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 Image classification: predict presence of objects in the image

 Object localization: define the location and the category

Car: present

Cow: present

Bike: not present

Horse: not present

…

Car Cow

Category label

+ location

Objectives of visual recognition



Difficulties: appearance variation of same object

 Variability in appearance of the same object:
► Viewpoint and illumination, 
► occlusions, 
► articulation of deformable objects
► ... 



Difficulties: within-class variations



Visual category recognition

 Robust image description 
► Appropriate descriptors for objects and categories
► Local descriptors to be robust against occlusions

 Machine learning techniques to learn models from examples
 scene types (city, beach, mountains,...) : images
 object categories (car, cat, person, ...) : cropped objects
 human actions (run, sit-down, open-door, ...): video clips



Why machine learning?

 Early approaches: simple features + handcrafted models
 Can handle only few images, simple tasks 

L. G. Roberts, Ph.D. thesis
Machine Perception of Three Dimensional Solids, 
MIT Department of Electrical Engineering, 1963. 



Why machine learning?

 Early approaches: manual programming of rules
 Tedious, limited and does not take into account the data  

Y. Ohta, T. Kanade, and T. Sakai, “An Analysis System for Scenes Containing objects with Substructures,” International Joint Conference on Pattern Recognition, 1978.



Bag-of-features image classification 

bikes books building cars people phones trees

 Excellent results in the presence of 
► background clutter, 
► occlusion, 
► lighting variations, 
► viewpoint changes



Bag-of-features image classification in a nutshell

1) Extract local image regions 
► For example using interest point detectors

2) Compute descriptors of these regions
► For example SIFT descriptors

3) Aggregate the local descriptors into global image representation
► This is where clustering techniques come in

4) Classification of the image based on this representation
► SVM or other classifier



Bag-of-features image classification in a nutshell

1) Extract local image regions 
► For example using interest point detectors

2) Compute descriptors of these regions
► For example SIFT descriptors

3) Aggregate the local descriptors into bag-of-word histogram
► Map each local descriptor to one of K clusters (a.k.a. “visual words”)
► Use histogram of word counts to represent image

…..
Visual word index
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Example visual words found by clustering

Airplanes

Motorbikes

Faces

Wild Cats

Leafs

People

Bikes



Clustering

 Finding a group structure in the data

– Data in one cluster similar to each other

– Data in different clusters dissimilar

 Map each data point to a discrete cluster index

– “flat”  methods find K groups 

– “hierarchical” methods define a tree structure over the data



Hierarchical Clustering

 Data set is organized into a tree structure

 Top-down construction

– Start all data in one cluster: root node

– Apply “flat” clustering into k groups

– Recursively cluster the data in each group

 Bottom-up construction

– Start with all points in separate cluster

– Recursively merge “closest” clusters

– Distance between clusters A and B

• E.g. min, max, or mean distance 

between x in A, and y in B



Clustering descriptors into visual words

 Offline clustering: Find groups of similar local descriptors
► Using many descriptors from many training images

 Encoding a new image:

– Detect local regions
– Compute local descriptors
– Count descriptors in each cluster

[5, 2, 3] [3, 6, 1]



Definition of k-means clustering

 Given: data set of N points xn, n=1,…,N

 Goal: find K cluster centers mk, k=1,…,K

    that minimize the squared distance to nearest cluster centers

 Clustering = assignment of data points to nearest cluster center

– Indicator variables rnk=1 if xn assgined to xn, rnk=0 otherwise

 For fixed cluster centers, error criterion equals sum of squared distances 
between each data point and assigned cluster center

E ({mk}k=1
K )=∑n=1

N

∑k=1

K
rnk∥xn−mk∥

2

E ({mk}k=1
K )=∑n=1

N
mink ∈{1,... ,K }∥xn−mk∥

2



Examples of k-means clustering

 Data uniformly sampled in unit square

 k-means with 5, 10, 15, and 25 centers



Minimizing the error function

• Goal find centers mk to minimize the error function

• Any set of assignments, not only the best assignment, 

gives an upper-bound on the error:

• The iterative k-means algorithm minimizes this bound
1) Initialize cluster centers, eg. on randomly selected data points
2) Update assignments rnk for fixed centers mk 

3) Update centers mk for fixed data assignments rnk

4) If cluster centers changed: return to step 2
5) Return cluster centers

E ({mk}k=1
K )=∑n=1

N
mink ∈{1,... ,K }∥xn−mk∥

2

F ({mk }k=1
K )=∑n=1

N

∑k=1

K
rnk∥xn−mk∥

2



Minimizing the error bound

• Update assignments rnk for fixed centers mk 

• Decouples over the data points

• Constraint: exactly one rnk=1, rest zero

• Solution: assign to closest center

• Update centers mk for fixed assignments rnk 

• Decouples over the centers
• Set derivative to zero
• Put center at mean of assigned data points

mk=
∑n

r nk xn

∑n
r nk

∑n
rnk∥xn−mk∥

2

∂ F
∂mk

=2∑n
r nk(xn−mk)=0

F ({mk }k=1
K )=∑n=1

N

∑k=1

K
rnk∥xn−mk∥

2

∑k
rnk∥xn−mk∥

2∑k
rnk∥xn−mk∥

2



Examples of k-means clustering

 Several k-means iterations with two centers

Error function



Minimizing the error function

• Goal find centers mk to minimize the error function

– Proceeded by iteratively minimizing the error bound

• K-means iterations monotonically decrease error function since
– Both steps reduce the error bound
– Error bound matches true error after update of the assignments

E ({mk}k=1
K )=∑n=1

N
mink ∈{1,... ,K }∥xn−mk∥

2

F ({mk }k=1
K )=∑n=1

N

∑k=1

K
rnk∥xn−mk∥

2

Bound #1
Bound #2

True error

Placement of centers
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Problems with k-means clustering

 Solution depends heavily on initialization
► Several runs from different initializations



Problems with k-means clustering

 Assignment of data to clusters is only based on the distance to center
– No representation of the shape of the cluster
– Implicitly assumes spherical shape of clusters



Clustering with Gaussian mixture density

 Each cluster represented by Gaussian density

– Parameters: center m, covariance matrix C

– Covariance matrix encodes spread around center, 

can be interpreted as defining a non-isotropic distance around center

Two Gaussians in 1 dimension A Gaussian in 2 dimensions



Clustering with Gaussian mixture density

 Each cluster represented by Gaussian density

– Parameters: center m, covariance matrix C

– Covariance matrix encodes spread around center, 

can be interpreted as defining a non-isotropic distance around center

Determinant of
covariance matrix C Quadratic function of

point x and mean m
Mahanalobis distance

N (x∣m ,C )=(2π)
−d /2

∣C∣
−1 /2 exp(−1

2
(x−m)

T C−1
(x−m))

 Definition of Gaussian density in d dimensions



Mixture of Gaussian (MoG) density

 Mixture density is weighted sum of Gaussian densities

– Mixing weight: importance of each cluster

 Density has to integrate to 1, so we require

p (x )=∑k=1

K
πk N (x∣mk , Ck)

πk≥0

∑k =1

K
πk=1

Mixture in 1 dimension Mixture in 2 dimensions



Clustering with Gaussian mixture density

 Given: data set of N points xn, n=1,…,N

 Find mixture of Gaussians (MoG) that best explains data
► Maximize log-likelihood of fixed data set w.r.t. parameters of MoG
► Assume data points are drawn independently from MoG

 MoG learning very similar to k-means clustering

– Also an iterative algorithm to find parameters
– Also sensitive to initialization of paramters

L(θ)=∑n=1

N
log p(xn)=∑n=1

N
log∑k=1

K
π k N (xn∣mk ,Ck)

θ={π k ,mk ,Ck }k=1
K



Assignment of data points to clusters

 As with k-means zn indicates cluster index for xn

 To sample data point from MoG
– Select cluster with probability given by mixing weight
– Sample point from the k-th Gaussian
– MoG recovered if we marginalize over the unknown cluster index

p(x )=∑k
p( z=k) p(x∣z=k )=∑k

πk N (x∣mk ,Ck)

p(z=k )=πk

p(x∣z=k )=N ( x∣mk ,Ck)

Color coded model and data of each cluster Mixture model and data from it



Soft assignment of data points to clusters

 Given data point x, infer cluster index z

p(z=k∣x )=
p(z=k , x)

p(x )

=
p (z=k ) p(x∣z=k )

∑k
p(z=k ) p( x∣z=k)

=
πk N (x∣mk ,Ck)

∑k
π k N (x∣mk ,C k)

MoG model Data Color-coded
soft-assignments



Maximum likelihood estimation of single Gaussian

 Given data points xn, n=1,…,N

 Find single Gaussian that maximizes data log-likelihood

 Set derivative of data log-likelihood w.r.t. parameters to zero

 Parameters set as data covariance and mean

L(θ)=∑n=1

N
log p(xn)=∑n=1

N
log N (xn∣m , C)=∑n=1

N

(−d
2

logπ−
1
2

log∣C∣−
1
2
(xn−m)

T C−1
(xn−m))

∂ L(θ)

∂C−1 =∑n=1

N

(1
2

C−
1
2
(xn−m)(xn−m)

T )=0

C=
1
N
∑n=1

N
(xn−m)(xn−m)

T

∂ L(θ)

∂m
=C−1∑n=1

N

(xn−m )=0

m=
1
N
∑n=1

N
xn



Maximum likelihood estimation of MoG

 No simple equation as in the case of a single Gaussian
 Use EM algorithm

– Initialize MoG: parameters or soft-assign

– E-step: soft assign of data points to clusters
– M-step: update the mixture parameters
– Repeat EM steps, terminate if converged 

• Convergence of parameters or assignments

 E-step: compute soft-assignments: 
 M-step: update Gaussians from weighted data points

πk=
1
N
∑n=1

N
qnk

mk=
1

N π k
∑n=1

N
qnk xn

Ck=
1

N πk
∑n=1

N
qnk (xn−mk)(xn−mk )

T

qnk=p(z=k∣xn)



Maximum likelihood estimation of MoG

 Example of several EM iterations



EM algorithm as iterative bound optimization

 Just like k-means, EM algorithm is an iterative bound optimization algorithm
– Goal: Maximize data log-likelihood, can not be done in closed form

– Solution: iteratively maximize (easier) bound on the log-likelihood

 Bound uses two information theoretic quantities
– Entropy
– Kullback-Leibler divergence

L(θ)=∑n=1

N
log p(xn)=∑n=1

N
log∑k=1

K
π k N (xn∣mk ,Ck)



Entropy of a distribution

 Entropy captures uncertainty in a distribution
– Maximum for uniform distribution
– Minimum, zero, for delta peak on single value

H (q)=−∑k=1

K
q( z=k )log q( z=k )

Low entropy distribution High entropy distribution



Entropy of a distribution

 Connection to information coding (Noiseless coding theorem, Shannon 1948)
► Frequent messages short code, rare messages long code
► optimal code length is (at least) -log p bits
► Entropy: expected (optimal) code length per message

 Suppose uniform distribution over 8 outcomes: 3 bit code words
 Suppose distribution: 1/2,1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64, entropy 2 bits!

► Code words: 0, 10, 110, 1110, 111100, 111101,111110,111111
 Codewords are “self-delimiting”: 

► Do not need a “space” symbol to separate codewords in a string
► If first zero is encountered after 4 symbols or less, then stop. Otherwise, 

code is of length 6.

H (q)=−∑k=1

K
q( z=k )log q( z=k )



Kullback-Leibler divergence

 Asymmetric dissimilarity between distributions
– Minimum, zero, if distributions are equal
– Maximum, infinity, if p has a zero where q is non-zero

 Interpretation in coding theory
► Sub-optimality when messages distributed according to q, 

but coding with codeword lengths derived from p 
► Difference of expected code lengths

– Suppose distribution q: 1/2,1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64
– Coding with p: uniform over the 8 outcomes 
– Expected code length using p: 3 bits
– Optimal expected code length, entropy H(q) = 2 bits
– KL divergence D(q|p) = 1 bit

D (q∥p)=∑k=1

K
q( z=k ) log

q( z=k )

p( z=k )

D(q∥p)=−∑k=1

K
q (z=k ) log p (z=k )−H (q )≥0



EM bound on MoG log-likelihood

 We want to bound the log-likelihood of a Gaussian mixture p(x) 

 Using “true” posterior distribution on cluster assignment 

 And any arbitrary distribution q(z) over cluster assignment

 Bound log-likelihood by subtracting KL divergence D(q(z) || p(z|x))
► Inequality follows immediately from non-negativity of KL

p( x)=∑k=1

K
πk N (x ;mk , Ck)

p( z=k∣x )=
p (z=k ) p (x∣z=k )

p(x )

F (q ,θ)=log p (x ;θ)−D (q (z)∥p(z∣x ,θ))≤log p( x ;θ)



Maximizing the EM bound on log-likelihood

 E-step: 
► fix model parameters, 
► update distributions qn  to maximize the bound

► KL divergence zero if distributions are equal
► Thus set qn(zn) = p(zn|xn)

► After updating the qn the bound equals the true log-likelihood

F (θ , {qn})=∑n=1

N

[ log p (xn)−D (qn( zn)∥p (zn∣xn)) ]



Maximizing the EM bound on log-likelihood

 M-step: 
► fix the soft-assignments qn, 

► update model parameters

 Terms for each Gaussian decoupled from rest ! 

F (θ , {qn})=∑n=1

N

[ log p (xn)−D (qn( zn)∥p (zn∣xn)) ]

=∑n=1

N

[ log p ( xn)−∑k
qnk ( log qnk−log p (zn=k∣xn)) ]

=∑n=1

N

[ H (qn)+∑k
qnk log p (zn=k , xn)]

=∑n=1

N

[ H (qn)+∑k
qnk ( logπk+log N (xn ;mk ,Ck)) ]



Maximizing the EM bound on log-likelihood

 Derive the optimal values for the mixing weights

– Maximize 

– Take into account that weights sum to one, define

– Set derivative for mixing weight j >1 to zero

π1=1−∑k=2

K
πk

∑n=1

N

∑k=1

K
qnk logπk

∂

∂π j
∑n=1

N

∑k=1

K
qnk logπk=

∑n=1

N
qnj

π j
−
∑n=1

N
qn1

π1
=0

∑n=1

N
qnj

π j
=
∑n=1

N
qn1

π1

π1∑n=1

N
qnj=π j∑n=1

N
qn1

π1∑n=1

N

∑ j=1

K
qnj=∑ j=1

K
π j∑n

qn1

π j=
1
N
∑n=1

N
qnj

π1 N=∑n=1

N
qn1



Maximizing the EM bound on log-likelihood

 Derive the optimal values for the MoG parameters

– For each Gaussian maximize

– Compute gradients and set to zero to find optimal parameters 
∑n

qnk log N (xn ;mk ,C k )

log N (x ; m ,C )=
d
2

log(2π)−
1
2

log∣C∣−
1
2
(x n−m)T C−1(x n−m)

∂
∂ m

log N (x ;m ,C )=C−1
(x−m)

∂

∂C−1
log N (x ;m ,C )=

1
2

C−
1
2
(x−m)(x−m)T

mk=
∑n

qnk xn

∑n
qnk

C k=
∑n

qnk (xn−m)(xn−m)T

∑n
qnk



F (θ , {qn})=∑n=1

N

[ log p (xn)−D (qn( zn)∥p (zn∣xn)) ]

EM bound on log-likelihood

 L is bound on data log-likelihood for any distribution q

 Iterative coordinate ascent on F
– E-step optimize q, makes bound tight
– M-step optimize parameters

F (θ , {qn})
F (θ , {qn})

F (θ , {qn})

F (θ , {qn})



Clustering with k-means and MoG

 Assignment:
► K-means: hard assignment, discontinuity at cluster border
► MoG: soft assignment, 50/50 assignment at midpoint

 Cluster representation
– K-means: center only
– MoG: center, covariance matrix, mixing weight

 If mixing weights are equal and

all covariance matrices are constrained to be                 and 

then EM algorithm = k-means algorithm

 For both k-means and MoG clustering
► Number of clusters needs to be fixed in advance
► Results depend on initialization, no optimal learning algorithms
► Can be generalized to other types of distances or densities

C k=ϵ I ϵ→0



Reading material

 For more details on k-means and mixture of Gaussian learning with EM see 
the following book chapter: highly recommended !

► Pattern Recognition and Machine Learning, 

Chapter 9

Chris Bishop, 2006, Springer
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