Graphical Models Discrete Inference and Learning Lecture 1

MVA
2021-2022
http://thoth.inrialpes.fr/~alahari/disinflearn

Slides based on material from Stephen Gould, Pushmeet Kohli, Nikos Komodakis, M. Pawan Kumar, Carsten Rother, Daphne Koller, Dhruv Batra

Graphical Models ?

What this class is about?

- Making global predictions from local observations

Inference

- Learning such models from large quantities of data

Learning

Motivation

- Consider the example of medical diagnosis

Predisposing factors
Symptoms
Test results

Diseases
Treatment outcomes

Motivation

- A very different example: image segmentation

Millions of pixels
Colours / features

Motivation

- What do these two problems have in common?

Slide inspired by PGM course, Daphne Koller

Motivation

- What do these two problems have in common?
- Many variables
- Uncertainty about the correct answer

Graphical Models (or Probabilistic Graphical Models) provide a framework to address these problems

(Probabilistic) Graphical Models

- First, it is a model: a declarative representation
- Can also define the model
- with domain knowledge
- from data

Model

Domain expert

Algorithm

(Probabilistic) Graphical Models

- Why probabilistic?
- To model uncertainty
- Uncertainty due to:
- Partial knowledge of state of the world
- Noisy observations
- Phenomena not observed by the model
- Inherent stochasticity

(Probabilistic) Graphical Models

- Probability theory provides
- Standalone representation with clear semantics
- Reasoning patterns (conditioning, decision making)
- Learning methods

(Probabilistic) Graphical Models

- Why graphical ?
- Intersection of ideas from probability theory and computer science
- To represent large number of variables

Predisposing factors
Symptoms
Test results
Millions of pixels
Colours / features

$$
\text { Random variables } Y_{1}, Y_{2}, \ldots, Y_{n}
$$

Goal: capture uncertainty through joint distribution $\mathrm{P}\left(\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}\right)$

(Probabilistic) Graphical Models

(Probabilistic) Graphical Model

- Examples

(Probabilistic) Graphical Model

- Examples

Segmentation network (Courtesy D. Koller)
Diagnosis network: Pradhan et al., UAI'94

(Probabilistic) Graphical Model

- Intuitive \& compact data structure
- Efficient reasoning through general-purpose algorithms
- Sparse parameterization
- Through expert knowledge, or
- Learning from data

(Probabilistic) Graphical Model

- Many many applications
- Medical diagnosis
- Fault diagnosis
- Natural language processing
- Traffic analysis
- Social network models
- Message decoding
- Computer vision: segmentation, 3D, pose estimation
- Speech recognition
- Robot localization \& mapping

Image segmentation

Image

No graphical model

With graphical model

Multi-sensor integration: Traffic

- Learn from historical data to make predictions

Stock market

Going global: Local ambiguity

- Text recognition

Smyth et al., 1994

Going global: Local ambiguity

- Textual information extraction
e.g., Mrs. Green spoke today in New York. Green chairs the financial committee.

Overview of the course

- Representation
- How do we store $P\left(Y_{1}, \ldots Y_{n}\right)$
- Directed and undirected (model implications/assumptions)
- Inference
- Answer questions with the model
- Exact and approximate (marginal/most probable estimate)
- Learning
- What model is right for data
- Parameters and structure

First, a recap of basics

Graphs

- Concepts
- Definition of G
- Vertices/Nodes
- Edges
- Directed vs Undirected
- Neighbours vs Parent/Child
- Degree vs In/Out degree
- Walk vs Path vs Cycle

Graphs

Special graphs

- Trees: undirected graph, no cycles
- Spanning tree: Same set of vertices, but subset of edges, connected and no cycles

Slide courtesy: D. Batra

Directed acyclic graphs (DAGs)

Figure courtesy: D. Batra

Interpreting Probability

- What does $\mathrm{P}(\mathrm{A})$ mean?
- Frequentist view
- Limit $N \rightarrow \infty$, \#(A is true)/N
- i.e., limiting frequency of a repeating nondeterministic event
- Bayesian view
$-P(A)$ is your belief about A

Joint distribution

- 3 variables
- Intelligence (I)
- Difficulty (D)
- Grade (G)
- Independent parameters?

\mathbf{I}	\mathbf{D}	\boldsymbol{G}	Prob.
i^{0}	$\mathrm{~d}^{0}$	g^{1}	0.126
i^{0}	$\mathrm{~d}^{0}$	g^{2}	0.168
i^{0}	$\mathrm{~d}^{0}$	g^{3}	0.126
i^{0}	$\mathrm{~d}^{1}$	g^{1}	0.009
i^{0}	$\mathrm{~d}^{1}$	g^{2}	0.045
i^{0}	$\mathrm{~d}^{1}$	g^{3}	0.126
i^{1}	$\mathrm{~d}^{0}$	g^{1}	0.252
i^{1}	$\mathrm{~d}^{0}$	g^{2}	0.0224
i^{1}	$\mathrm{~d}^{0}$	g^{3}	0.0056
i^{1}	$\mathrm{~d}^{1}$	g^{1}	0.06
i^{1}	$\mathrm{~d}^{1}$	g^{2}	0.036
i^{1}	$\mathrm{~d}^{1}$	g^{3}	0.024

Conditioning

- Condition on g^{1}

\mathbf{I}	\mathbf{D}	\boldsymbol{G}	Prob.
i^{0}	$\mathrm{~d}^{0}$	g^{1}	0.126
i^{0}	$\mathrm{~d}^{0}$	g^{2}	0.168
i^{0}	$\mathrm{~d}^{0}$	g^{3}	0.126
i^{0}	$\mathrm{~d}^{1}$	g^{1}	0.009
i^{0}	$\mathrm{~d}^{1}$	g^{2}	0.045
i^{0}	$\mathrm{~d}^{1}$	g^{3}	0.126
i^{1}	$\mathrm{~d}^{0}$	g^{1}	0.252
i^{1}	$\mathrm{~d}^{0}$	g^{2}	0.0224
i^{1}	$\mathrm{~d}^{0}$	g^{3}	0.0056
i^{1}	$\mathrm{~d}^{1}$	g^{1}	0.06
i^{1}	$\mathrm{~d}^{1}$	g^{2}	0.036
i^{1}	$\mathrm{~d}^{1}$	g^{3}	0.024

Conditioning

- $P(Y=y \mid X=x)$
- Informally,
- What do you believe about $Y=y$ when I tell you $X=x$?
- P(France wins a football tournament in 2021) ?
- What if I tell you:
- France won the world cup 2018
- Hasn't had catastrophic results since $)$

Conditioning: Reduction

- Condition on g^{1}

\mathbf{I}	\mathbf{D}	\mathbf{G}	Prob.
i^{0}	$\mathrm{~d}^{0}$	g^{1}	0.126
i^{0}	$\mathrm{~d}^{1}$	9^{1}	0.009
i^{1}	$\mathrm{~d}^{0}$	9^{1}	0.252
i^{1}	$\mathrm{~d}^{1}$	g^{1}	0.06

Conditioning: Renormalization

\mathbf{I}	\boldsymbol{D}	\boldsymbol{G}	Prob.
i^{0}	$\mathrm{~d}^{0}$	\mathbf{g}^{1}	0.126
i^{0}	$\mathrm{~d}^{1}$	$\mathrm{~g}^{1}$	0.009
i^{1}	$\mathrm{~d}^{0}$	g^{1}	0.252
i^{1}	$\mathrm{~d}^{1}$	g^{1}	0.06

$P\left(I, D, g^{1}\right)$

\mathbf{I}	D	Prob.
i^{0}	$\mathrm{~d}^{0}$	0.282
i^{0}	$\mathrm{~d}^{1}$	0.02
i^{1}	$\mathrm{~d}^{0}$	0.564
i^{1}	$\mathrm{~d}^{1}$	0.134
$P\left(I, D \mid g^{1}\right)$		

Unnormalized measure

Conditional probability distribution

- Example $P(G \mid I, D)$

	g^{1}	g^{2}	g^{3}
i^{0}, d^{0}	0.3	0.4	0.3
i^{0}, d^{1}	0.05	0.25	0.7
i^{1}, d^{0}	0.9	0.08	0.02
i^{1}, d^{1}	0.5	0.3	0.2

Conditional probability distribution

$$
p(x, y \mid Z=z)=\frac{p(x, y, z)}{p(z)}
$$

Marginalization

Marginalization

- Events
$-P(A)=P(A$ and $B)+P(A$ and not $B)$
- Random variables
$-P(X=x)=\sum_{y} P(X=x, Y=y)$

Marginalization

$$
p(x, y)=\sum_{z \in \mathcal{Z}} p(x, y, z)
$$

$$
p(x)=\sum_{y \in \mathcal{Y}} p(x, y)
$$

Slide courtesy: Erik Sudderth

Factors

- A factor $\Phi\left(\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{k}}\right)$

$$
\Phi: \operatorname{Val}\left(Y_{1}, \ldots, Y_{k}\right) \rightarrow R
$$

- Scope $=\left\{\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{k}}\right\}$

Factors

- Example: P(D, I, G)

\mathbf{I}	\mathbf{D}	\boldsymbol{G}	Prob.
i^{0}	$\mathrm{~d}^{0}$	g^{1}	0.126
i^{0}	$\mathrm{~d}^{0}$	g^{2}	0.168
i^{0}	$\mathrm{~d}^{0}$	g^{3}	0.126
i^{0}	$\mathrm{~d}^{1}$	g^{1}	0.009
i^{0}	$\mathrm{~d}^{1}$	g^{2}	0.045
i^{0}	$\mathrm{~d}^{1}$	g^{3}	0.126
i^{1}	$\mathrm{~d}^{0}$	g^{1}	0.252
i^{1}	$\mathrm{~d}^{0}$	g^{2}	0.0224
i^{1}	$\mathrm{~d}^{0}$	g^{3}	0.0056
i^{1}	$\mathrm{~d}^{1}$	g^{1}	0.06
i^{1}	$\mathrm{~d}^{1}$	g^{2}	0.036
i^{1}	$\mathrm{~d}^{1}$	g^{3}	0.024

Factors

- Example: P(D,I, $\left.9^{1}\right)$

\mathbf{I}	\mathbf{D}	\boldsymbol{G}	Prob.
i^{0}	$\mathrm{~d}^{0}$	\mathbf{g}^{1}	0.126
i^{0}	$\mathrm{~d}^{1}$	$\mathrm{~g}^{1}$	0.009
i^{1}	$\mathrm{~d}^{0}$	\mathbf{g}^{1}	0.252
i^{1}	$\mathrm{~d}^{1}$	\mathbf{g}^{1}	0.06

What is the scope here?

General factors

- Not necessarily for probabilities

\boldsymbol{A}	\mathbf{B}	ϕ
a^{0}	b^{0}	30
a^{0}	b^{1}	5
a^{1}	b^{0}	1
a^{1}	b^{1}	10

Factor product

a^{1}	b^{1}	0.5
a^{1}	b^{2}	0.8
a^{2}	b^{1}	0.1
a^{2}	b^{2}	0
a^{3}	b^{1}	0.3
a^{3}	b^{2}	0.9
b^{1}	c^{1}	0.5
c^{2}	0.7	
b^{2}	c^{1}	0.1
b^{2}	c^{2}	0.2

a^{1}	b^{1}	c^{1}	$0.50 .5=0.25$
a^{1}	b^{1}	c^{2}	$0.5 \cdot 0.7=0.35$
a^{1}	b^{2}	c^{1}	$0.8 \cdot 0.1=0.08$
a^{1}	b^{2}	c^{2}	$0.8 \cdot 0.2=0.16$
a^{2}	b^{1}	c^{1}	$0.1 \cdot 0.5=0.05$
a^{2}	b^{1}	c^{2}	$0.1 \cdot 0.7=0.07$
a^{2}	b^{2}	c^{1}	$0.0 .1=0$
a^{2}	b^{2}	c^{2}	$0 \cdot 0.2=0$
a^{3}	b^{1}	c^{1}	$0.3 \cdot 0.5=0.15$
a^{3}	b^{1}	c^{2}	$0.3 \cdot 0.7=0.21$
a^{3}	b^{2}	c^{1}	$0.9 \cdot 0.1=0.09$
a^{3}	b^{2}	c^{2}	$0.9 \cdot 0.2=0.18$

Example courtesy: PGM course, Daphne Koller

Factor marginalization

a^{1}	b^{1}	c^{1}	0.25			
a^{1}	b^{1}	c^{2}	0.35			
a^{1}	b^{2}	c^{1}	0.08			
a^{1}	b^{2}	c^{2}	0.16	a^{1}	c^{1}	0.33
a^{2}	b^{1}	c^{1}	0.05	a^{1}	c^{2}	0.51
a^{2}	b^{1}	c^{2}	0.07	a^{2}	c^{1}	0.05
a^{2}	b^{2}	c^{1}	0	a^{2}	c^{2}	0.07
a^{2}	b^{2}	c^{2}	0	a^{3}	c^{1}	0.24
a^{3}	b^{1}	c^{1}	0.15	a^{3}	c^{2}	0.39
a^{3}	b^{1}	c^{2}	0.21			
a^{3}	b^{2}	c^{1}	0.09			
a^{3}	b^{2}	c^{2}	0.18			

Example courtesy: PGM course, Daphne Koller

Factor reduction

a^{1}	b^{1}	c^{1}	0.25
a^{1}	b^{1}	c^{2}	0.35
a^{1}	b^{2}	c^{1}	0.08
a^{1}	b^{2}	c^{2}	0.16
a^{2}	b^{1}	c^{1}	0.05
a^{2}	b^{1}	c^{2}	0.07
a^{2}	b^{2}	c^{1}	0
a^{2}	b^{2}	c^{2}	0
a^{3}	b^{1}	c^{1}	0.15
a^{3}	b^{1}	c^{2}	0.21
a^{3}	b^{2}	c^{1}	0.09
a^{3}	b^{2}	c^{2}	0.18

a^{1}	b^{1}	c^{1}	0.25
a^{1}	b^{2}	c^{1}	0.08
a^{2}	b^{1}	c^{1}	0.05
a^{2}	b^{2}	c^{1}	0
a^{3}	b^{1}	c^{1}	0.15
a^{3}	b^{2}	c^{1}	0.09

Why factors?

- Building blocks for defining distributions in high-dimensional spaces
- Set of basic operations for manipulating these distributions

Independent random variables

$P(x, y)$

Slide courtesy: Erik Sudderth

Marginal independence

- Sets of variables X, Y
- \mathbf{X} is independent of \mathbf{Y}
- Shorthand: $P \vdash(\mathbf{X} \perp \mathbf{Y})$
- Proposition: P satisfies $(\mathbf{X} \perp \mathbf{Y})$ if and only if
$-P(\mathbf{X}=\mathbf{x}, \mathbf{Y}=\mathbf{y})=P(\mathbf{X}=\mathbf{x}) P(\mathbf{Y}=\mathbf{y}), \quad \forall \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y})$

Conditional independence

- Sets of variables X, Y, Z
- \mathbf{X} is independent of \mathbf{Y} given \mathbf{Z} if
- Shorthand: $P \vdash(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$
- For $P \vdash(\mathbf{X} \perp \mathbf{Y} \mid \varnothing)$, write $\mathbf{P} \vdash(\mathbf{X} \perp \mathbf{Y})$
- Proposition: P satisfies $(\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z})$ if and only if
$-P(\mathbf{X}, \mathbf{Y} \mid \mathbf{Z})=P(\mathbf{X} \mid \mathbf{Z}) P(\mathbf{Y} \mid \mathbf{Z}), \quad \forall \mathbf{x} \in \operatorname{Val}(\mathbf{X}), \mathbf{y} \in \operatorname{Val}(\mathbf{Y}), \mathbf{z} \in \operatorname{Val}(\mathbf{Z})$

Bayes Rule

- Simple yet profound
- Concepts
- Likelihood
- How much does a certain hypothesis explain the data?
- Prior
- What do you believe before seeing any data?
- Posterior
- What do we believe after seeing the data?

Bayesian Networks

- DAGs
- nodes represent variables in the Bayesian sense
- edges represent conditional dependencies
- Example
- Suppose that we know the following:
- The flu causes sinus inflammation
- Allergies cause sinus inflammation
- Sinus inflammation causes a runny nose
- Sinus inflammation causes headaches
- How are these connected ?

Bayesian Networks

- Example

Bayesian Networks

- A general Bayes net
- Set of random variables
- DAG: encodes independence assumptions
- Conditional probability trees
- Joint distribution

$$
P\left(Y_{1}, \ldots, Y_{n}\right)=\prod_{i=1}^{n} P\left(Y_{i} \mid \mathrm{Pa}_{Y_{i}}\right)
$$

Bayesian Networks

- A general Bayes net
- How many parameters ?
- Discrete variables Y_{1}, \ldots, Y_{n}
- Graph: Defines parents of Y_{i}, i.e., $\left(P a_{\mathrm{Y}_{\mathrm{i}}}\right)$
- CPTs: $\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}} \mid \mathrm{Pa}_{\mathrm{Y}_{\mathrm{i}}}\right)$

Markov nets

- Set of random variables
- Undirected graph
- Encodes independence assumptions
- Factors

Comparison to Bayesian Nets ?

Pairwise MRFs

- Composed of pairwise factors
- A function of two variables
- Can also have unary terms
- Example

Markov Nets: Computing probabilities

- Can only compute ratio of probabilities directly

- Need to normalize with a partition function
- Hard ! (sum over all possible assignments)
- In Bayesian Nets, can do by multiplying CPTs

Markov nets $\leftarrow \rightarrow$ Factorization

- Given an undirected graph H over variables $Y=\left\{Y_{1}, \ldots, Y_{n}\right\}$
- A distribution P factorizes over H if there exist
- Subsets of variables $\mathrm{S}^{i} \subseteq$ Y s.t. Si are fullyconnected in H
- Non-negative potentials (factors) $\Phi_{1}\left(S^{1}\right), \ldots$,
$\Phi_{m}\left(S^{m}\right)$: clique potentials
- Such that

$$
P\left(Y_{1}, \ldots, Y_{n}\right)=\frac{1}{Z} \prod_{i=1}^{m} \Phi_{\mathrm{i}}\left(\mathrm{~S}^{\mathrm{i}}\right)
$$

Conditional Markov Random Fields

- Also known as: Markov networks, undirected graphical models, MRFs
- Note: Not making a distinction between CRFs and MRFs
- $\mathbf{X} \in \mathcal{X}$: observed random variables
- $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right) \in \mathcal{Y}$: output random variables
- \mathbf{Y}_{c} are subset of variables for clique $c \subseteq\{1, \ldots, n\}$
- Define a factored probability distribution

MRFs / CRFs

- Several applications, e.g., computer vision

MRFs / CRFs

- Several applications, e.g., computer vision

Scene understanding
[Fouhey et al., 2014; Ladicky et al., 2010;
Xiao et al., 2013; Yao et al., 2012]

MRFs / CRFs

- Several applications, e.g., medical imaging

MRFs / CRFs

- Inherent in all these problems are graphical models

Pixel labeling

Object detection Pose estimation

Scene understanding

Maximum a posteriori (MAP) inference

$$
\begin{aligned}
\mathbf{y}^{\star} & =\underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} P(\mathbf{y} \mid \mathbf{x}) \\
& =\underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z(\mathbf{X})} \prod_{c} \Psi_{c}\left(\mathbf{Y}_{c} ; \mathbf{X}\right) \\
& =\underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \log \left(\frac{1}{Z(\mathbf{X})} \prod_{c} \Psi_{c}\left(\mathbf{Y}_{c} ; \mathbf{X}\right)\right) \\
& =\underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \sum_{c} \log \Psi_{c}\left(\mathbf{Y}_{c} ; \mathbf{X}\right)-\log Z(\mathbf{X}) \\
& =\underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \sum_{c} \log \Psi_{c}\left(\mathbf{Y}_{c} ; \mathbf{X}\right) \quad-E(\mathbf{Y} ; \mathbf{X})
\end{aligned}
$$

Maximum a posteriori (MAP) inference

$$
\begin{aligned}
\mathbf{y}^{\star} & =\underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} P(\mathbf{y} \mid \mathbf{x})=\underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} \sum_{c} \log \Psi_{c}\left(\mathbf{Y}_{c} ; \mathbf{X}\right) \\
& =\underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmin}} E(\mathbf{y} ; \mathbf{x})
\end{aligned}
$$

MAP inference \Leftrightarrow Energy minimization

The energy function is $E(\mathbf{Y} ; \mathbf{X})=\sum_{c} \psi_{c}\left(\mathbf{Y}_{c} ; \mathbf{X}\right)$ where $\psi_{c}(\cdot)=-\log \Psi_{c}(\cdot)$

Clique potential

Clique potentials

- Defines a mapping from an assignment of random variables to a real number

$$
\psi_{c}: \mathcal{Y}_{c} \times \mathcal{X} \rightarrow \mathbb{R}
$$

- Encodes a preference for assignments to the random variables (lower is better)
- Parameterized as $\psi_{c}\left(\mathbf{y}_{c} ; \mathbf{x}\right)=\mathbf{w}_{c}^{T} \phi_{c}\left(\mathbf{y}_{c} ; \mathbf{x}\right)$

Parameters

Clique potentials

- Arity

$$
\begin{aligned}
E(\mathbf{y} ; \mathbf{x}) & =\sum_{c} \psi_{c}\left(\mathbf{y}_{c} ; \mathbf{x}\right) \\
& =\underbrace{\sum_{i \in \mathcal{V}} \psi_{i}^{U}\left(y_{i} ; \mathbf{x}\right)}_{\text {unary }}+\underbrace{\sum_{i j \in \mathcal{E}} \psi_{i j}^{P}\left(y_{i}, y_{j} ; \mathbf{x}\right)}_{\text {pairwise }}+\underbrace{\sum_{c \in \mathcal{C}} \psi_{c}^{H}\left(\mathbf{y}_{c} ; \mathbf{x}\right)}_{\text {higher-order }} .
\end{aligned}
$$

Clique potentials

- Arity

4-connected, \mathcal{N}_{4}

8-connected, \mathcal{N}_{8}

Reason 1: Texture modelling

Training images

Result MRF
4-connected
(neighbours)

Test image

Result MRF
4-connected

Test image (60\% Noise)

Result MRF
9-connected
(7 attractive; 2 repulsive)

Reason2: Discretization artefacts

higher-connectivity can model true Euclidean length

Graphical representation

- Example

$$
E(\mathbf{y})=\psi\left(y_{1}, y_{2}\right)+\psi\left(y_{2}, y_{3}\right)+\psi\left(y_{3}, y_{4}\right)+\psi\left(y_{4}, y_{1}\right)
$$

factor graph

Graphical representation

- Example

$$
E(\mathbf{y})=\sum_{i, j} \psi\left(y_{i}, y_{j}\right)
$$

Graphical representation

- Example

$$
E(\mathbf{y})=\psi\left(y_{1}, y_{2}, y_{3}, y_{4}\right)
$$

factor graph

A Computer Vision Application

Binary Image Segmentation

How?

Cost function Models our knowledge about natural images

Optimize cost function to obtain the segmentation

A Computer Vision Application

Binary Image Segmentation

Object - white, Background - green/grey

Graph $G=(V, E)$

Each vertex corresponds to a pixel
Edges define a 4-neighbourhood grid graph
Assign a label to each vertex from $L=\{o b j, b k g\}$

A Computer Vision Application

Binary Image Segmentation

Object - white, Background - green/grey Cost of a labelling $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{L}$

Graph $G=(V, E)$

Cost of label 'obj’ low Cost of label 'bkg’ high

A Computer Vision Application

Binary Image Segmentation

Object - white, Background - green/grey
Cost of alabelling $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{L}$
 Per Vertex Cost

Cost of label 'obj’ high Cost of label 'bkg' low UNARY COST

A Computer Vision Application

Binary Image Segmentation

Object - white, Background - green/grey Cost of a labelling $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{L}$

Graph $G=(V, E)$
Per Edge Cost

Cost of same label low
Cost of different labels high

A Computer Vision Application

Binary Image Segmentation

Object - white, Background - green/grey Cost of a labelling $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{L}$

Graph $G=(V, E)$
Per Edge Cost

Cost of same label high
Cost of different labels low

A Computer Vision Application

Binary Image Segmentation

Object - white, Background - green/grey
Graph $G=(V, E)$

Problem: Find the labelling with minimum cost f*

A Computer Vision Application

Binary Image Segmentation

Problem: Find the labelling with minimum cost f^{*}

Another Computer Vision Application

Stereo Correspondence

Disparity Map

How?
Minimizing a cost function

Another Computer Vision Application

Stereo Correspondence

Vertex corresponds to a pixel

Edges define grid graph

$$
\mathrm{L}=\{\text { disparities }\}
$$

Another Computer Vision Application

Stereo Correspondence

Cost of labelling f :
Unary cost + Pairwise Cost
Find minimum cost f*

The General Problem

Graph G = (V, E)
Discrete label set $L=\{1,2, \ldots, h\}$

Assign a label to each vertex $f: V \rightarrow L$

Cost of a labelling $\mathrm{Q}(\mathrm{f})$
Unary Cost Pairwise Cost

$$
\text { Find } f^{*}=\arg \min Q(f)
$$

Overview

- Basics: problem formulation
- Energy Function
- MAP Estimation
- Computing min-marginals
- Reparameterization
- Solutions
- Relaxations, primal-dual [Lecture 2]
- Belief Propagation and related methods [Lecture 3]

