Spatial Pyramid Matching for Recognizing Natural Scene Categories

Camille Schreck, Romain Vavassori

Ensimag

December 14, 2012

Schreck, Vavassori (Ensimag)

Beyond bags of Features

2 Method

- Pyramids
- Spatial Matching Scheme
- Features extraction
- Summary

3 Results

- Scene Category Recognition
- Caltech-101
- Graz Dataset

4 Conclusion

Overall objective : semantic categorisation.

- Use spatial information.
- Global representation.

3

<ロ> (日) (日) (日) (日) (日)

Bags of feature

- Images described as an orderless collection of features.
- Good performances.
- Do not use the information about the spatial layout of the features.

Multiresolution histograms

Subsampling an image and compute a global histogram at each level.

Generalized histograms to locally orderless images

For each Gaussian aperture at a given location and scale, the locally orderless image returns the histogram of image features aggregated over that aperture.

- 3

(日) (周) (三) (三)

2 Method

- Pyramids
- Spatial Matching Scheme
- Features extraction
- Summary

3 Results

4 Conclusion

3

-

___ ▶

Method

• Pyramids

- Spatial Matching Scheme
- Features extraction
- Summary

3 Results

- Scene Category Recognition
- Caltech-101
- Graz Dataset

3

- < ∃ →

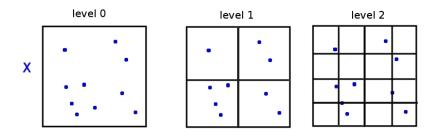
< 177 ▶

Pyramid Match Kernel

Goal

Find the approximate correspondance between 2 set of vectors, X and Y, in a d-dimentional feature space.

Idea


- correpondances are computed at different levels of resolution.
- at each level, a finer grid is set on the space.
- 2 vectors are said to match if they are on the same cell.
- take the weighted sum of all the matches.

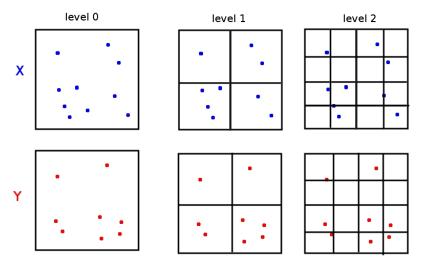
Subdivisions of the feature space

We compute matches at different level of resolution 0,..,L.

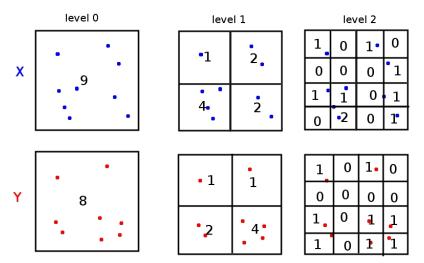
At the level of resolution I

- the grid is divided in 2¹ along each dimension.
- the grid has $D = 2^{dl}$ cells where d is the number of dimensions.

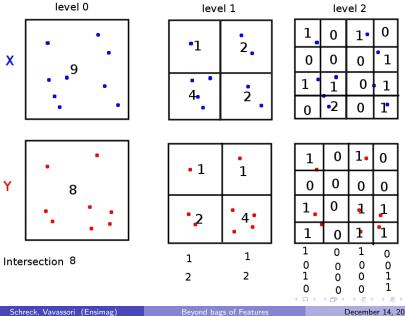
Histograms of X and Y


 H'_X and H'_Y are the histograms of X and Y at level *I* where $H'_X(i)$ is the number of vectors of X in the *ith* cell of the grid.

Histogram Intersection function


Give the number of matches at level *I* :

$$\mathcal{I}(H_X^l, H_Y^l) = \sum_{i=1}^D \min(H_X^l(i), H_Y^l(i))$$


Schreck, Vavassori (Ensimag)

◆ (1) ▶ ◆ 三 ▶

< (17) > <

э

Computation of the kernel

All matches found at level l + 1 are found also at level l.

 \rightarrow Number of new matches at level *I* is given by $\mathcal{I}^{I} - \mathcal{I}^{I+1}$. We sum all the matches weighted by $\frac{1}{2^{L-7}}$. The more the grid is coarse, the less the matches are weighted.

pyramid match kernel

Mercer kernel :

$$\kappa^{\prime}(X,Y) = \mathcal{I}^{L} + \sum_{l=0}^{L-1} \frac{1}{2^{L-l}} (\mathcal{I}^{\prime} - \mathcal{I}^{\prime-1})$$

Method

• Pyramids

• Spatial Matching Scheme

- Features extraction
- Summary

Results

- Scene Category Recognition
- Caltech-101
- Graz Dataset

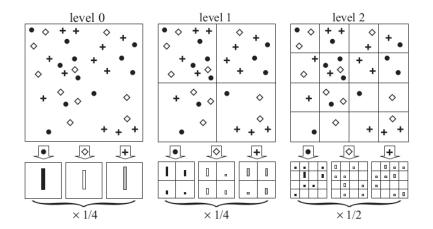
"Orthogonal" approach

Matching of two collection of features in a high-dimensional appearance space

- quantize all feature vectors into M discrete types, giving M channels.
- perform pyramid matching in the 2-dimensional image space for each channel m = 1..M.

Assumption

Only features of the same type m can be matched to one another.


Final kernel is the sum of separate channel kernels

$$\mathcal{K}^{L}(X,Y) = \sum_{m=1}^{M} \kappa^{L}(X_{m},Y_{m})$$

where X_m and Y_m are the coordinates of features of type m found in the respective image.

 K_L can be computed as the intersection of the histograms obtain by concatenating the histograms of each channel.

Example

<ロ> (日) (日) (日) (日) (日)

18 / 32

Method

- Pyramids
- Spatial Matching Scheme
- Features extraction
- Summary

3 Results

- Scene Category Recognition
- Caltech-101
- Graz Dataset

3

→ ∃ →

Two kinds of features for the experiments

Weak features

Edge points at two scales and eight orientations.

 \rightarrow M = 16 channels.

Strong features

SIFT descriptors of 16×16 pixels. *k*-mean clustering to get a visual vocabulary. In the experiments vocalubary size is M = 200 or M = 400.

Method

- Pyramids
- Spatial Matching Scheme
- Features extraction
- Summary

3 Results

- Scene Category Recognition
- Caltech-101
- Graz Dataset

3

- < ∃ →

< 行

- Clustering features from a training set.
- Computation of the "description" of a query image.
- Comparison with the description of each image in test set.

Method

3 Results

- Scene Category Recognition
- Caltech-101
- Graz Dataset

4 Conclusion

- 一司

Method

- Pyramids
- Spatial Matching Scheme
- Features extraction
- Summary

3 Results

• Scene Category Recognition

- Caltech-101
- Graz Dataset

4 Conclusion

Scene Category Recognition

	Weak features $(M = 16)$		Strong features ($M = 200$)		Strong features ($M = 400$)	
L	Single-level	Pyramid	Single-level	Pyramid	Single-level	Pyramid
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6		74.8 ± 0.3	
$1(2 \times 2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5	78.8 ± 0.4	80.1 ± 0.5
$2(4 \times 4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ± 0.3	79.7 ± 0.5	81.4 ± 0.5
3 (8 × 8)	63.3 ± 0.8	$\textbf{66.8} \pm 0.6$	77.2 ± 0.4	80.7 ± 0.3	77.2 ± 0.5	81.1 ± 0.6

(日) (周) (三) (三)

Example

(b) kitchen

・ロト ・回ト ・ヨト

inside city

Method

- Pyramids
- Spatial Matching Scheme
- Features extraction
- Summary

Results 3

- Scene Category Recognition
- Caltech-101
- Graz Dataset

Conclusion

Caltech-101

	Weak fe	eatures	Strong features (200)		
L	Single-level	Pyramid	Single-level	Pyramid	
0	15.5 ± 0.9		41.2 ± 1.2		
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8	
2	47.2 ± 1.1	49.3 ± 1.4	$63.6\pm\!0.9$	64.6 ±0.8	
3	52.2 ± 0.8	$\textbf{54.0} \pm 1.1$	$60.3\pm\!0.9$	64.6 ± 0.7	

3

<ロ> (日) (日) (日) (日) (日)

Method

- Pyramids
- Spatial Matching Scheme
- Features extraction
- Summary

Results 3

- Scene Category Recognition
- Caltech-101
- Graz Dataset

Conclusion

Graz Dataset

Class	L = 0	L = 2	Opelt [14]	Zhang [25]
Bikes	82.4 ± 2.0	86.3 ± 2.5	86.5	92.0
People	79.5 ± 2.3	82.3 ± 3.1	80.8	88.0

3

<ロ> (日) (日) (日) (日) (日)

3

<ロ> (日) (日) (日) (日) (日)

Conclusion

- "holistic" approach for categorisation.
- Simple method.
- Gives better results than bag-of-features.