.7	45.0	54.6	36.3	11.4	36.2	37.4	24.3	37.1	52.4	25.8	14.7	35.3	30.4	47.2	48.2	34.0
S	W+M	50.2	49.4	16.6	21.3	15.7	45.5	55.3	39.8	14.8	36.3	39.5	25.4	42.4	50.4	30.6	15.8	34.3	35.5	48.3	49.7	35.8
S+C	W	47.7	50.1	16.5	19.2	15.9	45.1	55.1	37.2	13.0	37.3	40.8	25.5	40.7	51.8	26.4	18.2	35.5	30.6	47.7	49.6	35.2
S+C	W+M	50.5	51.2	18.8	23.8	17.8	47.2	56.4	41.6	14.7	38.6	40.7	27.1	47.3	52.4	29.7	19.6	38.3	35.0	49.3	52.8	37.6
S+C	W+F	49.9	51.6	16.4	21.7	16.5	45.9	55.6	38.4	15.3	42.1	42.0	25.3	41.2	52.2	26.8	18.8	36.2	35.8	48.5	51.6	36.6
S+C	W+M+F	52.6	52.6	19.2	25.4	18.7	47.3	56.9	42.1	16.6	41.4	41.9	27.7	47.9	51.5	29.9	20.0	41.1	36.4	48.6	53.2	38.5
S+C	W+M+F+Context	56.1	56.4	21.8	26.8	19.9	49.5	57.9	46.2	16.4	41.4	47.1	29.2	51.3	53.6	28.6	20.3	40.5	39.6	53.5	54.3	40.5

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

19/21 Third test

Segmentation Driven Object Detection with Fisher Vectors

> Camille BRASSEUR

Introduction

State of the art

Method

Evaluation

Conclusions

Comparison of this detector with and without context with the state-of-the-art object detectors on VOC 2007.

aero	bicy	bird	boa	bot	bus	car	cat	cha	cow	dtab	dog	hors	mbik	pers	plnt	she	sofa	trai	tv	mAP
methods without inter-class contextual cues																				
43.3	46.4	11.2	11.9	9.3	49.3	53.7	39.2	12.5	36.8	42.0	26.4	47.0	52.1	23.5	11.9	29.7	36.1	42.0	48.7	33.7
23.3	41.0	9.9	11.0	17.0	37.8	38.4	11.5	11.8	14.5	12.2	10.2	44.8	27.9	22.4	3.1	16.3	8.9	30.3	28.8	21.0
27.9	55.2	9.5	10.4	16.4	47.6	52.0	16.0	13.5	18.6	20.7	10.7	53.4	39.7	37.3	10.4	12.7	19.7	41.7	40.9	27.7
33.2	60.3	10.2	16.1	27.3	54.3	58.2	23.0	20.0	24.1	26.7	12.7	58.1	48.2	43.2	12.0	21.1	36.1	46.0	43.5	33.7
34.5	61.1	11.5	19.0	22.2	46.5	58.9	24.7	21.7	25.1	27.1	13.0	59.7	51.6	44.0	19.2	24.4	33.1	48.4	49.7	34.8
35.3	60.2	16.6	29.5	53	57.1	49.9	48.5	11	23	27.7	13.1	58.9	22.4	41.4	16	22.9	28.6	37.2	42.4	34.7
52.6	52.6	19.2	25.4	18.7	47.3	56.9	42.1	16.6	41.4	41.9	27.7	47.9	51.5	29.9	20.0	41.1	36.4	48.6	53.2	38.5
						met	thods	using	inter	-class	conte	xtual	cues							
36.6	62.2	12.1	17.6	28.7	54.6	60.4	25.5	21.1	25.6	26.6	14.6	60.9	50.7	44.7	14.3	21.5	38.2	49.3	43.6	35.4
41.0	64.3	15.1	19.5	33.0	57.9	63.2	27.8	23.2	28.2	29.1	16.9	63.7	53.8	47.1	18.3	28.1	42.2	53.1	49.3	38.7
56.1	56.4	21.8	26.8	19.9	49.5	57.9	46.2	16.4	41.4	47.1	29.2	51.3	53.6	28.7	20.3	40.5	39.6	53.5	54.3	40.5
4 2 2 3 4 4	3.3 23.3 27.9 33.2 44.5 55.3 52.6 41.0	13.3 46.4 13.3 41.0 13.3 41.0 17.9 55.2 13.2 60.3 14.5 61.1 15.3 60.2 16.6 62.2 11.0 64.3	3.3 46.4 11.2 3.3 41.0 9.9 7.9 55.2 9.5 3.3 60.3 10.2 14.5 61.1 11.5 15.3 60.2 16.6 12.6 52.6 19.2 16.6 62.2 12.1 11.0 64.3 15.1	33 4.64 11.2 11.9 3.3 41.0 9.9 11.0 7.9 55.2 9.5 10.4 3.2 60.3 10.2 16.1 44.5 61.1 11.5 19.0 55.3 60.2 16.6 29.5 52.6 52.6 19.2 25.4 66.6 62.2 12.1 17.6 61.0 64.3 15.1 19.5	13.3 46.4 11.2 11.9 9.3 13.3 41.0 9.9 11.0 17.0 7.9 55.2 9.5 10.4 16.4 3.3 60.3 10.2 16.1 17.5 3.4.5 61.1 11.5 19.0 22.2 5.3 60.2 16.6 29.5 53 32.6 52.6 19.2 25.4 18.7 46.6 62.2 12.1 17.6 28.7 11.0 64.3 15.1 19.5 33.0	3.3 46.4 11.2 11.9 9.3 49.3 3.3 41.0 9.9 11.0 17.0 37.8 7.9 55.2 9.5 10.4 16.4 47.6 3.2 60.3 10.2 16.1 27.3 54.3 3.2 60.3 10.2 16.1 27.3 54.3 44.5 61.1 11.5 19.0 22.2 46.5 55.3 60.2 16.6 29.5 53 57.1 12.6 52.6 19.2 25.4 18.7 47.3 346.6 62.2 12.1 17.6 28.7 54.6 11.0 64.3 15.1 19.5 33.0 57.9	mett 13.3 46.4 11.2 11.9 9.3 49.3 53.7 13.3 10.0 9.9 11.0 17.0 37.8 84.7 17.9 55.2 9.5 10.4 16.4 47.6 52.0 13.2 60.3 10.2 16.1 27.3 54.3 58.2 14.5 61.1 11.5 19.0 22.2 46.5 58.9 15.3 60.2 16.6 29.5 53 57.1 49.9 12.6 52.6 19.2 25.4 18.7 47.3 56.9 14.5 61.2 11.7 16.8 20.5 35 7.1 49.9 12.6 52.6 19.2 25.4 18.7 47.3 56.0 14.10 66.6 62.2 12.1 17.6 28.7 54.6 60.4 11.0 64.3 15.1 19.5 33.0 57.9 63.2	methods v 3.3 4.6. 11.2 11.9 3.4.3 3.7 3.2 3.3 41.0 9.9 11.0 17.0 37.8 38.4 11.5 7.9 55.2 9.5 10.4 16.4 47.6 52.0 16.0 3.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 4.5 61.1 11.5 19.0 22.2 46.5 58.9 24.7 5.3 50.2 16.6 29.5 33 7.1 49.9 48.5 52.6 52.6 19.2 25.4 18.7 47.3 56.9 42.1 methods Methods												

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fourth test

Segmentation Driven Object Detection with Fisher Vectors

20/21

Camille BRASSEUR

Introduction

State of the

Method

Evaluation

Conclusions

Comparison of our detector with and without context with the state-of-the-art object detectors on VOC 2010.

	aero	bicy	bird	boa	bot	bus	car	cat	cha	cow	dtab	dog	hors	mbik	pers	plnt	she	sofa	trai	tv	mAP
	methods without inter-class contextual cues																				
SUGS'11 [34]	58.2	41.9	19.2	14.0	14.3	44.8	36.7	48.8	12.9	28.1	28.7	39.4	44.1	52.5	25.8	14.1	38.8	34.2	43.1	42.6	34.1
GFM'12 [16]	45.6	49.0	11.0	11.6	27.2	50.5	43.1	23.6	17.2	23.2	10.7	20.5	42.5	44.5	41.3	8.7	29.0	18.7	40.0	34.5	29.6
SWJZ'13 [32]	44.6	48.5	12.9	26.3	47.5	41.6	45.3	39	10.8	21.6	23.6	22.9	40.9	30.4	37.9	9.6	17.3	11.5	25.3	31.2	29.4
Ours, without context	61.3	46.4	21.1	21.0	18.1	49.3	45.0	46.9	12.8	29.2	26.1	38.9	40.4	53.1	31.9	13.3	39.9	33.4	43.0	45.3	35.8
	methods using inter-class contextual cues																				
NLPR 2010 *	53.3	55.3	19.2	21.0	30.0	54.4	46.7	41.2	20.0	31.5	20.7	30.3	48.6	55.3	46.5	10.2	34.4	26.5	50.3	40.3	36.8
SCHHY'11 [33]	53.1	52.7	18.1	13.5	30.7	53.9	43.5	40.3	17.7	31.9	28.0	29.5	52.9	56.6	44.2	12.6	36.2	28.7	50.5	40.7	36.8
GFM'12 context [16]	48.2	52.2	14.8	13.8	28.7	53.2	44.9	26.0	18.4	24.4	13.7	23.1	45.8	50.5	43.7	9.8	31.1	21.5	44.4	35.7	32.2
Ours, with context	65.9	50.1	23.7	24.1	20.4	52.6	47.1	50.9	13.2	32.8	31.8	41.4	43.9	55.3	29.8	14.1	41.7	35.6	46.7	46.9	38.4
						unc	ompa	rable	metho	ods us	ing ac	lditio	nal tra	ining	data						
FMYU'13 [15] **	56.4	48.0	24.3	21.8	31.3	51.3	47.3	48.2	16.1	29.4	19.0	37.5	44.1	51.5	44.4	12.6	32.1	28.8	48.9	39.1	36.6
FMYU'13 context [15] **	61.4	53.4	25.6	25.2	35.5	51.7	50.6	50.8	19.3	33.8	26.8	40.4	48.3	54.4	47.1	14.8	38.7	35.0	52.8	43.1	40.4

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Segmentation Driven Object Detection with Fisher Vectors

Camille BRASSEUR

Introduction

State of th art

Method

Evaluation

Conclusions

Introduction

State of the art

3 Method

4 Evaluation

