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Outline	

•  Previous	class	(Dec	2018)	
– Primal-dual	schema	
– Dual	decomposiSon	

•  Today	
– Recap	of	the	course	
– Learning	parameters	



Primal-dual	schema	

•  Goal:	Find	integral-primal	soluSon	x,	feasible	
dual	soluSon	y,		
– such	that	their	primal-dual	costs	are	“close	enough”,	
e.g.,	 f*-approxima*on	to	the	op*mal	x*	



Primal-dual	schema	

•  Works	iteraSvely	

•  Easier	to	use	relaxed	complementary	slackness,	
instead	of	working	directly	with	costs	



Primal-dual	schema	

•  Relaxed	complementary	slackness	



Dual	decomposiSon	

•  Reduces	MRF	opSmizaSon	to	a	simple	
projected	subgradient	method	

•  Combines	soluSons	from	sub-problems	in	a	
principled	and	opSmal	manner	

•  Applies	to	a	wide	variety	of	cases	



Dual	decomposiSon	

•  DecomposiSon	into	subproblems	(slaves)	

•  CoordinaSon	of	slaves	by	a	master	process	



Dual	decomposiSon	

•  Master		
– updates	the	parameters	of	the	slave-MRFs	by	
“averaging”	the	soluSons	returned	by	the	slaves	

–  tries	to	achieve	consensus	among	all	slave-MRFs	

– e.g.,	if	a	certain	node	is	already	assigned	the	same	
label	by	all	minimizers,	the	master	does	not	touch	
the	MRF	potenSals	of	that	node.	



Comparison:	TRW	and	DD	

TRW	 DD	

Fast	 Slow	

Local	Maximum	 Global	Maximum	

Requires	
Min-Marginals	

Requires	
MAP	EsSmate	



Outline	

•  Recap	of	the	course	

•  Learning	parameters	



Condi*onal	Random	Fields	(CRFs)	
•  Ubiquitous	in	computer	vision	
•  segmentaSon 	stereo	matching	
opScal	flow 	image	restoraSon	
image	compleSon	 	object	detecSon/localizaSon	
...	

•  and	beyond	
•  medical	imaging,	computer	graphics,	digital	
communicaSons,	physics…	

	•  Really	powerful	formulaSon	



Condi*onal	Random	Fields	(CRFs)	

•  Extensive	research	for	more	than	20	years	

•  Key	task:	inference/opSmizaSon	for	CRFs/MRFs	

•  Lots	of	progress	

•  Graph-cut	based	algorithms	
•  Message-passing	methods	
•  LP	relaxaSons	
•  Dual	DecomposiSon	
•  ….	

•  Many	state-of-the-art	methods:	



MAP	inference	for	CRFs/MRFs	

•  Hypergraph		
– Nodes		
– Hyperedges/cliques	

•  High-order	MRF	energy	minimizaSon	problem	

high-order	potenSal	
(one	per	clique)	

unary	potenSal	
(one	per	node)	

hyperedges	

nodes	



CRF	training	
•  But	how	do	we	choose	the	CRF	potenSals?	

•  Through	training	
•  Parameterize	potenSals	by	w	

•  Use	training	data	to	learn	correct	w		

•  CharacterisSc	example	of	structured	output	
learning	[Taskar],	[Tsochantaridis,	Joachims]	

•  Equally,	if	not	more,	important	than	MAP	inference	
•  Be<er	opSmize	correct	energy	(even	approximately)	
•  Than	opSmize	wrong	energy	exactly	



•  Supervised	Learning	

•  ProbabilisSc	Methods	

•  Loss-based	Methods	

•  Results	

Outline	



Image	ClassificaSon	

Is	this	an	urban	or	rural	area?	

Input:	d	 Output:	x	∈	{-1,+1}	



Image	ClassificaSon	

Is	this	scan	healthy	or	unhealthy?	

Input:	d	 Output:	x	∈	{-1,+1}	



Image	ClassificaSon	

X	

d	

Labeling	X	=	x	 Label	set	L	=	{-1,+1}	



Image	ClassificaSon	

Which	city	is	this?	

Input:	d	 Output:	x	∈	{1,2,…,h}	



Image	ClassificaSon	

What	type	of	tumor	does	this	scan	contain?	

Input:	d	 Output:	x	∈	{1,2,…,h}	



Object	DetecSon	

Where	is	the	object	in	the	image?	

Input:	d	 Output:	x	∈	{Pixels}	



Object	DetecSon	

Where	is	the	rupture	in	the	scan?	

Input:	d	 Output:	x	∈	{Pixels}	



Object	DetecSon	

X	

d	

Labeling	X	=	x	 Label	set	L	=	{1,	2,	…,	h}	



SegmentaSon	

What	is	the	semanSc	class	of	each	pixel?	

Input:	d	 Output:	x	∈	{1,2,…,h}|Pixels|	

car	

road	
grass	

tree	sky	

sky	



SegmentaSon	

What	is	the	muscle	group	of	each	pixel?	

Input:	d	 Output:	x	∈	{1,2,…,h}|Pixels|	



SegmentaSon	

X1	

d1	

X2	

d2	

X3	

d3	

X4	

d4	

X5	

d5	

X6	

d6	

X7	

d7	

X8	

d8	

X9	

d9	

Labeling	X	=	x	 Label	set	L	=	{1,	2,	…,	h}	



CRF	training	
•  Stereo	matching:	
•  Z:	lev,	right	image	
•  X:	disparity	map	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
esSmate	proper	w	



CRF	training	
•  Denoising:	
•  Z:	noisy	input	image	
•  X:	denoised	output	image	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
esSmate	proper	w	



CRF	training	
•  Object	detecSon:	
•  Z:	input	image	
•  X:	posiSon	of	object	parts	

Z	 X	

f :	

argf = parameterized	
by	w	

Goal	of	training:	
esSmate	proper	w	



CRF	training	(some	further	nota*on)	

vector	valued	feature	
funcSons	



Learning	formulaSons	



Risk	minimiza*on	

K	training	samples		



Regularized	Risk	minimiza*on	



Regularized	Risk	minimiza*on	

Replace	Δ(.)	with	easier	to	handle	upper	bound	LG	
(e.g.,	convex	w.r.t.	w)	



Choice	1:	Hinge	loss	

§  Upper	bounds	Δ(.)	

§  Leads	to	max-margin	learning	



Max-margin	learning	

subject	to	the	constraints:	

energy	of	
ground	truth	

any	other	
energy		

desired	
margin	

slack	



Max-margin	learning	

subject	to	the	constraints:	

or	equivalently	

CONSTRAINED	

UNCONSTRAINED	



Choice	2:	logis*c	loss		

§  Can	be	shown	to	lead	to	maximum	likelihood	learning	
	

parSSon	funcSon		



Max-margin	vs	Maximum-likelihood	
max-margin	

maximum	likelihood	



Max-margin	vs	Maximum-likelihood	
max-margin	

maximum	likelihood	

sov-max	



Solving	the	learning	
formulaSons	



Maximum-likelihood	learning	

§  DifferenSable	&	convex	
	

parSSon	funcSon		

§  Global	opSmum	via	gradient	descent,	for	example	
	



Maximum-likelihood	learning	

gradient	

Recall	that:	



Maximum-likelihood	learning	

gradient	

§  Requires	MRF	probabilisSc	inference		
	
§  NP-hard	(exponenSally	many	x):	approximaSon	via	loopy-BP	?	
	



Max-margin	learning	(UNCONSTRAINED)	

§  Convex	but	non-differenSable	
	
§  Global	opSmum	via	subgradient	method	



Subgradient	

x2	

subgradient	at	x1	

g(x2)+h2·(x-x2)	

subgradient	at	x2	=	gradient	at	x2	



Subgradient	

x 



Subgradient	

x 



Subgradient	

subgradient	of	LG =		



Max-margin	learning	(UNCONSTRAINED)	

total	subgr.	 =		

Repeat		
	1.	compute	global	minimizers								at	current	w 
	2.	compute	total	subgradient	at	current	w	
	3.	update	w by	taking	a	step	in	the	negaSve	total	subgradient		
	 	direcSon	

un*l	convergence	

Subgradient	algorithm	



Max-margin	learning	(UNCONSTRAINED)	

par*al	subgradient		=		

Repeat		
	1.	pick	k	at	random	
	2.	compute	global	minimizer							at	current	w 
	3.	compute	par*al	subgradient	at	current	w	
	4.	update	w by	taking	a	step	in	the	negaSve	parSal	subgradient	
	 	direcSon	

un*l	convergence	

Stochas*c	subgradient	algorithm	

MRF-MAP	esSmaSon	per	iteraSon	
	(unfortunately	NP-hard)		



Max-margin	learning	(CONSTRAINED)	

subject	to	the	constraints:	



Max-margin	learning	(CONSTRAINED)	

subject	to	the	constraints:	

linear	in	w 

•  QuadraSc	program	(great!)	
•  But	exponenSally	many	constraints	(not	so	great)	



•  What	if	we	use	only	a	small	number	of	constraints?	

•  ResulSng	QP	can	be	solved	
•  But	soluSon	may	be	infeasible	

Max-margin	learning	(CONSTRAINED)	

•  only	few	constraints	ac*ve	at	opSmal	soluSon	!!	
(variables	much	fewer	than	constraints)	

•  Constraint	genera*on	to	the	rescue	

•  Given	the	acSve	constraints,	rest	can	be	ignored	
•  Then	let	us	try	to	find	them!	



1.	Start	with	some	constraints	

Constraint	genera*on	

2.	Solve	QP		

3.	Check	if	soluSon	is	feasible	w.r.t.	to	all	constraints	

4.	If	yes,	we	are	done!	

5.	If	not,	pick	a	violated	constraint	and	add	it	to	the	
current	set	of	constraints.	Repeat	from	step	2.	
	(opSonally,	we	can	also	remove	inacSve	constraints)	



•  Key	issue:	we	must	always	be	able	to	find	a	violated	
constraint	if	one	exists	

Constraint	genera*on	

•  Recall	the	constraints	for	max-margin	learning	

•  To	find	violated	constraint,	we	therefore	need	to	
compute:	

(just	like	subgradient	method!)	



1.	IniSalize	set	of	constraints	C to	empty		

Constraint	genera*on	

2.	Solve	QP	using	current	constraints	C and	
obtain	new	(w,ξ)		

4.	For	each	k,	if	the	following	constraint	is	violated	
then	add	it	to	set	C:		

5.	If	no	new	constraint	was	added	then	terminate.	
Otherwise	go	to	step	2.	

3.	Compute	global	minimizers								at	current	w	

MRF-MAP	esSmaSon	per	sample		
(unfortunately	NP-hard)		



Max-margin	learning	(CONSTRAINED)	

subject	to	the	constraints:	

•  AlternaSvely,	we	can	solve	above	QP	in	the	dual	
domain	

•  dual	variables	↔	primal	constraints	
•  Too	many	variables,	but	most	of	them	zero	at	
opSmal	soluSon	

•  Use	a	working-set	method		
(essenSally	dual	to	constraint	generaSon)	



CRF	Training	via		
Dual	DecomposiSon	

Komodakis,	CVPR	2011	



CRF	training	

•  Key	issue:	can	we	exploit	the	CRF	structure	more	aptly	
during	training?	

•  ExisSng	max-margin	(maximum	likelihood)	methods:		
•  use	MAP	inference	(probabilisSc	inference)	w.r.t.	

an	equally	complex	CRF	as	subrouSne	
•  have	to	call	subrouSne	many	*mes	during	learning	

•  SubopSmal	
•  computaSonal	efficiency	?	
•  accuracy	?	
•  theoreScal	guarantees/properSes	?	



CRF	Training	via	Dual	Decomposi*on	

•  Reduces	training	of	complex	CRF	to	parallel	training	of	a	
series	of	easy-to-handle	slave	CRFs	

•  Handles	arbitrary	pairwise	or	higher-order	CRFs	

•  Uses	very	efficient	projected	subgradient	learning	scheme	

•  Allows	hierarchy	of	structured	predicSon	learning	
algorithms	of	increasing	accuracy	

•  Efficient	max-margin	training	method	



Dual	DecomposiSon	for	MRF	
OpSmizaSon		

(another	recap)	



MRF	OpSmizaSon	via	Dual	
DecomposiSon	

•  Very	general	framework	for	MAP	inference	[Komodakis	
et	al.	ICCV07,	PAMI11]	

•  Master	 	= 	coordinator	 	(has	global	view)	
Slaves		 	= 	subproblems	 	(have	only	local	view)	



MRF	OpSmizaSon	via	Dual	
DecomposiSon	

•  Very	general	framework	for	MAP	inference	[Komodakis	
et	al.	ICCV07,	PAMI11]	

•  Master	 	= 	 	 			(MAP-MRF	on	hypergraph	G)
																														=		min	



MRF	OpSmizaSon	via	Dual	
DecomposiSon	

•  Very	general	framework	for	MAP	inference	[Komodakis	
et	al.	ICCV07,	PAMI11]	

•  Set	of	slaves		= 	 	 	 		
(MRFs	on	sub-hypergraphs	Gi	whose	union	covers	G)	

•  Many	other	choices	possible	as	well	



MRF	OpSmizaSon	via	Dual	
DecomposiSon	

•  Very	general	framework	for	MAP	inference	[Komodakis	
et	al.	ICCV07,	PAMI11]	

•  OpSmizaSon	proceeds	in	an	iteraSve	fashion	via	
master-slave	coordina*on 	 	 	 		
	



convex	dual	relaxaSon		

Set	of	slave	MRFs		

For	each	choice	of	slaves,	master	solves	(possibly	different)	
dual	relaxaSon	
•  Sum	of	slave	energies	=	lower	bound	on	MRF	opSmum	
•  Dual	relaxaSon	=	maximum	such	bound	

MRF	OpSmizaSon	via	Dual	
DecomposiSon	



convex	dual	relaxaSon		

Set	of	slave	MRFs		

Choosing	more	difficult	slaves		 	Sghter	lower	bounds	
		 	Sghter	dual	relaxaSons	

⇒
⇒

MRF	OpSmizaSon	via	Dual	
DecomposiSon	



CRF	training	via		
Dual	DecomposiSon	



Max-margin	learning	via	dual	decomposi*on	



Max-margin	learning	via	dual	decomposi*on	



Max-margin	learning	via	dual	decomposi*on	

loss-augmented	potenSals	

                



loss-augmented	potenSals	

                

Max-margin	learning	via	dual	decomposi*on	



Learning	objecSve	intractable	due	to	this	term		
Problem	

Max-margin	learning	via	dual	decomposi*on	



Solu*on:	approximate	this	term	with	dual	relaxaSon	
from	decomposiSon		

Max-margin	learning	via	dual	decomposi*on	



Max-margin	learning	via	dual	decomposi*on	

now	

before	

Essen*ally,	training	of	complex	CRF	decomposed	to	
parallel	training	of	easy-to-handle	slave	CRFs	!!!	



Max-margin	learning	via	dual	decomposi*on	

•  Global	opSmum	via	projected	subgradient	method		
(slight	variaSon	of	subgradient	method)	

Repeat		
	1.	compute	subgradient	at	current	w	
	2.	update	w by	taking	a	step	in	the	negaSve	subgradient	 	 	
	direcSon	
	3.	project	into	feasible	set	

un*l	convergence	

Projected	subgradient	



•  Input:	

•  K	training	samples	

•  Vector	valued	feature	funcSons	

Projected	subgradient	learning	algorithm	

•  Hypergraph	
(in	general	hypergraphs	can	vary	per	sample)			



Projected	subgradient	learning	algorithm	

so	as	to	saSsfy	

fully	specified	from		

(we	only	need	to	know	how	to	op*mize	slave	MRFs	!!)	



•  ResulSng	learning	scheme:	

ü  Slave	problems	freely	chosen	by	the	user	

ü  Easily	adaptable	to	further	exploit	special	structure	of	
any	class	of	CRFs	

ü  Very	efficient	and	very	flexible	

ü  Requires	from	the	user	only	to	provide	an	opSmizer	
for	the	slave	MRFs	

Projected	subgradient	learning	algorithm	



Choice	of	decomposiSons	

•  																																																																							
	(hierarchy	of	learning	algorithms)	

=	true	loss	(intractable)	

=	loss	when	using	decomposiSon	

•  																								
						(upper	bound	property)	

	



•  																																						denotes	following	decomposiSon:		
– One	slave	per	clique		
–  Corresponding	sub-hypergraph																														:	

																																													,	

•  ResulSng	slaves	oven	easy	(or	even	trivial)	to	solve	even	
if	global	problem	is	complex	and	NP-hard		
–  leads	to	widely	applicable	learning	algorithm	

•  Corresponding	dual	relaxaSon	is	an	LP	
–  Generalizes	well	known	LP	relaxaSon	for	pairwise	
MRFs	(at	the	core	of	most	state-of-the-art	methods)	

	

Choice	of	decomposiSons	



•  But	we	can	do	be<er	if	CRFs	have	special	structure…	

Choice	of	decomposiSons	

•  Structure	means:	
•  More	efficient	opSmizer	for	slaves	(speed)	

•  OpSmizer	that	handles	more	complex	slaves	
(accuracy)	

(Almost	all	known	examples	fall	in	one	of	above	two	cases)	

•  We	are	essenSally	adapSng	decomposiSon	to	exploit	the	
structure	of	the	problem	at	hand	



•  But	we	can	do	be<er	if	CRFs	have	special	structure…	

•  e.g.,	pa]ern-based	high-order	potenSals	(for	a	clique	c) 
[Komodakis	&	Paragios	CVPR09]		

		 	subset	of	 	(its	vectors	called	pa]erns)	
	

Choice	of	decomposiSons	



•  Tree	decomposiSon	
(Ti  are	spanning	trees	that	cover	the	graph)	

Choice	of	decomposiSons	

•  No	improvement	in	accuracy	

•  But	improvement	in	speed	
(																				converges	faster	than																						)		



Image	denoising	
•  Piecewise	constant	images	

•  PotenSals:	

•  Goal:	learn	pairwise	potenSal		

Z	 X	

( )k
p p p pu x x z= − ( ) ( ),k

pq p q p qh x x V x x= −



Image	denoising	

	learnt	potenSal	



Image	denoising	



Stereo	matching	
•  PotenSals:	

•  Goal:	learn	funcSon	f (.)	for	gradient-modulated	Po<s	model		

( ) ( ) ( )k left right
p p pu x I p I p x= − −

( ) ( ), ( )k left
pq p q p qh x x f I p x x⎡ ⎤= ∇ ≠⎣ ⎦

	learnt	funcSon		f 



Stereo	matching	

“Venus”	disparity	using		f (.)	as	esSmated	at	
different	iteraSons	of	learning	algorithm	

•  PotenSals:	

•  Goal:	learn	funcSon	f (.)	for	gradient-modulated	Po<s	model		

( ) ( ) ( )k left right
p p pu x I p I p x= − −

( ) ( ), ( )k left
pq p q p qh x x f I p x x⎡ ⎤= ∇ ≠⎣ ⎦

[Middlebury	dataset]	



Stereo	matching	

Sawtooth	
4.9%	

Poster		
3.7%	

Bull	
2.8%	

•  PotenSals:	

•  Goal:	learn	funcSon	f (.)	for	gradient-modulated	Po<s	model		

( ) ( ) ( )k left right
p p pu x I p I p x= − −

( ) ( ), ( )k left
pq p q p qh x x f I p x x⎡ ⎤= ∇ ≠⎣ ⎦

[Middlebury	dataset]	



Stereo	matching	
•  PotenSals:	

•  Goal:	learn	funcSon	f (.)	for	gradient-modulated	Po<s	model		

( ) ( ) ( )k left right
p p pu x I p I p x= − −

( ) ( ), ( )k left
pq p q p qh x x f I p x x⎡ ⎤= ∇ ≠⎣ ⎦



High-order	Pn	Po<s	model	

Cost	for	opSmizing	slave	CRF:	O(|L|)		

•  100	training	samples	
•  50x50	grid	
•  clique	size	3x3	
•  5	labels	(|L|=5)	

[Kohli	et	al.	CVPR07]	

Goal:	learn	high	order	CRF	with	potenSals	given	by	

Fast	training	



Learning	to	cluster	

Komodakis,	ICCV	2011	



Clustering	

•  A	fundamental	task	in	vision	and	beyond	

•  Typically	formulated	as	an	opSmizaSon	problem	based	on	a	
given	distance	funcSon	between	datapoints	

•  Choice	of	distance	crucial	for	the	success	of	clustering	

•  Goal	1:	learn	this	distance	automaScally	based	on	training	data	

•  Goal	2:	learning	should	also	handle	the	fact	that	the	number	
	of	clusters	is	typically	unknown	at	test	Sme	



Exemplar	based	clustering	formula*on	

set	of	exemplars	
(cluster	centers)	

set	of	datapoints	

distance	between	
datapoints	p	and	q	

penalty	for	choosing	q	as	
exemplar	(cluster	center)	

The	above	formulaSon	allows	to:	
•  automaScally	esSmate	the	number	of	clusters	(i.e.	size	of	Q)		
•  use	arbitrary	distances		
(e.g.,	non-metric,	asymmetric,	non-differenSable)	



Exemplar	based	clustering	formula*on	

set	of	exemplars	
(cluster	centers)	

set	of	datapoints	

distance	between	
datapoints	p	and	q	

penalty	for	choosing	q	as	
exemplar	(cluster	center)	

Inference	can	be	performed	efficiently	using:	
Clustering	via	LP-based	Stabili*es	[Komodakis	et	al.,	NIPS	2008]	


