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Classification based on Features

Classical Learning

Features extract very basic, low
level information

We want very high level
information (e.g. class of
objects)

Classical Learning: Learn the
mapping between low level
features and high level
information

Feature
Extraction/Pooling
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Classification based on Features

Classical Learning

Machine Learning is a huge
(growing) field

Many different approaches for
modeling/parametrizing this
mapping!
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Classification based on Features

Methods

Choice of method not always rational

Different pros/cons

Speed, memory, scalability of training data, ease of implementation,
ease of hyper parameter tuning, ...

First intuitive understanding of the problems, then identifying
methods
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Classification based on Features Decision Boundary

Decision based on features

Toy example

Task: Classify fruits into either bananas or apples

Extracted Feature Vector

Hue (yellow to red)

Elongation (max extend over
min extend)

image by Darkone licensed under CC BY SA 2.0

image by Abhijit Tembhekar licensed under CC BY 2.0
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Classification based on Features Decision Boundary

Some training data

Feature space is just 2D

Datapoints can be plotted as a
scatter plot

Can we “learn”, which part of
the feature space is
bananas/apples?
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Classification based on Features Decision Boundary

Decision boundary

(Very) simple idea: Split the
feature space into two half
spaces
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Classification based on Features Decision Boundary

Decision boundary

(Very) simple idea: Split the
feature space into two half
spaces

During application, classify data
based on this decision boundary
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Classification based on Features Decision Boundary

Decision boundary
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Classification based on Features Linear Decision Boundary

Perceptron

Perceptron

y = sign(wTx + b) (1)

y ∈ {−1, 1}: Predicted class

x ∈ R2: Feature vector

w ∈ R2: “Weight vector”
(needs to be learned)

b ∈ R: “Bias” (needs to be
learned)

-b/|w|

w
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Classification based on Features Linear Decision Boundary

Linear Separability

What if no such line exists?

Quite often, problem not linearly
separable

Needs non-linear decision
boundary

Y. Tarabalka Lecture 7 22 January 2018 11 / 135



Classification based on Features Non-linear Decision Boundary

Non-linear Decision Boundary

Decision boundaries of more
complex ML techniques usually
non-linear

Regions need not be connected
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Classification based on Features Non-linear Decision Boundary

kNN

Very simple idea:
k-Nearest-Neighbors for
classification

For a sample find the k (e.g. 5)
closest data points in the
training dataset

Look at the labels of those
neighbors

Fast lookup through
trees/approximate methods

Needs to keep all training data
around
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Classification based on Features Non-linear Decision Boundary

kNN Example - Simple
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Classification based on Features Non-linear Decision Boundary

kNN Example - Simple - kNN K=1
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Classification based on Features Non-linear Decision Boundary

kNN Example - Simple - kNN K=5
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Classification based on Features Non-linear Decision Boundary

kNN Example - Simple - kNN K=25
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Classification based on Features Non-linear Decision Boundary

kNN Example - Hard
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Classification based on Features Non-linear Decision Boundary

kNN Example - Hard - kNN K=1
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Classification based on Features Non-linear Decision Boundary

kNN Example - Hard - kNN K=5
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Classification based on Features Non-linear Decision Boundary

kNN Example - Hard - kNN K=25
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Classification based on Features Non-linear Decision Boundary

kNN Example
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Classification based on Features Non-linear Decision Boundary

Model Complexity vs Overfitting

With sufficient model
complexity, it is often easy to
get ZERO training error

Generalization is what matters!

Test on data not used during
training

Disjoint train and test set
Non-overlapping samples if
spatial features are used
Semi-manual parameter
tuning (grid-search, etc.)
needs third independent data
set
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Classification based on Features Random Forest (RF)

From kNN to Search Trees

Data samples x
Pixel information, image
patch, feature vector, etc.
Often x ∈ Rn

Classification:
⇒ Estimate class label

Training data: Values of target
variable given e.g. class label

  

x
1

x
2
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Classification based on Features Random Forest (RF)

From kNN to Search Trees

Task: Given training data,
estimate label of query sample

  

x
1

x
2
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Classification based on Features Random Forest (RF)

From kNN to Search Trees

Task: Given training data,
estimate label of query sample

kNN/Parzen Window:

Compute distance to all
samples

  

x
1

x
2

Y. Tarabalka Lecture 7 22 January 2018 26 / 135



Classification based on Features Random Forest (RF)

From kNN to Search Trees

Task: Given training data,
estimate label of query sample

kNN/Parzen Window:

Compute distance to all
samples
Select samples within window
of given size (Parzen)
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Classification based on Features Random Forest (RF)

From kNN to Search Trees

Task: Given training data,
estimate label of query sample

kNN/Parzen Window:

Compute distance to all
samples
Select samples within window
of given size (Parzen)
Use these samples to estimate
target variable, e.g. class label

Problem: Computationally
expensive (exhaustive search)

  

x
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x
2
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Classification based on Features Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

  

x
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x
2
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Classification based on Features Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells

  

x
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2
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Classification based on Features Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells
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Classification based on Features Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells
Given a query, find relevant
cells
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Classification based on Features Random Forest (RF)
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Classification based on Features Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells
Given a query, find relevant
cells
Perform exhaustive search in
these cells ONLY
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Classification based on Features Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells
Given a query, find relevant
cells
Perform exhaustive search in
these cells ONLY

Exact search: Leads to
equivalent results
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Classification based on Features Random Forest (RF)

From kNN to Search Trees

Search trees
→ Quad/Octree, KD tree, etc.

Divide space recursively into
cells
Given a query, find relevant
cells
Perform exhaustive search in
these cells ONLY

Exact search: Leads to
equivalent results

Approximation: Use samples
within query cell directly
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
→ Simple threshold operation
→ Different threshold
definitions (e.g. equi-sized cells,
threshold as data median) lead
to different search tree variants
(e.g. quad-tree, k-D tree).
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
→ Simple threshold operation

Decision stump:

t(x) =

{
0 if x1 < θ1

1 otherwise.

  

x1<θ1 ?

1 0
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
→ Simple threshold operation

Decision stump:

t(x) =

{
0 if x1 < θ1

1 otherwise.

  

x1<θ1 ?

x2<θ2? x2<θ2?

1 0

1 0 1 0
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
→ Simple threshold operation

Decision stump:

t(x) =

{
0 if x1 < θ1

1 otherwise.

  

x1<θ1 ?

x2<θ2? x2<θ3?

1 0

1 0 1 0
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Cell construction
→ Simple threshold operation

Decision stump:

t(x) =

{
0 if x1 < θ1

1 otherwise.

When to stop? Minimal
resolution reached, purity, ...

How to select split points?
Randomly, optimized selection
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

  

  

x
1

x
2

Y. Tarabalka Lecture 7 22 January 2018 44 / 135



Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Local estimate of the target
variable (e.g. class posterior) is
assigned to cells

  

x
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2
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Local estimate of the target
variable (e.g. class posterior) is
assigned to cells

Results in highly non-linear, even
non-connected (but piece-wise
constant) decision boundaries
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Other node tests are possible:

Axis-aligned:

t(x) =

{
0 if x1 < θ1

1 otherwise.

t(x) =

{
0 if θ1 < x1 < θ2

1 otherwise.
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Other node tests are possible:

Axis-aligned

Linear:
x̃ = [x, 1] ∈ Rd+1, ψ ∈ Rd+1

t(x) =

{
0 if ψT x̃ < θ1

1 otherwise.

t(x) =

{
0 if θ1 < ψT x̃ < θ2

1 otherwise.
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Classification based on Features Random Forest (RF)

From Search Trees to (Random) Decision Trees

Other node tests are possible:

Axis-aligned

Linear

Conic section:

x̃ = [x, 1] ∈ Rd+1, ψ ∈ R(d+1)×(d+1)

t(x) =

{
0 if x̃Tψx̃ < θ1

1 otherwise.

t(x) =

{
0 if θ1 < x̃Tψx̃ < θ2

1 otherwise.
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Classification based on Features Random Forest (RF)

From (Random) Decision Trees to Random Forests

Advantages

Can deal with very heterogeneous data
→ Different, data-specific types of node tests

Not prone to the curse of dimensionality
→ Each node only works on a very limited set of dimensions

Very efficient
→ Each sample passes maximal H nodes (H = maximal height)

Easy to implement
→ Binary trees are one of the most basic data structures

Easy to interprete
→ Path through tree is a connected set of decision rules

Well understood
→ Theoretical and practical implications of design decisions have
been researched for more than 4 decades
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Classification based on Features Random Forest (RF)

From (Random) Decision Trees to Random Forests

Disadvantages

Optimized by greedy algorithms
→ A chain of individually optimal decisions, might not lead to an
overall optimum

The optimal solution (i.e. decision boundary) might not be part of
the model class (e.g. piece-wise linear and axis-aligned functions)

Prone to overfitting

Model capacity depends on amount of data
→ Few samples lead to small trees: Only few questions can be asked.
→ Many samples (might) lead to very high trees: Long processing
times, large memory footprint.
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Classification based on Features Random Forest (RF)

From (Random) Decision Trees to Random Forests

Disadvantages

Optimized by greedy algorithms
→ A chain of individually optimal decisions, might not lead to an
overall optimum

The optimal solution (i.e. decision boundary) might not be part of
the model class (e.g. piece-wise linear and axis-aligned functions)

Prone to overfitting

Model capacity depends on amount of data
→ Few samples lead to small trees: Only few questions can be asked.
→ Many samples (might) lead to very high trees: Long processing
times, large memory footprint.

How to
→ keep (most) of the advantages

→ getting rid of (most) disadvantages?

Y. Tarabalka Lecture 7 22 January 2018 52 / 135



Classification based on Features Random Forest (RF)

From (Random) Decision Trees to Random Forests
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Classification based on Features Random Forest (RF)

From (Random) Decision Trees to Random Forests
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Classification based on Features Random Forest (RF)

From (Random) Decision Trees to Random Forests
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Classification based on Features Random Forest (RF)

From (Random) Decision Trees to Random Forests
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Classification based on Features Random Forest (RF)

Random Forests

Many (suboptimal) baselearners, i.e. decision trees

Fusion of the individual output

Minimization of the risk to use wrong model

Extension of the model space

Decreased dependence on initialization

One name to rule them all

Bagged Decision Trees
Randomized Trees
Decision Forests
ERT, PERT, Rotation Forests, Hough Forests, Semantic Texton
Forests, ...

Y. Tarabalka Lecture 7 22 January 2018 57 / 135



Classification based on Features Random Forest (RF)

Random Forests - Randomization through Bagging

Given: Training set D ⊂ D with |D| = N samples.
Bagging (Bootstrap aggregating):
1. Randomly sample M data sets Dm with replacement (|Dm| = N).
2. Train M models where m-th model has only access to m-th dataset.
3. Average all models.

Meta learning technique

Works if small change in input data leads to large model variation

Reduces variance (of final model), avoids overfitting.

Leads to diverse decision trees, even if all other parameters are fixed
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Feature extraction

Overview

1. Classification based on Features
Decision Boundary
Linear Decision Boundary
Non-linear Decision Boundary
Random Forest (RF)

2. Feature extraction

3. Multi-Layer Perceptron (MLP)

4. ConvNets
Convolution
Auto Encoder
Frameworks
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Feature extraction

Why do we need feature extraction?
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Feature extraction

Motivation

Main motivation: get out most of the data

For classification task: find a space
where samples from different classes
are well separable

Objectives:

Reduce computational load of the classifier

Increase data consistency

Incorporate different sources of information into a feature vector:
spectral, spatial, multisource, ...
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Feature extraction

Motivation - Curse of dimensionality

Too few features do not allow to discriminate between classes

In the color image, both trees and a truck are green

As the dimensionality of the feature space increases, the classifier’s
performance increases until the optimal number of features is reached

Further increasing the dimensionality without increasing the number
of training samples yields a performance decrease
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Feature extraction

Motivation - Curse of dimensionality

As the dimensionality increases:

The volume of the hypersphere tends to zero

A larger percentage of the training data resides in the corners of the
feature space

Distance measures start losing their effectiveness

Gaussian likelihoods become flat and heavy tailed distributions
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Feature extraction

How to reduce data dimensions?

Principal component analysis

Convert a set of observations of possibly correlated variables into a set of
values of linearly uncorrelated variables, called principal components

Discriminant analysis

Find the best set of vectors which best separates the patterns
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Feature extraction

Principal component analysis

Goal: represent data is a space that best describes the variation in a
sum-squared error sense

Projection onto eigenvectors that correspond to the first few largest
eigenvalues of the covariance matrix

d-dimensional data are represented in a lower-dimensional space

Reduces the space and time complexities

Intuitive introduction: http:

//www.youtube.com/watch?v=BfTMmoDFXyE&feature=related
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Feature extraction

Principal component analysis

Step 1: Get some data
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Feature extraction

Principal component analysis

Step 2: Subtract the mean

From each of the data dimensions (from x- and y -dimension)
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Feature extraction

Principal component analysis

Step 3: Calculate the covariance matrix
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Feature extraction

Principal component analysis

Step 4: Calculate the unit eigenvectors and eigenvalues of the
covariance matrix
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Feature extraction

Principal component analysis

The 1st eigenvector (principle component) shows how data in two
dimensions are related along the eigenvector line

The 2nd eigenvector shows that all the points are off to the side of
the main line by some amount

Eigenvectors are lines that characterize the data

The next steps: transforming the data so that it is expressed in terms
of these lines
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Feature extraction

Principal component analysis

Step 5: Choose components and form a feature vector

Order eigenvectors by eigenvalues

This gives the components in order of significance
You can decide to ignore the components of lesser significance ⇒ final
data will have less dimensions (p < d)

Form a feature vector (matrix of vectors):

FeatureVector = (eig1 eig2 eig3)

For our example, two feature vectors are possible:
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Feature extraction

Principal component analysis

Step 6: Derive the new dataset:

FinalData = FeatureVectorT × RowDataAdjust

where RowDataAdjust is the mean-adjusted data transposed

It will give us the original data solely in terms of the vectors we chose
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Feature extraction

Principal component analysis
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Feature extraction

Principal component analysis (PCA)

If only one eigenvector was kept,
the transformed data will have
only one dimension
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Feature extraction

Example of PCA for hyperspectral image analysis

Principal component analysis in the spectral space

Principal components (PCs) 1-3 contain 97% of information from
original 103 channels

Color image PC1 PC2 PC3 PC4
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Feature extraction

Principal component analysis

Projection onto eigenvectors that correspond to the first few largest
eigenvalues of the covariance matrix
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Feature extraction

Discriminant analysis

PCA seeks directions that are efficient for representation
Unsupervised technique

Discriminant analysis seeks directions that are efficient for
discrimination

Supervised technique
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Feature extraction

Discriminant analysis

Projection onto directions that can best separate data of different
classes
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Feature extraction

Discriminant analysis

Theory of Fisher linear discriminant: http://www.csd.uwo.ca/

~olga/Courses//CS434a_541a//Lecture8.pdf

Project on line in the direction v which maximizes:

Main drawback: in most real-life cases, projection to even the best
line results in unseparable projected samples
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Feature extraction

How to include spatial information for image classification?

By simply looking at a grey pixel, we cannot say if it belongs to a
building or a road

We guess a category by considering spatial/contextual information

How can a classifier consider this rich source of information?
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Feature extraction

Approaches to extract spatial info

1. Closest fixed neighborhoods

Markov Random Field [Pony00, Jackson02,
Farag05]

Contextual features [Camps-Valls06]

Spectral content +
Spatial content (e.g. mean or standard
deviation per spectral band)

+ Simplicity
− Imprecision at the border of regions
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Feature extraction

Approaches to extract spatial info

2. Morphological and area filtering

Morphological profiles [Pesaresi01, Dell’Acqua04, Benediktsson05]

Self-complementary area filtering [Fauvel07]

Attribute profiles [Ghamisi15, Cavallaro17]

+ Neighborhoods are adapted to the structures
+ Non-linear operators ⇒ do not blur the edges as convolutions do
− Neighborhoods are scale dependent

Closing − Original − Opening 

Course on mathematical morphology:
http://www-sop.inria.fr/members/Yuliya.Tarabalka/teaching.htm
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Feature extraction

Approaches to extract spatial info

3. Superpixels derived from segmentation

Extraction and Classification of Homogeneous Objects [Kettig76]

...

Multiscale segmentation, then features are derived from the regions
[Linden07, Huang09]

+ Flexible
− Computationally demanding
− Difficult to scale/parallelize

Y. Tarabalka Lecture 7 22 January 2018 83 / 135



Feature extraction

Approaches to extract spatial info

4. Features handcrafted for a particular application

Example 1: Line templates with different orientations for road
detection [Jeong15]

Example 2: Rectangular templates for building detection [Garcin01]

+ Can model complex shape
− Lack of genericity
− Computationally demanding
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Feature extraction

Modern trend & Conclusions

Deep learning:

Automatically learn features if a lot of training data are available

Advice:

If for the considered application it is easy to hand-craft
class-separable features, no need to learn them

If it is not easy to discriminate between categories, learning features
often helps
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Feature extraction

Challenges in classification today?

Increasing amount & openness of data

Intra-class variability:

Chicago Vienna Austin

Interest in semantic classes (e.g., building, road, lane)

⇒ Need for high-level contextual reasoning (shape, patterns,...)

⇒ Generalization to different locations
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Feature extraction

How to face these challenges?

⇓

Deep learning

Y. Tarabalka Lecture 7 22 January 2018 87 / 135



Multi-Layer Perceptron (MLP)

What is multi-layer perceptron?

Feed forward neural network

Neural networks “inspired by
biology”

But work quite differently

Core idea: concatenate multiple
simple mappings to get one
powerful mapping

Multiple simple steps more
powerful than one complex step

Keep everything (mostly)
differentiable

Train by doing gradient descent
on classification error
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Multi-Layer Perceptron (MLP)

Building blocks

Standard Layers:

Fully connected layer with...

... activation function

Special Layers (selection):

Dropout (for regularization)

Normalization (Improves training)

Softmax (Produces nice classification output)
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Multi-Layer Perceptron (MLP)

Fully connected layer

xn+1 = yn = f (An · xn + bn) (2)

xn: Layer input

yn = xn+1: Layer output

An: Weights

bn: Bias

f (·): Activation function
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Multi-Layer Perceptron (MLP)

Activation functions

yn = f (An · xn + bn) (3)

Assume f (x) = x

Layer can assume any linear function (plus offset)

Stacked layers can’t improve that

Activation function must be non-linear
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Multi-Layer Perceptron (MLP)

Activation functions

Typical choices:

ReLU

f (xi )i = max(xi , 0) (4)

Sigmoid / Logistic

f (xi )i =
1

1 + e−xi
(5)

TanH

f (xi )i = tanh(xi ) =
exi − e−xi

exi + e−xi
(6)
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Multi-Layer Perceptron (MLP)

Activation functions

Typical choices:

ReLU

f (xi )i = max(xi , 0) (7)

ReLU (and variations of it)
today the most common choice

Better for deep networks

Derivative of activation
function = 1 (in positive
direction)
No saturation (in positive
direction)
Gradients propagate better
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tanh
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Multi-Layer Perceptron (MLP)

Training

How to find correct model parameters θ?

weight values
bias values
sometimes aux parameters

Setup/define energy function objective E (θ)

Derive analytic gradients ∂E(θ)
∂θ

Perform gradient descent ∆θ = −λ · ∂E(θ)
∂θ
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Multi-Layer Perceptron (MLP)

Stochastic gradient descent

Exact gradient usually not needed or wanted

Just empirical average over N samples anyways

Stochastic Gradient Descent: Split into batches of M < N samples
and update weights after every batch

∆θ = −λ · ∂Ê (θ)

∂θ
=

∂

∂θ

M∑
α

e(yL(xα,θ), ŷα) (8)

Usually small batch sizes (eg. around 128) sufficient
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Multi-Layer Perceptron (MLP)

Parameter update rule

∆θ = −λ · ∂Ê(θ)
∂θ most simple update rule

Momentum

Accumulate “momentum” over time
Pick up speed in the valley direction, average out noise

Adam [Kingma and Ba, 2014]/Adagrad/Adadelta [Zeiler, 2012]

Normalize based on average gradient variance in the past
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Multi-Layer Perceptron (MLP)

Parameter initialization

How to initialize θ?

Random Gaussian

Xavier (and some variants) [Glorot and Bengio, 2010]

Draw weights randomly
Choose variance per layer depending on input/output size
Balance variance to keep signal/gradient variance constant
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Multi-Layer Perceptron (MLP)

Special layers

Softmax

Normalization

Dropout
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Multi-Layer Perceptron (MLP)

Softmax

f (xi ) =
exp(xi )∑
j exp(xj)

(9)

Special (last) layer/activation
for classification

Creates vector that sums to one
(read probabilities), one element
per class

Usually together with a specific
optimization objective:
Cross-entropy loss

Comparing the predicted
probability mass distribution
to the ground truth one
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Multi-Layer Perceptron (MLP)

Cross-entropy loss function

Loss function quantifies the misclassification by comparing the target label
vectors y(i) and the predicted label scores ŷ(i), for n training samples

Cross-entropy loss:

LCE = −1

n

n∑
i=1

|L|∑
k=1

y
(i)
k log ŷ

(i)
k

has fast convergence rates when training neural networks
numerically stable when coupled with softmax normalization
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Multi-Layer Perceptron (MLP)

Dropout

[Srivastava et al., 2014]

During training, randomly disable neurons with probability p

During application, scale output with 1− p

Prevents co-adaptation

Fosters redundancy throughout the network

Reduces overfitting and improves generalization
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Multi-Layer Perceptron (MLP)

Normalization

Normalization can be important for learning

Neither signal (forward) nor gradients (backward) must
explode/shrink in magnitude

Input Normalization

Normalize input to have zero mean and unit stddev

Batch Normalization [Ioffe and Szegedy, 2015]

Special layer placed at strategic locations
Normalize mean and variance of activations across training batch (or
accumulate running averages)
After learning, becomes fixed scale & offset
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Multi-Layer Perceptron (MLP)

Handling Overfitting

Dropout

Weight regularization

Penalize large weight values
e.g., add λ · |θ|2 to optimization objective

Data Augmentation

Randomly modify training data
Based on what kind of invariances you want to have

Resistance to noise: add noise
Resistance to brightness/contrast/hue changes: Change those
Translation/Rotation (ex. for images)
Can also be applied to data before extracting features!
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Multi-Layer Perceptron (MLP)

Increasing depth

Recent trend goes towards deeper networks

Networks more powerful, but ...

... more difficult to train

Gradients collapse/explode/diffuse through the layers

This is the book to read: Deep Learning [Goodfellow et al., 2016]
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Multi-Layer Perceptron (MLP)

MLP conclusion

MLPs

Provide a mapping from X → Y, i.e. from a features space (usually
X ≡ Rn) to a label space Y
Are based on concatenation of “simple” functions that depend on
parameters (i.e. weights)

Are optimized by gradient descent (and its modern extensions)

Work great, BUT:
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ConvNets Convolution

From fully connected (MLP) to convolution (ConvNet)

Input Hidden Output
N neurons M neurons

Fully-connected:
NM weights

Im
a
g

e

C
la

ss

Multiple layers of units

All-to-all connection between
two adjacent layers

No lateral connections

A tremendous amount of
parameters in case of images
→ Untrainable
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ConvNets Convolution

From fully connected (MLP) to convolution (ConvNet)

Input Output

Im
a
g

e

C
la

ss

Hidden

Receptive
field

Set most weights to zero and
thus delete most connections
and decrease parameters.
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ConvNets Convolution

From fully connected (MLP) to convolution (ConvNet)

Input Output

Im
a
g

e

C
la

ss

Hidden

Shared
weights

→ Convolution of the input with kernel (weights,           )
produces feature map

Set most weights to zero and
thus delete most connections
and decrease parameters.

Use same values for weights of
different neurons within a layer.

The multiplication of the input
with identical weights for
different neurons corresponds to
a convolution.

The kernel of this convolution is
automatically learned.
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ConvNets Convolution

From fully connected (MLP) to convolution (ConvNet)

Input Output

Im
a
g

e

C
la

ss

Hidden

Multiple features
with different kernels

→ Convolution of the input with kernel produces feature map

Set most weights to zero and
thus delete most connections
and decrease parameters.

Use same values for weights of
different neurons within a layer.

The multiplication of the input
with identical weights for
different neurons corresponds to
a convolution.

The kernel of this convolution is
automatically learned.

Use multiple convolutional layers
to enable different kernels to be
learned.
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ConvNets Convolution

Convolutional neural networks (CNNs)

Input: the image itself
{Convolutional layers + pooling layers}* + MLP
Jointly learn to extract features & conduct classification

Convolutional layer

Learned convolution filters → feature maps

Special case of fully connected layer:

Only local spatial connections

Location invariance

⇒ Makes sense in image domain (or
text, time series,...)
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ConvNets Convolution

Convolutional neural networks (CNNs)

Pooling layers

Subsample feature maps

Increase receptive field ©
Downgrade resolution

Robustness to spatial variation ©
Not good for pixelwise labeling §

5 3

12 1
12

Max pooling

Overall categorization CNN

Source: deeplearning.net
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ConvNets Convolution

Example of First Level Filters

Learned kernels of first
convolutional layer of a ConvNet
(AlexNet).

Correspond mostly to edges and
corners of different orientations.

Note: Grouping is caused by
network architecture (two
independent streams were used
to handle the large amount of
data).

Y. Tarabalka Lecture 7 22 January 2018 112 / 135



ConvNets Convolution

Example of Higher Level Filters

Top nine activations in feature
maps

Projected to pixel space using a
deconvolutional network

Reconstructed patterns that
cause high activations

Note: Images taken from
[Zeiler and Fergus, 2013].
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ConvNets Convolution
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ConvNets Convolution
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ConvNets Convolution

Examples of architectures

LeNet (1998)

One of the first successful applications of ConvNets

Digital digit / character recognition

VGG Net (2014)

Simple and deep: Only 3x3 filters and 2x2 pooling

Stacked conv-layers to increase effective receptive field size

Used Caffe toolbox

Trained on 4 Nvidia Titan Black GPUs for two to three weeks

Microsoft ResNet (2015)

152 layers

Trained on an 8 GPUs for two to three weeks

3.6% error on ImageNet LSVRC (AlexNet: 15.4%)
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ConvNets Convolution

Common Architectures and Tricks

Designing good architecture somewhat tricky

Some designs, or parts of designs, exist that work well

Usually a good idea to look at papers of common architectures

Most of the time, at least some intuition or motivation for choice of
layers
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Images

Multi-Layer Perceptron

Multi-Layer Perceptron

Images

Compressed Representation
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Images

...

...

Images

i

k

j
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Images

Images

...i

j

...k

j
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Images

Images

...i

j

...k

j
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Images

...

...

Images

i

k

j
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Images

...

...

Images

i

k

j
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Images

Images

...i

j

...k

jTrain

Fixed
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Images

Images

...

j

...
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Application: Deep Learning

Images

Images

...

j

...
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training

Application: Deep Learning

Images

Images

...

j

...
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ConvNets Auto Encoder

(Convolutional) Auto Encoder

Stacked Autoencoder

Problem: Vanishing gradients

Solution: Pre-training
→ Learn “reasonable” features
from unlabeled data

Application: Deep Learning
→ Supervised learning (via
Backpropagation) only as
refinement

Images

Classification

...

j
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ConvNets Frameworks

Frameworks

Implementing fast, multi-channel convolutions just as hard as
implementing fast matrix multiplications

Use existing tools!

Caffe
Tensorflow
Torch

For larger datasets you want to use a (good) GPU!
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ConvNets Frameworks

Caffe

Started by Yangqing Jia at UC Berkeley

Maintained by Berkeley AI Research and many
contributers

Backend in C++, frontends for Python and
Matlab

http://caffe.berkeleyvision.org/
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ConvNets Frameworks

Tensorflow

Developed by Google Brain team

Python frontend

https://www.tensorflow.org/

https://github.com/tensorflow
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ConvNets Frameworks

Torch

Lua frontend

http://torch.ch/

https://github.com/torch/torch7
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