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Generative networks

U-Net: Multi-instance segmentation

FlowNet: Estimating optical flow
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Outline
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Typical ConvNet architecture

cat

Classification network
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Typical ConvNet architecture

cat

Classification network
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Small 
gray
office 
chair,
side 
view

cat
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Up-convolutional network

Image generation

Related work: 
• Eigen et al. NIPS 2014: Network for depth map prediction
• Long et al. CVPR 2015: Network for semantic segmentation

Alexey Dosovitskiy
CVPR 2015

New: Expanding network architecture
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Generating chair images with a network

Dosovitskiy et al., CVPR 2015
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Training set

Source: https://github.com/dimatura/seeing3d

3D chair dataset
Aubry et al. CVPR 2014

Rendering 809 chair styles 
From 62 viewpoints

Some of the rendered chairs
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Generating images of unseen views

Training set split into two subsets: 

Source set: 62 viewpoints available (90% of all chair models)

Target set: fewer viewpoints available (10% of all models)
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Generating images of unseen views

8 azimuths 
available

4 azimuths 
available

2 azimuths 
available

1 azimuth 
available
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Comparison to baselines

Alexey Dosovitskiy
CVPR 2015
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Interpolation of chair styles

1111

Alexey Dosovitskiy
CVPR 2015
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Correspondences between chair instances

Alexey Dosovitskiy
CVPR 2015
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• Generate intermediate images with the network

• Track points with optical flow (LDOF) along the sequence
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Correspondences between chair instances

all easy difficult

Deformable Spatial Pyramid 
Matching (Kim et al. 2013)

5.2 3.3 6.3

SIFT Flow (Liu et al. 2008) 4.0 2.8 4.8

Ours 3.9 3.9 3.9

Human performance 1.1 1.1 1.1



Thomas Brox 14

Preview: Inverting ConvNets with ConvNets

Alexey Dosovitskiy
arXiv 2015

Image features
e.g. from AlexNet

Related work: 
• Mahendran & Vedaldi CVPR 2015
• Zeiler & Fergus ECCV 2014

Learn to re-generate the input image from its 
feature representation

Up-convolutional network



Thomas Brox 15

Reconstruction results

Up-Conv.

Mahendran 
& Vedaldi

Auto-
encoder

More reconstructions with up-convolutional network:
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Color and position are preserved in high layers

input
All FC8

Top 5 
FC8

All but 
Top 5 FC8

Color experiment Position experiment
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A generative network

U-Net: Multi-instance segmentation

FlowNet: Estimating optical flow
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Outline
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U-Net: Image segmentation with a ConvNet
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Olaf 
Ronneberger
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• Similar to Fully 
Convolutional Network
[Long et al., CVPR 2015]

• Original inspiration: 
Depth map prediction
[Eigen et al., NIPS 2014]

Philipp 
Fischer

MICCAI 2015
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Binary segmentation

Electron Microscopy
ISBI 2012 Challenge

Rank 1

Light microscopy cell tracking
ISBI 2015 Challenge

Rank 1
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Intersection over union: 77.5%
Second best: 46%
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Multi-class semantic segmentation

X-ray dental segmentation, ISBI 2015 Challenge, Rank 1
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Multi-instance segmentation

Light microscopy, DIC-HeLa cell tracking
ISBI 2015 Challenge: Rank 1
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A generative network

U-Net: Multi-instance segmentation

FlowNet: Estimating optical flow
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Outline
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FlowNet: Estimating optical flow with a ConvNet

Refinement:
expanding architecture



Thomas Brox 24

Helping the network with a correlation layer

Alexey 
Dosovitskiy

Philipp 
Fischer

Eddy
Ilg

Philip 
Häusser

Caner 
Hazirbas

Vladimir 
Golkov

Joint work with the group of Daniel Cremers
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• Getting ground truth optical flow for realistic videos is 
hard

• Existing datasets are small:
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Enough data to train such a network?

Frames with ground truth

Middlebury 8

KITTI 194

Sintel 1041

Needed >10000
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Realism is overrated: the “flying chair” dataset

Rendered image Optical flow
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It works!

Although the network has only seen flying chairs for 
training, it predicts good optical flow on Sintel

Input images Ground truth

FlowNetSimple FlowNetCorr
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Results on various datasets

Middlebury KITTI Sintel Clean Sintel Final Flying Chairs

EpicFlow 0.39 3.8 4.1 6.3 2.9

DeepFlow 0.42 5.8 5.4 7.2 3.5

LDOF 0.56 12.4 7.6 9.1 3.5

FlowNetS - - 7.4 8.4 2.7

FlowNetS+v - - 6.5 7.7 2.9

FlowNetS+ft - 9.1 7.0 7.8 3.0

FlowNetS+ft+v 0.47 7.6 6.2 7.2 3.0

FlowNetC - - 7.3 8.8 2.2

FlowNetC+v - - 6.3 8.0 2.6

FlowNetC+ft - - 6.9 8.5 2.3

FlowNetC+ft+v 0.5 - 6.1 7.9 2.7

Networks can compete with state-of-the-art 
conventional optical flow estimation methods
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Can handle large displacements

Input images Ground truth

FlowNetSimple FlowNetCorr

DeepFlow (Weinzaepfel et al. ICCV 2013) EpicFlow (Revaud et al. CVPR 2015)
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Sometimes wrong direction

Input images Ground truth

FlowNetSimple FlowNetCorr

DeepFlow (Weinzaepfel et al. ICCV 2013) EpicFlow (Revaud et al. CVPR 2015)
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Often captures fine details

Input images Ground truth

FlowNetSimple FlowNetCorr

DeepFlow (Weinzaepfel et al. ICCV 2013) EpicFlow (Revaud et al. CVPR 2015)
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Results on “Flying chairs” test set

Input images

FlowNetCorrEpicFlow (Revaud et al. CVPR 2015)

Ground truth
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Runs with 10fps on the GPU
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A generative network

U-Net: Multi-instance segmentation

FlowNet: Estimating optical flow
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Summary
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Tip of the day


