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Deep learning for large-scale image analysis

Examples of using deep learning for image analysis
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Deep learning for large-scale image analysis

Dense labeling with CNNs in remote sensing

Pioneering works:

1. Predict an entire patch centered in input patch (Mnih, 2013)

Allows to learn “in-patch location” priors
→ Patch border artifacts

2. Predict the central pixel in the patch and shift one by one
(e.g., Paisitkriangkrai et al., CVPR Earthvision 2015)

Too many redundant computations

Y. Tarabalka Lecture 8 12 February 2018 3 / 61



Deep learning for large-scale image analysis

Dense labeling with CNNs in remote sensing

Fully convolutional networks (FCNs) [Long et al., CVPR 2015]

Interpolation with a learned kernel (“deconvolutional” layer)

Lost resolution is upsampled

Proposed FCN for remote sensing

Adapted from previous work (Mnih, 2013) and made it fully conv.

10x faster and more accurate

E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. “Convolutional neural networks for large-scale remote sensing image
classification”, IEEE TGRS, 55 (2), 2017.
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Deep learning for large-scale image analysis

Classification with FCNs: some results

Massachusetts dataset

[Dataset: Mnih, 2013]

Color input Reference FCN Pixelwise SVM

Classification of 22.5 km2 (1 m resolution): 8.5 seconds
(2.7 GHz 8-core, Quadro K3100M GPU)

E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. “Convolutional neural networks for large-scale remote sensing image
classification”, IEEE TGRS, 55 (2), 2017.
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Deep learning for large-scale image analysis

Yielding high-resolution outputs

Recognition/localization (RL) trade-off

Subsampling:

increases the receptive field (improving recognition)

reduces resolution (hampering localization)

Input Ref. FCN

First architectures for high-resolution labeling

Dilation (Chen et al., 2015; Dubrovina et al., 2016,...)

Unpooling/deconv. (Noh et al., 2015; Volpi and Tuia, 2016,...)

Skip networks (Long et al., 2015; Badrinarayanan et al., 2015,...)
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Deep learning for large-scale image analysis

Dilation networks

Based on the shift-and-stitch approach:

Conduct predictions at different offsets to produce low-resolution
outputs
Interleave these outputs to compose the final high-resolution result

Such an interleaving can be implemented as convolutions on
non-contiguous locations

⇒ Larger context without introducing more parameters

Not robust to spatial deformation
(e.g., detect road located exactly 5px away)
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Deep learning for large-scale image analysis

Unpooling/deconvolution networks

The CNN is “mirrored” to learn the deconvolution:

Pooling indices
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Deep learning for large-scale image analysis

Skip networks

1. Extract intermediate
features

2. Classify

3. Upsample/add (pairwise)

Addresses trade-off

Inflexible/arbitrary at
combining resolutions

Score

Upsample

Upsample

Upsample

Add

Add

Add

Score Score

Score
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Deep learning for large-scale image analysis

Yielding high-resolution outputs

Premise

CNNs do not need to “see” everywhere at the same resolution

E.g., to classify central pixel:

Full resolution context Full resolution only near center

⇒ Combine resolutions in a flexible way to address trade-off
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Deep learning for large-scale image analysis

To address RL trade-off: MLP network

Concatenate

Learn to combine features

Upsample features

1. Base FCN

2. Extract intermediate features

⇒ Pool of features

3. Multi-layer perceptron (1 hidden layer)
learns how to combine those features

⇒ Pixel by pixel (series of 1×1
convolutional layers)

⇒ 128 hidden neurons, nonlinear
activation

⇒ Output classification map

E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. “High-Resolution Aerial Image Labeling with Convolutional Neural Networks”,
IEEE TGRS, 55 (12), 2017.
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Deep learning for large-scale image analysis

Experiments

Vaihingen & Postdam ISPRS datasets:

Image GT Base FCN MLP

Impervious surface (white), Building (blue), Low veget.
(cyan), Tree (green), Car (yellow)

Vaihingen Imp. surf. Build. Low veg. Tree Car Acc.
CNN+RF 88.58 94.23 76.58 86.29 67.58 86.52

CNN+RF+CRF 89.10 94.30 77.36 86.25 71.91 86.89
Deconvolution 87.83

Dilation 90.19 94.49 77.69 87.24 76.77 87.70
Dilation + CRF 90.41 94.73 78.25 87.25 75.57 87.90

MLP 91.69 95.24 79.44 88.12 78.42 88.92

Submission to ISPRS server

Overall accuracy: 89.5%

Second place (out of 29) at the time of submission

Significantly simpler and faster than other methods
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Deep learning for large-scale image analysis

Classifying cities over the earth: can CNNs generalize?

Inria Aerial Image Labeling Dataset (810 km2, 30 cm resolution, 3 bands):

Bellingham Innsburck San Francisco Tyrol

Images over US and Austria with open images and building footprints
Different cities in training and test sets

⇒ project.inria.fr/aerialimagelabeling

E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. “Can Semantic Labeling Methods Generalize to Any City? The Inria Aerial
Image Labeling Benchmark”. IGARSS 2017.
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Deep learning for large-scale image analysis

Inria Aerial Image Labeling Benchmark

Dec. 2016 - present: > 2000 downloads, > 50 submissions
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Deep learning for large-scale image analysis

Classifying cities over the earth: can CNNs generalize?

Inria Aerial Image Labeling Dataset: first outcomes

Intersection over union improved from 55.82% to 78.39%

The most commonly used successful architecture: U-Net

AMLL, Duke University: original U-Net with half as many filters

B Huang et al. “Large-scale semantic classification: Outcome of the first year of Inria aerial image labeling benchmark”.
IGARSS 2018.
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Deep learning for large-scale image analysis

Classifying cities over the earth: can CNNs generalize?

Inria Aerial Image Labeling Dataset: first outcomes

Intersection over union improved from 55.82% to 78.39%

The most commonly used successful architecture: U-Net

Vladimir Iglovikov: TernausNet with VGG11-like encoder
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Deep learning for large-scale image analysis

Classifying cities over the earth: can CNNs generalize?

Inria Aerial Image Labeling Dataset: first outcomes

Intersection over union (IoU) improved from 55.82% to 78.39%

Winning architecture:
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Deep learning for large-scale image analysis

Inria Aerial Image Labeling Dataset outcomes (IoU, %)

RGB image A. Buslaev (78.39) V.Iglovikov (75.28)

Ground truth AMLL (72.55) Onera (71.02)

B Huang et al. “Large-scale semantic classification: Outcome of the first year of Inria aerial image labeling benchmark”.
IGARSS 2018.
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Deep learning for large-scale image analysis

Classifying cities over the earth: can CNNs generalize?

How to achieve good results?

Right choice of architecture: U-net for semantic labeling

Right choice of loss function: combination of cross-entropy & IoU

Right choice of training strategy

Right choice of other parameters: learning rate, size of batch, ...
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Deep learning for large-scale image analysis

Common loss functions

Loss function quantifies the misclassification by comparing the target label
vectors y(i) and the predicted label scores ŷ(i), for n training samples

Cross-entropy loss:

LCE = −1

n

n∑
i=1

|L|∑
k=1

y
(i)
k log ŷ

(i)
k

has fast convergence rates when training neural networks
numerically stable when coupled with softmax normalization

Differentiable soft IoU loss*:

LIoU =
1

|L|
∑
L

∑
i ŷ

(i)
k · y

(i)
k∑

i ŷ
(i)
k + y

(i)
k − ŷ

(i)
k · y

(i)
k

enforces network to push predictions to 0 and 1

Mattyus et al. “Deeproadmapper: Etracting road topology from aerial images”. ICCV 2017.

Y. Tarabalka Lecture 8 12 February 2018 20 / 61



Deep learning for large-scale image analysis

Classifying cities over the earth: can CNNs generalize?

How to achieve good results?

Right choice of architecture: U-net for semantic labeling

Right choice of loss function: combination of cross-entropy & IoU

Right choice of training strategy

Right choice of other parameters: learning rate (e.g. cyclic), size of
batch, ...

Good training dataset!
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Deep learning for large-scale image analysis

Where to get data?

A lot of available aerial and satellite imagery!

Example: Sentinel
https://sentinel.esa.int/web/sentinel/home

Difficult and expensive to get ground-truth data

Solutions?

Use available datasets/benchmarks

IARPA challenge: 3.5TB satellite multispectral data, 62 classes

CrowsAI challenge: > 300K 300 × 300 RGB satellite images &
building annotations
https://www.crowdai.org/challenges/mapping-challenge

Use crowd-sourced maps

http://www.openstreetmap.org

https://www.eea.europa.eu/data-and-maps/data/

copernicus-land-monitoring-service-urban-atlas
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Deep learning for large-scale image analysis

Where to get data?

Solutions?
Use maps predicted with deep learning nets and released as open data?
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Deep learning for large-scale image analysis

Dealing with imperfect training data

And if training dataset is not good enough?
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Deep learning for image alignment

Dealing with imperfect training data

Frequent misregistration/omission in large-scale data sources

Example: OpenStreetMap data are mostly misaligned with satellite
data
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Deep learning for image alignment

Dealing with imperfect training data

Pléiades image + OpenStreetMap (OSM)

Proposed method

Two-step training process:

1. Pretrain on large amounts of
imperfect data
→ Learn dataset generalities

2. Fine-tune on a small piece of
manually labeled reference

Input Reference FCN FCN + Fine-tuning

E. Maggiori, Y. Tarabalka, G. Charpiat, P. Alliez. “Convolutional Neural Networks for Large-Scale Remote-Sensing Image
Classification”, TGRS 2017.
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Deep learning for image alignment

Enhancing CNNs’ outputs

Image CNN ukHeat maps Enhancement Enhanced
heat maps

P(k)=eu k/∑
j

eu j

Recent approaches

CNN + Fully connected CRF (Chen et al., ICML 2015)

CNN + Fully connected CRF as RNN (Zheng et al., CVPR 2015)

CNN + Domain transform (Chen et al., CVPR 2016)

In remote sensing:

CNN + CRF (Paisitkriangkrai et al., CVPR Worshops 2015)

CNN + fully connected CRF (Marmanis et al., ISPRS 2015; Sherrah 2016,...)

Goal

Learn iterative enhancement process
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Deep learning for image alignment

Partial differential equations (PDEs)

Given heat maps uk , image I :

Heat flow
(Smooths out uk )

∂uk(x)

∂t
= div(∇uk(x))

Perona-Malik
Edge-stopping function g(∇I , x)

∂uk(x)

∂t
= div(g(∇I , x)∇uk(x))

Anisotropic diffusion
Diffusion tensor D(I , x)

∂uk(x)

∂t
= div(D(∇I , x)∇uk(x))

Geodesic active contours
Edge-stopping function g(∇I , x)

∂uk(x)

∂t
= |∇uk(x)|div

(
g(∇I , x)

∇uk(x)

|∇uk(x)|

)
...
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Deep learning for image alignment

A generic enhancement process

Differential operations ( ∂
∂x ,

∂
∂y ,

∂2

∂x∂y ,
∂2

∂x2 , ...)
applied on uk and image I
Implemented as convolutions: Mi ∗ uk , Nj ∗ I
{M1,M2, ...}, {N1,N2, ...} conv. kernels (e.g., Sobel filters)

...

...

... ... +

Image I

Conv.

Conv.

MLP

Concat.

N j∗I

M i∗u tut ut+1

δu t
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Deep learning for image alignment

A generic enhancement process

Φ(uk , I ) = {Mi ∗ uk , Nj ∗ I ; ∀i , j}, set of responses

...

...

... ... +

Image I

Conv.

Conv.

MLP

Concat.

N j∗I

M i∗u tut ut+1

δu t
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Deep learning for image alignment

A generic enhancement process

Overall update on uk at x : δuk(x) = fk ( Φ(uk , I )(x) )
Class-specific fk , implemented as multilayer perceptron
Mi and Nj convey spatial reasoning (e.g., gradients),
fk their combination (e.g., products)

...

...

... ... +

Image I

Conv.

Conv.

MLP

Concat.

N j∗I

M i∗u tut ut+1

δu t
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Deep learning for image alignment

A generic enhancement process

Discretized in time:
uk,t+1(x) = uk,t(x) + δuk,t(x), overall update δ

...

...

... ... +

Image I

Conv.

Conv.

MLP

Concat.

N j∗I

M i∗u tut ut+1

δu t
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Deep learning for image alignment

Iterative processes as recurrent neural networks (RNNs)

“Unroll” iterations

Every iteration is meant to progressively refine the classification maps

Enforce weight sharing along iterations

Train by backpropagation (“through time”)

...

+

Image

...+ ... ...

 

N j∗I

ut=0
ut=1 ut=2 ut=3
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Deep learning for image alignment

Experiments

FCN trained on Pléiades + OSM data

Manually labeled tiles
for RNN training/testing

Unroll 5 iterations

32 Mi and 32 Nj

MLP: 1 hidden layer, 32 neurons

Building, Road, Background

E. Maggiori, G. Charpiat, Y. Tarabalka, P. Alliez. “Recurrent Neural Networks to Correct Satellite Image Classification Maps”.
TGRS 2017.
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Deep learning for image alignment

Experiments

Color CNN map

(RNN input)
— Intermediate RNN iterations — RNN output Reference

0 1 2 3 4 5
0.965
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RNN iteration
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u
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c
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Deep learning for image alignment

Experiments

Comparison

Color image Coarse CNN CNN+CRF Class-agnostic
CNN+RNN

CNN+RNN Reference

Overall Mean Class-specific IoU
Method accuracy IoU Build. Road Backg.

CNN 96.72 48.32 38.92 9.34 96.69
CNN+CRF 96.96 44.15 29.05 6.62 96.78

Class-agn. CNN+RNN 97.78 65.30 59.12 39.03 97.74
CNN+RNN 98.24 72.90 69.16 51.32 98.20
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Deep learning for image alignment

Fully-convolutional net for multimodal image registration

Could we train a neural net to solve image-map alignment
problem?

A. Zampieri, G. Charpiat, N. Girard, Y. Tarabalka. “Multimodal image alignment through a multiscale chain of neural networks
with application to remote sensing”, ECCV 2018.
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Deep learning for image alignment

Fully-convolutional net for multimodal image registration

Fully-convolutional neural net for image-map alignment

Image is fed to 1a, rasterized map is fed to 1b

Output: 2-dimensional vector map representing a deformation field
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Deep learning for image alignment

Fully-convolutional net for multimodal image registration

Loss function: Euclidean norm of the prediction error

C = E
(I1,I2,φGT)∈D

 ∑
x∈Ω(I2)

∥∥∥ φ̂(I1,I2)(x)− φGT(x)
∥∥∥2

2

 ,
i.e., expectation, over the ground truth dataset D of triplet examples (RGB image I1,
cadastral image I2, associated deformation φGT), of the sum, over all pixels x in the image
domain Ω(I2), of the norm of the difference between the ground truth deformation φGT(x)

and the one predicted φ̂(I1,I2)(x) for (I1, I2)
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Deep learning for image alignment

Fully-convolutional net for multimodal image registration

Chain of scale-specific neural nets for image-map alignment

Main idea: each scale-specific block:

downsamples the images to the right size,
applies the previously-estimated deformation,
refines it
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Deep learning for image alignment

Fully-convolutional net for multimodal image registration

Chain of scale-specific neural networks to solve alignment problem
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Misalignment distribution
before and after processing

A. Zampieri, G. Charpiat, N. Girard, Y. Tarabalka. “Multimodal image alignment through a multiscale chain of neural networks
with application to remote sensing”, ECCV 2018.
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Deep learning for image alignment

Align and update maps in one net?

Multi-resolution snd
multi-task deep learning

Modified U-Net to have
2 image inputs and 2
image outputs

Output: aligned and
updated cadaster map

N. Girard et al., “Aligning and updating cadaster
maps with aerial images by multi-resolution,
multi-task deep learning”, ACCV 2018.
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Deep learning for image alignment

Application: 2.5D reconstruction of buildings

From a stereo pair of images
Height estimation by alignment of polygons of one view to the image
of the other view, and vice versa
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From raster to vector format

How to update GIS with the created maps?
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From raster to vector format

Classification Polygonization
Input 
image

Classif. 
map Shapefile 

Polygonization of classification maps
→ incorporate objects into GIS
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From raster to vector format

From raster to polygons

Polygonization of classification maps → incorporate objects into GIS

Typically (QGIS, GRASS, ArcGIS,...): greedy simplification algorithms

Using mesh approximation

Goal: approximate objects with
(labeled) triangular mesh

Integral formulation

Fine lattice

→
Opt.

Approximation

Optimization algorithm

Discrete mesh operators
(edge flip/collapse)

Continuous vertex relocation

Topology preservation &
geometric regularity

O. Tasar et al., “Polygonization of binary classification maps using mesh approximation with right angle regularity,” IGARSS’18
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From raster to vector format

Can we learn in a vector space?
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From raster to vector format

Analyzing this new paradigm

Several tasks:

Object detection

Object recognition

Object polygon outline regression

Difficulties:

Thousands of objects per satellite image

Variable amount of objects across images

Variable amount of vertices across polygons

Overlapping objects

Y. Tarabalka Lecture 8 12 February 2018 48 / 61



From raster to vector format Deep learning polygon regression

Problem statement

Reduced goal:

Task: object polygon outline regression

Input: image patch centered on a detected object of one class

Output of an object detector like Faster-RCNN:

Output: one polygon outlining the object

Number of vertices fixed to 4

S. Ren et al., Faster R-CNN: towards real-time object detection with region proposal networks, 2015.
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From raster to vector format Deep learning polygon regression

Polygon regression neural network PolyCNN

Three blocks:

1. Feature extractor

2. Encoder

3. Decoder

N. Girard & Y. Tarabalka. “End-to-end learning of polygons for remote sensing image classification,” IGARSS 2018.
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From raster to vector format Deep learning polygon regression

1. Feature extractor

Pre-trained Inception V4 layers used:

C. Szegedy et al., Inception-v4, inception-resnet and the impact of residual connections on learning, 2016.
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From raster to vector format Deep learning polygon regression

2. Encoder

Encodes object outline in a vector of 128 dimensions:

A point in a latent space

Represents the object shape
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From raster to vector format Deep learning polygon regression

3. Decoder

Decodes the 128-dimensions vector into polygon coordinates:

4 vertices in 2D = 8 scalars

Y. Tarabalka Lecture 8 12 February 2018 53 / 61



From raster to vector format Deep learning polygon regression

Finding the right architecture for the encoder and decoder

Creation of an artificial dataset:

Random 4-sided polygons as ground truth

Rasterized polygons as image input

Infinite amount of simple examples:

Fast training, only a simple feature extractor is needed

Test architectures to find the smallest encoder and decoder that work

Pre-train decoder
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From raster to vector format Deep learning polygon regression

Loss

Network trained by supervised learning, naive loss:

L =
1

n

n∑
i=1

‖Pgt(i, .)− Ppred(i, .)‖2 (1)
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From raster to vector format Deep learning polygon regression

Loss

Network trained by supervised learning, corrected loss:

L = min
∀s∈[0,n−1]

1

n

n∑
i=1

‖Pgt(i, .)− Ppred(i + s, .)‖2 (2)
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From raster to vector format Deep learning polygon regression

Dataset

Solar panel dataset from Bradbury et al. from Duke University:

601 aerial images of 5000× 5000 px

Ground truth polygons of photovoltaic arrays

Polygons precisely annotated manually

Over 19000 solar panels

Over 6000 4-sided ground truth polygons

256 polygons for validation and another 256 for testing

K. Bradbury et al., Distributed solar photovoltaic array location and extent dataset for remote sensing object identification, 2016.
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From raster to vector format Deep learning polygon regression

Training

1. Feature extractor pre-trained on ImageNet

2. Encoder initialized randomly

3. Decoder pre-trained on the artificial dataset

Learning rate schedule:

learning rate up to iteration 500 1000 90000

Feature extractor 0 0 1e−5

Encoder 1e−5 1e−5 1e−5

Decoder 0 1e−5 1e−5

Random weights produce big gradients at the start of training

Avoid rapid distortion of pre-trained weights by freezing them in the
beginning

J. Deng et al., ImageNet: A Large-Scale Hierarchical Image Database, 2009.
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From raster to vector format Deep learning polygon regression

Visual results

Test on image patches never seen by the network:

PolyCNN

U-Net
+ Douglas-Peucker

Green: ground truth, orange: PolyCNN output and red: U-Net +
Douglas-Peucker output
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From raster to vector format Deep learning polygon regression

Quantitative results

PolyCNN U-Net + Douglas-Peucker

mIoU 79.5% 62.4%

For any threshold τ we compute the fraction of vertices whose ground
truth point distance is less than τ :
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From raster to vector format Deep learning polygon regression

Conclusions & Perspectives

There is no such thing as a universally better classifier

To classify images on a world-scale:

Learning methods must be generic and highly scalable

CNNs have shown a remarkable computational performance

Capable to learn expressive multi-scale contextual features

Succeed in classifying new unseen earth areas

Still significant work to be done to design automatic mapping
systems

New powerful models: adversarial networks, unsupervised &
semi-supervised learning, capsule nets
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