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Figure 7. Recognition + Reconstruction visualizations of our method. Odd rows show the test image and recognized + reconstructed
object overlayed on it. Even rows illustrate the associated synthesized templates which detect object. As shown, the method is capable
of recognizing objects from various viewpoints, shapes and is robust to heavy occlusion. Because every synthesized template has a 3D
shape, recognition is inherently reconstructive. On the top right, we show results for images with multiple cars. Results for boxes suggest
that our synthesis model can handle various viewpoints, aspect ratios, and even perspective effects. However some images are genuinely
ambiguous, like the rubiks cube (bottom-right).
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Motivation 1: integrated perception and actuation



Motivation 2: wearable (mobile) cameras

Google Glass



Outline

-Data analysis: 
 Analyze big temporal data “Making tea”

-Functional prediction: 
what can user do in scene? Grab here

-Egocentric hand estimation
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Reflectant objects

Novel objects

Noisy depth data

Fig. 7. Good detections. We show a sample of challenging frames where the hand is correctly
detected by our system. Reflectant objects (top row: wine bottle, pan, phone, knife and plastic
bottle) produce incorrect depth maps due to interactions with our sensor’s infrared illuminant.
Novel objects (middle row: envelope, juice box, book, apple, spray and chocolate powder box)
require generalization to objects not synthesized at train-time, while noisy depth data (bottom
row) showcases the robustness of our system.

provided an insightful analysis of the performance of our algorithm on a new real-world
annotated dataset of egocentric scenes.
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Egocentric hand pose estimation

Deva:  Perhaps  the  most  relevant  would  be  [6],  but  I  found  the  description  of  the  text  hard  to  
follow.  Perhaps  [8]  would  be  the  easiest  to  implement.  

Scenarios  

Easy: Third Person -‐ HCI/Gesture (8) 

  

Egocentric (4) 

  

Challenges:

-occlusions to objects
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Reflectant objects

Novel objects

Noisy depth data

Fig. 7. Good detections. We show a sample of challenging frames where the hand is correctly
detected by our system. Reflectant objects (top row: wine bottle, pan, phone, knife and plastic
bottle) produce incorrect depth maps due to interactions with our sensor’s infrared illuminant.
Novel objects (middle row: envelope, juice box, book, apple, spray and chocolate powder box)
require generalization to objects not synthesized at train-time, while noisy depth data (bottom
row) showcases the robustness of our system.

provided an insightful analysis of the performance of our algorithm on a new real-world
annotated dataset of egocentric scenes.
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-hands have a higher (effective) DOFs than bodies
 -self-occlusion due to egocentric viewpoint



Past approaches

Li & Kitani, CVPR13, ICCV13Skin-pixel classification:

Motion segmentation: Ren & Gu,  CVPR10, Fathi et al CVPR 11



Observation: RGB-D saves the day

Mimic near-field depth from human vision (stereopsis)

Produces accurate depth over “near-field workspace”

TOF camera



Does depth solve it all?
Hand detection in egocentric views

PXC = Intel’s Perceptual Computing Software 
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noisy depth reflectant object (phone) novel object (keys) novel object (towel) truncated hand

Fig. 8. Hard cases. We show frames where the hand is not correctly detected by our system, even
with 40 candidates. These hard cases include excessively-noisy depth data, hands manipulating
reflectant material (phone) or unseen/deformable objects that look considerably different from
those in our training set (e.g. keys, towels), and truncated hands.
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Our approach
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Real-world egocentric RGB-D video (test) Synthetic egocentric RGB-D video (train)

Fig. 1. Testing (left) and training data (right). We show on the left hand side several examples of
annotated training RGBD images captured with a chest-mounted Intel Creative camera. On the
right, we present some examples of training images rendered using Poser.

frustum, making it difficult to apply tracking models that rely on accurate estimates
from previous frames. Second, fingers are often occluded by the hand (and possible
other objects being manipulated) in first-person viewpoints, making hand detection and
articulated pose estimation more challenging than the typically third-person viewpoint
(see Fig. 2).

Our approach: We describe an successful approach to hand-pose estimation that
makes use of the following key observations. First, motivated by biological evidence
[8], we show that depth cues provides an extraordinarily helpful signal for pose estima-
tion in near-field, first-person viewpoints. We find that time-of-flight depth cameras pro-
vide good depth estimates over a near-field workspace (0-70cm from the camera) while
being easily mobile. Second, the egocentric setting provides a strong viewpoint, shape,
and interacting-object prior over hand poses. We operationalize this prior by building
parametric models over viewpoints of poses of a 3D, mesh-based hand model while
interacting with common household objects. We then sample from this model (with an
egocentric prior over viewpoint and hand shape) to generate large, synthetic depth data
for training hand classifiers (see Fig. 2b). Third, sparse, discriminative classifiers al-
low us efficiently evaluate a large family of pose-specific classifiers. We classify global
poses rather than local parts, which allows us to better reason about self-occlusions. Our
classifiers process single frames, using a tracking-by-detection framework that avoids
the need for manual initialization (see Fig. 2c-e).

Evaluation: Unlike human pose estimation, there exists no standard benchmarks
for hand pose estimation, especially in egocentric videos. We believe that quantifiable
performance is important for many broader applications such as health-care rehabil-
itation, for example. Thus, for the evaluation of our approach, we have collected and
annotated (full 3D hand poses) our own benchmark dataset of real egocentric object ma-

Make use of massive synthetic training set

Mount avatar with virtual egocentric cameras

Use animation library of household objects and scenes 



Our approach
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Real-world egocentric RGB-D video (test) Synthetic egocentric RGB-D video (train)

Fig. 1. Testing (left) and training data (right). We show on the left hand side several examples of
annotated training RGBD images captured with a chest-mounted Intel Creative camera. On the
right, we present some examples of training images rendered using Poser.

frustum, making it difficult to apply tracking models that rely on accurate estimates
from previous frames. Second, fingers are often occluded by the hand (and possible
other objects being manipulated) in first-person viewpoints, making hand detection and
articulated pose estimation more challenging than the typically third-person viewpoint
(see Fig. 2).

Our approach: We describe an successful approach to hand-pose estimation that
makes use of the following key observations. First, motivated by biological evidence
[8], we show that depth cues provides an extraordinarily helpful signal for pose estima-
tion in near-field, first-person viewpoints. We find that time-of-flight depth cameras pro-
vide good depth estimates over a near-field workspace (0-70cm from the camera) while
being easily mobile. Second, the egocentric setting provides a strong viewpoint, shape,
and interacting-object prior over hand poses. We operationalize this prior by building
parametric models over viewpoints of poses of a 3D, mesh-based hand model while
interacting with common household objects. We then sample from this model (with an
egocentric prior over viewpoint and hand shape) to generate large, synthetic depth data
for training hand classifiers (see Fig. 2b). Third, sparse, discriminative classifiers al-
low us efficiently evaluate a large family of pose-specific classifiers. We classify global
poses rather than local parts, which allows us to better reason about self-occlusions. Our
classifiers process single frames, using a tracking-by-detection framework that avoids
the need for manual initialization (see Fig. 2c-e).

Evaluation: Unlike human pose estimation, there exists no standard benchmarks
for hand pose estimation, especially in egocentric videos. We believe that quantifiable
performance is important for many broader applications such as health-care rehabil-
itation, for example. Thus, for the evaluation of our approach, we have collected and
annotated (full 3D hand poses) our own benchmark dataset of real egocentric object ma-

Make use of massive synthetic training set

Mount avatar with virtual egocentric cameras

Use animation library of household objects and scenes 

Naturally enforces “egocentric” priors over viewpoint, grasping poses, etc.
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Figure 1: Dataset construction: we place a virtual Intel Creative camera on the chest of
our character (a) and, for each hand-object model, we randomly perturbed shoulder, arm
and hand joint angles as physically possible to create a new dense cloud of 3D points for
arm+hand+object (b). A synthetic depth map is then created by projecting these 3D points
using the Intel camera projection matrix (c), which results in a cloud of 3D depth points
(d). This cloud of depth points is then use to compute our new binarized volumetric feature
which is a quantization of the volume in front of the camera (e).

in front of the observer. We observe that the pose and appearance of the hand is not translation-
invariant, due to perspective effects and kinematic constraints with the arm. To capture such
effects, we build a library of synthetic photorealistic 3D egocentric workspaces generated
from real capture conditions (Fig. 1). We animate a 3D human character model inside virtual
scenes with virtual objects, and render such animations with a chest-mounted camera. We si-
multaneously recognize hand poses, visible arm regions, and interacting objects by matching
synthetic 3D volumes to the measured data. A “whole-image volumetric” workspace is con-
ceptually simpler, easier to implement, and more accurate since it explicitly reasons about
occlusions between arms, hands, and objects. Importantly, to increase run-time efficiency,
we employ a multi-stage coarse-to-fine search that prunes the set of candidate workspaces
with efficient cascade architectures.

2 Related Work
Hand-object pose estimation: While there is a large body of work on hand-tracking [1,
10, 11, 12, 17, 24, 27], we focus on hand pose estimation during object manipulations.
Object interactions both complicate analysis due to additional occlusions, but also provide
additional contextual constraints (hands cannot penetrate object geometry, for example). [9]
describe articulated tracker with soft anti-penetration constraints, increasing robustness to
occlusion. Hamer et al. describe contextual priors for hands in relation to objects [8], and
demonstrate their effectiveness for increasing tracking accuracy. Fewer degree of freedom
makes objects easier to animate as compared to hands. With this intuition, object motion can
be used as input signal for estimating hand motions [7].
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Fig. 2. System. (a) Chest-mounted RGB-D camera. (b) Synthetic egocentric hand exemplars are
used to train a multi-class cascade classifier. The depth map is processed to select a sparse set of
image locations (c) which are classified obtaining distributions over probable hand poses (d). An
estimate is made e.g., by taking the max over these distributions (e).

nipulation scenes, which we will release to spur further research. It is surprisingly dif-
ficult to collect annotated datasets of hands performing real-world interactions; indeed,
many prior work on hand pose estimation evaluate results on synthetically-generated
data. We developed a semi-automatic labelling tool which allows to accurately annotate
partially occluded hands and fingers in 3D, given real-world RGBD data. We compare
to both commecial and academic approaches to hand pose estimation, and demonstrate
that our method provides state-of-the-art performance for both hand detection and pose
estimation.

2 Related Work

Egocentric hand/object manipulation: Whereas third-person-view activity anal-
ysis is often driven by human full-body pose, egocentric activities are often defined
by hand pose and the objects that the camera wearer interacts with. Previous work ex-
amined the problem of recognizing objects [9, 10] and interpreting American Sign Lan-
guage poses [11] from wearable cameras. Much work has also focused on hand tracking
[12–15], finger tracking [16], and hand-eye tracking [17] from wearable cameras. Of-
ten, hand pose estimation is examined during active object manipulations [18–22]. One
commonality behind such previous work is the use of RGB sensor input. Motivated in
part by biological evidence [8], we show that depth cues considerably aids the process-
ing of such near-field interactions.

Depth-based pose estimation: Our technical approach is closely inspired by the
Kinect system [4], which also makes use of synthetically generated depth maps for
articulated pose estimation. Our approach differs in that we construct classifiers that
classify entire poses rather than local landmarks or parts. We posit and verify that
the numerous occlusions of articulated fingers from a wearable viewpoint requires a
more global approach, since local information can be ambiguous due to occlusions. For
this reason, temporal reasoning is also particularly attractive because one can use dy-
namics to resolve such ambiguities. Much prior work on hand-pose estimation takes
this route [23, 7, 24]. Our approach differs from these approaches in that we focus on

Decision / regression trees
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a typical translation-invariant scanning window, we have shown that classifying the global
arm+hand+object configurations within the entire volume in front of the camera allows for
fast and accurate results. We have proposed a multi-stage coarse-to-fine pipeline for fast
detection, making use of global multiclass cascades, pose refinement, and nearest-neighbor
matching using photorealistic synthetic 3D exemplars. Our method efficiently and robustly
detects and recognizes 3D hand poses, while estimating the objects being manipulated.

Figure 5: Qualitative nearest neighbor results for several samples from [2]. We show on the
left the test depth image and, on the same raw, the top scoring (arm+hand+object) exemplar
of the 5 top scoring class candidates.

Nearest-neighbor on volumetric 
depth features



Results

Rogez et al, ECCV 14 Workshop on Consumer Depth Cameras



Ablative analysis

Depth & egocentric priors (over viewpoint & grasping poses) are crucial



Ongoing work:
hand grasp region prediction

Disc grasp Dynamic lateral tripod Lumbrical grasp

Functionally-motivated pose classes

(Though we are finding it hard to publish in computer vision venues!)



Outline

-Data analysis: 
 Analyze big temporal data “Making tea”

-Functional prediction: 
what can user do in scene? Grab here

-Egocentric hand estimation

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV
#6

ECCV
#6

12 CDC4V-14 submission ID 6

Reflectant objects

Novel objects

Noisy depth data

Fig. 7. Good detections. We show a sample of challenging frames where the hand is correctly
detected by our system. Reflectant objects (top row: wine bottle, pan, phone, knife and plastic
bottle) produce incorrect depth maps due to interactions with our sensor’s infrared illuminant.
Novel objects (middle row: envelope, juice box, book, apple, spray and chocolate powder box)
require generalization to objects not synthesized at train-time, while noisy depth data (bottom
row) showcases the robustness of our system.

provided an insightful analysis of the performance of our algorithm on a new real-world
annotated dataset of egocentric scenes.
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Temporal data analysis

Start boiling 
water

Do other things
(while waiting) Pour in cup Drink tea

timestart
boiling water 

wait steep 
tea leaves

Challenges: 
 - some daily activities can take a long time (interrupted)

-analyze large collections of temporal big-data vs YouTube clips

 - some daily activities exhibit “internal structure” (more on this)



Classic models for capturing temporal structure

Boil Wait Steep

Markov models



Classic models for capturing temporal structure

Boil Wait Steep

Markov models

... but does this really matter? 

Maybe local bag-of-feature templates suffice

P. Smyth “Oftentimes a strong data model will do the job”

“Making tea” template
time



But some annoying details...
How to find multiple actions of differing lengths?

Can we do better that window scan of O(NL) + heuristic NMS ?

L = maximum temporal length
N = length of video



Insufficiently well-known fact

We can do all this for 1-D (temporal) signals with grammars

“The hungry rabbit eats quickly”



Application to actions
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Figure 1. A sample video parsed to actions and subactions. Subactions are color-coded on the time-line while black represents background.
Given a video and a grammar (shown on the right), our linear-time parser produces a valid segementation into actions and subactions.

eling of actions are HMMs, spurred in part by their suc-
cessful application to speech recognition. Early approaches
date back to finite state machine models [32, 18], while
more recent work has explored discriminative variants such
as CRFs [31]. Previous work has used semi-Markov mod-
els to either capture temporal dependencies between actions
[23, 27, 9] or compositional dependencies between sub-
actions within an action [17, 26]. Our hierarchical model
allows us to simultaneously capture both dependencies with
a single grammar.

CFGs: Much prior work has explored CFGs for ges-
ture and event recognition [10, 15, 21, 24]. Attribute gram-
mars [13] and interval logics [28] generalize CFGs to in-
clude context-sensitive constraints at the cost of more ex-
pensive inference. Because of this burden, much prior work
applies a grammar on a sparse set of primitive actions de-
tected in a pre-processing stage. This makes inference scale
with the number of detections rather than the length of the
video. On the other hand, our linear-time parser allow us
to densely process all frames in a video. This allows us to
detect low-level actions (and subactions) while taking ad-
vantage of high-level contextual cues from our grammar.

Markov models: There exists a large body of literature
on extensions to HMMs in which states generate variable-
length sequences; these are sometimes called variable-
length HMMs [4, 20], semi-Markov models [11, 22, 26],
or segmental HMMs [6]. Most related to us are hierar-
chical semi-Markov models and hierarchical HMMs (HH-
MMs) [5, 29, 18]. HHMMs are recursive HMMs where
each hidden state is its own sequential probabilistic model.
[5, 29] both show that such are the same complexity as a
CFG, though [16] describe linear-time inference algorithms
obtained by expanding such models into an HMM with an
exponentially-large state-space.

CFG Segmental CFG Segmental RG

Abstract symbol
Terminal
Data

Figure 2. Context-free grammars (CFGs) use fixed-length termi-
nals that model a single data element. We show an example parse
tree on the left. Regular grammars (RGs) are a restricted type of
CFGs formed by a “one-sided” grammar. We introduce segmen-
tal variants of CFGs and RGs (SCFGs and SRGs), shown in the
middle and right, that generate variable-length terminals or seg-
ments. Variable-length terminals allow us to extract features de-
fined over the entire segment (such as the temporal length). SRGs
are particularly convenient for action recognition because they en-
code long-term hierarchical temporal structure, but still allow for
efficient linear-time parsing.

3. Grammar model
We will describe our grammar as a special case of a CFG.

Grammars, and in particular CFGs, are well studied topics
and covered in classic texts on natural language [14]. We
review the CYK parsing algorithm for CFGs as it forms the
basis for our parsing algorithm. One noteable aspect of our
grammar is that it generates variable-length segments in-
stead of single tokens; to derive this feature, we first de-
scribe a simple modification to a CYK parser for handling
such production rules (Fig. 2).

3.1. Context-Free Grammars
A weighted CFG in Chomsky Normal Form (CNF) is

specified by:

1. V is a finite set of non-terminal symbols

2. ⌃ is a set of terminal symbols

2
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Figure 1. On the left, we show a hierarchical parse of a video segmented into actions (Snatch, Clean-and-Jerk) and sub-actions (yank, pause,
press, background). Actions are represented by non-terminal symbols (N,C) while subaction and background segments are represented by
terminal symbols (colored blocks). We show the associated grammar on the right.

ants such as CRFs [?]. There exists a large body of literature
on extensions to HMMs in which states generate variable-
length sequences; these are sometimes called hierarchical
HMMs [?, ?, ?] or semi-Markov / segmental HMMs [?, ?].
Most related to our work are [?, ?], who use a semi-Markov
model to segment video streams into actions. Our grammars
do so while simultaneously parsing actions into subactions.

Grammars: Much prior work has explored context-
free-grammars (CFGs) for gesture and event recognition
[?, ?, ?, ?]. Attribute grammars [?] and interval logics [?]
generalize CFGs to include context-sensitive constraints at
the cost of more expensive inference. Because of this bur-
den, much prior work applies a grammar on a sparse set of
primitive actions detected in a pre-processing stage. This
makes inference scale with the number of detections rather
than the length of the video. We describe hierarchical gram-
mars that model actions and subactions with a finite-state
machine. This allows us to efficiently process all frames in
a video directly using our grammar.

3. Grammar model
We will describe our segmental regular grammar in Sec-

tion ?? as a special case of a CFG [?]. First, we review the
CYK parsing algorithm for CFGs as it forms the basis for
our parsing algorithm. One notable aspect of our grammar
is that it generates variable-length segments instead of sin-
gle tokens; to derive this feature, we first describe a simple
modification to a CYK parser for handling such production
rules.

3.1. Context-free grammars
A weighted CFG in Chomsky Normal Form (CNF) is

specified by:

1. V is a finite set of non-terminal symbols

2. ⌃ is a set of terminal symbols

3. R is a set of rules of the form X ! Y Z or X ! w
for X, Y, Z 2 V and w 2 ⌃. Each rule r 2 R has

an associated score s(r, i, k, j) for instantiating it at
boundary points i, j with a transition point of k.

A general CFG contains rules of the form ↵ ! �, where
↵ is any nonterminal and � is any string of terminals and
nonterminals. We write nV for the number of non-terminal
symbols, and nR for the number of rules. One can show
that any CFG can be written in CNF form by adding new
rules with “dummy” nonterminals.

Given a sequence w1, . . . , wN , the CYK algorithm is a
O(nRN3

) dynamic programming algorithm for computing
the best-scoring parse [?]. The algorithm will compute a
table of partial parses, of size O(nV N2

). CYK explicitly
computes the best parse of each possible segment and each
possible symbol label for that segment. The key quantity
which is iteratively computed is ⇡[X, i, j], the score of the
best parse of the segment starting at frame i, ending at frame
j, and labeled as symbol X 2 V .

In the CYK algorithm, we first initialize the “bottom”
row of the table, which represents the best parse of each
one-frame-long segment:

⇡[X, i, i] = max

r2{X!w}
s(r, i) for i = 1 . . . N (1)

We can now populate the “second” row of the table,
which represents the optimal parses of 2-frame segments.
For a l-frame segment, we will look at all possible l � 1

splits and all possible nr production rules that could gen-
erate this segment. Each one can be scored by looking at
lower entries in the table, which have already been com-
puted. We then take the max, and update the entry for the
current l-long segment. We formally describe the algorithm
in Alg. ?? and visualize the core loop in Fig. ??.

3.2. Segmental context-free grammars
In this section, we describe an extension to CYK-parsing

that allows for production rules that generate multiple ter-
minals. Though our extension is somewhat straightforward,
we have not seen it derived in the literature and include it for

2

Context-free grammars (CFGs): surprisingly simple to implement but poor scalabity O(N3)

Our contribution: many restricted grammars (like above) can be parsed in O(NL)

In theory & practice, no more expensive than a sliding window!



Real power of CFGs: recursion

S ! {}
S ! (S)

S ! SS

“((()())())()”
e.g., rules for generating valid sequences of parenthesis

If we don’t make use of this recursion, we can often make do with a simpler grammar.

Regular grammar: 
X ! uvw

X ! Y uvw



Intuition: compile regular grammar into a semi-markov model
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Figure 1. A sample video parsed to actions and subactions. Subactions are color-coded on the time-line while black represents background.
Given a video and a grammar (shown on the right), our linear-time parser produces a valid segementation into actions and subactions.

eling of actions are HMMs, spurred in part by their suc-
cessful application to speech recognition. Early approaches
date back to finite state machine models [32, 18], while
more recent work has explored discriminative variants such
as CRFs [31]. Previous work has used semi-Markov mod-
els to either capture temporal dependencies between actions
[23, 27, 9] or compositional dependencies between sub-
actions within an action [17, 26]. Our hierarchical model
allows us to simultaneously capture both dependencies with
a single grammar.

CFGs: Much prior work has explored CFGs for ges-
ture and event recognition [10, 15, 21, 24]. Attribute gram-
mars [13] and interval logics [28] generalize CFGs to in-
clude context-sensitive constraints at the cost of more ex-
pensive inference. Because of this burden, much prior work
applies a grammar on a sparse set of primitive actions de-
tected in a pre-processing stage. This makes inference scale
with the number of detections rather than the length of the
video. On the other hand, our linear-time parser allow us
to densely process all frames in a video. This allows us to
detect low-level actions (and subactions) while taking ad-
vantage of high-level contextual cues from our grammar.

Markov models: There exists a large body of literature
on extensions to HMMs in which states generate variable-
length sequences; these are sometimes called variable-
length HMMs [4, 20], semi-Markov models [11, 22, 26],
or segmental HMMs [6]. Most related to us are hierar-
chical semi-Markov models and hierarchical HMMs (HH-
MMs) [5, 29, 18]. HHMMs are recursive HMMs where
each hidden state is its own sequential probabilistic model.
[5, 29] both show that such are the same complexity as a
CFG, though [16] describe linear-time inference algorithms
obtained by expanding such models into an HMM with an
exponentially-large state-space.
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Figure 2. Context-free grammars (CFGs) use fixed-length termi-
nals that model a single data element. We show an example parse
tree on the left. Regular grammars (RGs) are a restricted type of
CFGs formed by a “one-sided” grammar. We introduce segmen-
tal variants of CFGs and RGs (SCFGs and SRGs), shown in the
middle and right, that generate variable-length terminals or seg-
ments. Variable-length terminals allow us to extract features de-
fined over the entire segment (such as the temporal length). SRGs
are particularly convenient for action recognition because they en-
code long-term hierarchical temporal structure, but still allow for
efficient linear-time parsing.

3. Grammar model
We will describe our grammar as a special case of a CFG.

Grammars, and in particular CFGs, are well studied topics
and covered in classic texts on natural language [14]. We
review the CYK parsing algorithm for CFGs as it forms the
basis for our parsing algorithm. One noteable aspect of our
grammar is that it generates variable-length segments in-
stead of single tokens; to derive this feature, we first de-
scribe a simple modification to a CYK parser for handling
such production rules (Fig. 2).

3.1. Context-Free Grammars
A weighted CFG in Chomsky Normal Form (CNF) is

specified by:

1. V is a finite set of non-terminal symbols

2. ⌃ is a set of terminal symbols
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Figure 1. On the left, we show a hierarchical parse of a video segmented into actions (Snatch, Clean-and-Jerk) and sub-actions (yank, pause,
press, background). Actions are represented by non-terminal symbols (N,C) while subaction and background segments are represented by
terminal symbols (colored blocks). We show the associated grammar on the right.

ants such as CRFs [?]. There exists a large body of literature
on extensions to HMMs in which states generate variable-
length sequences; these are sometimes called hierarchical
HMMs [?, ?, ?] or semi-Markov / segmental HMMs [?, ?].
Most related to our work are [?, ?], who use a semi-Markov
model to segment video streams into actions. Our grammars
do so while simultaneously parsing actions into subactions.

Grammars: Much prior work has explored context-
free-grammars (CFGs) for gesture and event recognition
[?, ?, ?, ?]. Attribute grammars [?] and interval logics [?]
generalize CFGs to include context-sensitive constraints at
the cost of more expensive inference. Because of this bur-
den, much prior work applies a grammar on a sparse set of
primitive actions detected in a pre-processing stage. This
makes inference scale with the number of detections rather
than the length of the video. We describe hierarchical gram-
mars that model actions and subactions with a finite-state
machine. This allows us to efficiently process all frames in
a video directly using our grammar.

3. Grammar model
We will describe our segmental regular grammar in Sec-

tion ?? as a special case of a CFG [?]. First, we review the
CYK parsing algorithm for CFGs as it forms the basis for
our parsing algorithm. One notable aspect of our grammar
is that it generates variable-length segments instead of sin-
gle tokens; to derive this feature, we first describe a simple
modification to a CYK parser for handling such production
rules.

3.1. Context-free grammars
A weighted CFG in Chomsky Normal Form (CNF) is

specified by:

1. V is a finite set of non-terminal symbols

2. ⌃ is a set of terminal symbols

3. R is a set of rules of the form X ! Y Z or X ! w
for X, Y, Z 2 V and w 2 ⌃. Each rule r 2 R has

an associated score s(r, i, k, j) for instantiating it at
boundary points i, j with a transition point of k.

A general CFG contains rules of the form ↵ ! �, where
↵ is any nonterminal and � is any string of terminals and
nonterminals. We write nV for the number of non-terminal
symbols, and nR for the number of rules. One can show
that any CFG can be written in CNF form by adding new
rules with “dummy” nonterminals.

Given a sequence w1, . . . , wN , the CYK algorithm is a
O(nRN3

) dynamic programming algorithm for computing
the best-scoring parse [?]. The algorithm will compute a
table of partial parses, of size O(nV N2

). CYK explicitly
computes the best parse of each possible segment and each
possible symbol label for that segment. The key quantity
which is iteratively computed is ⇡[X, i, j], the score of the
best parse of the segment starting at frame i, ending at frame
j, and labeled as symbol X 2 V .

In the CYK algorithm, we first initialize the “bottom”
row of the table, which represents the best parse of each
one-frame-long segment:

⇡[X, i, i] = max

r2{X!w}
s(r, i) for i = 1 . . . N (1)

We can now populate the “second” row of the table,
which represents the optimal parses of 2-frame segments.
For a l-frame segment, we will look at all possible l � 1

splits and all possible nr production rules that could gen-
erate this segment. Each one can be scored by looking at
lower entries in the table, which have already been com-
puted. We then take the max, and update the entry for the
current l-long segment. We formally describe the algorithm
in Alg. ?? and visualize the core loop in Fig. ??.

3.2. Segmental context-free grammars
In this section, we describe an extension to CYK-parsing

that allows for production rules that generate multiple ter-
minals. Though our extension is somewhat straightforward,
we have not seen it derived in the literature and include it for

2

Semi-markov models  = markov models with “counting” states



But aren’t semi-markov models already standard?

Action segmentation with 2-state semi-markov model: 
(Shi et al IJCV10, Hoai et al CVPR11)

Model subactions with 3-state semi-markov model:
Tang et al CVPR12 (+ NMS?)
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Figure 1. A sample video parsed to actions and subactions. Subactions are color-coded on the time-line while black represents background.
Given a video and a grammar (shown on the right), our linear-time parser produces a valid segementation into actions and subactions.

eling of actions are HMMs, spurred in part by their suc-
cessful application to speech recognition. Early approaches
date back to finite state machine models [32, 18], while
more recent work has explored discriminative variants such
as CRFs [31]. Previous work has used semi-Markov mod-
els to either capture temporal dependencies between actions
[23, 27, 9] or compositional dependencies between sub-
actions within an action [17, 26]. Our hierarchical model
allows us to simultaneously capture both dependencies with
a single grammar.

CFGs: Much prior work has explored CFGs for ges-
ture and event recognition [10, 15, 21, 24]. Attribute gram-
mars [13] and interval logics [28] generalize CFGs to in-
clude context-sensitive constraints at the cost of more ex-
pensive inference. Because of this burden, much prior work
applies a grammar on a sparse set of primitive actions de-
tected in a pre-processing stage. This makes inference scale
with the number of detections rather than the length of the
video. On the other hand, our linear-time parser allow us
to densely process all frames in a video. This allows us to
detect low-level actions (and subactions) while taking ad-
vantage of high-level contextual cues from our grammar.

Markov models: There exists a large body of literature
on extensions to HMMs in which states generate variable-
length sequences; these are sometimes called variable-
length HMMs [4, 20], semi-Markov models [11, 22, 26],
or segmental HMMs [6]. Most related to us are hierar-
chical semi-Markov models and hierarchical HMMs (HH-
MMs) [5, 29, 18]. HHMMs are recursive HMMs where
each hidden state is its own sequential probabilistic model.
[5, 29] both show that such are the same complexity as a
CFG, though [16] describe linear-time inference algorithms
obtained by expanding such models into an HMM with an
exponentially-large state-space.
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Figure 2. Context-free grammars (CFGs) use fixed-length termi-
nals that model a single data element. We show an example parse
tree on the left. Regular grammars (RGs) are a restricted type of
CFGs formed by a “one-sided” grammar. We introduce segmen-
tal variants of CFGs and RGs (SCFGs and SRGs), shown in the
middle and right, that generate variable-length terminals or seg-
ments. Variable-length terminals allow us to extract features de-
fined over the entire segment (such as the temporal length). SRGs
are particularly convenient for action recognition because they en-
code long-term hierarchical temporal structure, but still allow for
efficient linear-time parsing.

3. Grammar model
We will describe our grammar as a special case of a CFG.

Grammars, and in particular CFGs, are well studied topics
and covered in classic texts on natural language [14]. We
review the CYK parsing algorithm for CFGs as it forms the
basis for our parsing algorithm. One noteable aspect of our
grammar is that it generates variable-length segments in-
stead of single tokens; to derive this feature, we first de-
scribe a simple modification to a CYK parser for handling
such production rules (Fig. 2).

3.1. Context-Free Grammars
A weighted CFG in Chomsky Normal Form (CNF) is

specified by:

1. V is a finite set of non-terminal symbols

2. ⌃ is a set of terminal symbols
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Figure 1. On the left, we show a hierarchical parse of a video segmented into actions (Snatch, Clean-and-Jerk) and sub-actions (yank, pause,
press, background). Actions are represented by non-terminal symbols (N,C) while subaction and background segments are represented by
terminal symbols (colored blocks). We show the associated grammar on the right.

ants such as CRFs [?]. There exists a large body of literature
on extensions to HMMs in which states generate variable-
length sequences; these are sometimes called hierarchical
HMMs [?, ?, ?] or semi-Markov / segmental HMMs [?, ?].
Most related to our work are [?, ?], who use a semi-Markov
model to segment video streams into actions. Our grammars
do so while simultaneously parsing actions into subactions.

Grammars: Much prior work has explored context-
free-grammars (CFGs) for gesture and event recognition
[?, ?, ?, ?]. Attribute grammars [?] and interval logics [?]
generalize CFGs to include context-sensitive constraints at
the cost of more expensive inference. Because of this bur-
den, much prior work applies a grammar on a sparse set of
primitive actions detected in a pre-processing stage. This
makes inference scale with the number of detections rather
than the length of the video. We describe hierarchical gram-
mars that model actions and subactions with a finite-state
machine. This allows us to efficiently process all frames in
a video directly using our grammar.

3. Grammar model
We will describe our segmental regular grammar in Sec-

tion ?? as a special case of a CFG [?]. First, we review the
CYK parsing algorithm for CFGs as it forms the basis for
our parsing algorithm. One notable aspect of our grammar
is that it generates variable-length segments instead of sin-
gle tokens; to derive this feature, we first describe a simple
modification to a CYK parser for handling such production
rules.

3.1. Context-free grammars
A weighted CFG in Chomsky Normal Form (CNF) is

specified by:

1. V is a finite set of non-terminal symbols

2. ⌃ is a set of terminal symbols

3. R is a set of rules of the form X ! Y Z or X ! w
for X, Y, Z 2 V and w 2 ⌃. Each rule r 2 R has

an associated score s(r, i, k, j) for instantiating it at
boundary points i, j with a transition point of k.

A general CFG contains rules of the form ↵ ! �, where
↵ is any nonterminal and � is any string of terminals and
nonterminals. We write nV for the number of non-terminal
symbols, and nR for the number of rules. One can show
that any CFG can be written in CNF form by adding new
rules with “dummy” nonterminals.

Given a sequence w1, . . . , wN , the CYK algorithm is a
O(nRN3

) dynamic programming algorithm for computing
the best-scoring parse [?]. The algorithm will compute a
table of partial parses, of size O(nV N2

). CYK explicitly
computes the best parse of each possible segment and each
possible symbol label for that segment. The key quantity
which is iteratively computed is ⇡[X, i, j], the score of the
best parse of the segment starting at frame i, ending at frame
j, and labeled as symbol X 2 V .

In the CYK algorithm, we first initialize the “bottom”
row of the table, which represents the best parse of each
one-frame-long segment:

⇡[X, i, i] = max

r2{X!w}
s(r, i) for i = 1 . . . N (1)

We can now populate the “second” row of the table,
which represents the optimal parses of 2-frame segments.
For a l-frame segment, we will look at all possible l � 1

splits and all possible nr production rules that could gen-
erate this segment. Each one can be scored by looking at
lower entries in the table, which have already been com-
puted. We then take the max, and update the entry for the
current l-long segment. We formally describe the algorithm
in Alg. ?? and visualize the core loop in Fig. ??.

3.2. Segmental context-free grammars
In this section, we describe an extension to CYK-parsing

that allows for production rules that generate multiple ter-
minals. Though our extension is somewhat straightforward,
we have not seen it derived in the literature and include it for

2

+

Single model enforces temporal constraints at multiple scales (actions, sub-actions)
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Figure 1. A sample video parsed to actions and subactions. Subactions are color-coded on the time-line while black represents background.
Given a video and a grammar (shown on the right), our linear-time parser produces a valid segementation into actions and subactions.

eling of actions are HMMs, spurred in part by their suc-
cessful application to speech recognition. Early approaches
date back to finite state machine models [32, 18], while
more recent work has explored discriminative variants such
as CRFs [31]. Previous work has used semi-Markov mod-
els to either capture temporal dependencies between actions
[23, 27, 9] or compositional dependencies between sub-
actions within an action [17, 26]. Our hierarchical model
allows us to simultaneously capture both dependencies with
a single grammar.

CFGs: Much prior work has explored CFGs for ges-
ture and event recognition [10, 15, 21, 24]. Attribute gram-
mars [13] and interval logics [28] generalize CFGs to in-
clude context-sensitive constraints at the cost of more ex-
pensive inference. Because of this burden, much prior work
applies a grammar on a sparse set of primitive actions de-
tected in a pre-processing stage. This makes inference scale
with the number of detections rather than the length of the
video. On the other hand, our linear-time parser allow us
to densely process all frames in a video. This allows us to
detect low-level actions (and subactions) while taking ad-
vantage of high-level contextual cues from our grammar.

Markov models: There exists a large body of literature
on extensions to HMMs in which states generate variable-
length sequences; these are sometimes called variable-
length HMMs [4, 20], semi-Markov models [11, 22, 26],
or segmental HMMs [6]. Most related to us are hierar-
chical semi-Markov models and hierarchical HMMs (HH-
MMs) [5, 29, 18]. HHMMs are recursive HMMs where
each hidden state is its own sequential probabilistic model.
[5, 29] both show that such are the same complexity as a
CFG, though [16] describe linear-time inference algorithms
obtained by expanding such models into an HMM with an
exponentially-large state-space.

CFG Segmental CFG Segmental RG

Abstract symbol
Terminal
Data

Figure 2. Context-free grammars (CFGs) use fixed-length termi-
nals that model a single data element. We show an example parse
tree on the left. Regular grammars (RGs) are a restricted type of
CFGs formed by a “one-sided” grammar. We introduce segmen-
tal variants of CFGs and RGs (SCFGs and SRGs), shown in the
middle and right, that generate variable-length terminals or seg-
ments. Variable-length terminals allow us to extract features de-
fined over the entire segment (such as the temporal length). SRGs
are particularly convenient for action recognition because they en-
code long-term hierarchical temporal structure, but still allow for
efficient linear-time parsing.

3. Grammar model
We will describe our grammar as a special case of a CFG.

Grammars, and in particular CFGs, are well studied topics
and covered in classic texts on natural language [14]. We
review the CYK parsing algorithm for CFGs as it forms the
basis for our parsing algorithm. One noteable aspect of our
grammar is that it generates variable-length segments in-
stead of single tokens; to derive this feature, we first de-
scribe a simple modification to a CYK parser for handling
such production rules (Fig. 2).

3.1. Context-Free Grammars
A weighted CFG in Chomsky Normal Form (CNF) is

specified by:

1. V is a finite set of non-terminal symbols

2. ⌃ is a set of terminal symbols
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(2 latent subactions)
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(3 latent subactions)
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Production rules:

Figure 1. On the left, we show a hierarchical parse of a video segmented into actions (Snatch, Clean-and-Jerk) and sub-actions (yank, pause,
press, background). Actions are represented by non-terminal symbols (N,C) while subaction and background segments are represented by
terminal symbols (colored blocks). We show the associated grammar on the right.

ants such as CRFs [?]. There exists a large body of literature
on extensions to HMMs in which states generate variable-
length sequences; these are sometimes called hierarchical
HMMs [?, ?, ?] or semi-Markov / segmental HMMs [?, ?].
Most related to our work are [?, ?], who use a semi-Markov
model to segment video streams into actions. Our grammars
do so while simultaneously parsing actions into subactions.

Grammars: Much prior work has explored context-
free-grammars (CFGs) for gesture and event recognition
[?, ?, ?, ?]. Attribute grammars [?] and interval logics [?]
generalize CFGs to include context-sensitive constraints at
the cost of more expensive inference. Because of this bur-
den, much prior work applies a grammar on a sparse set of
primitive actions detected in a pre-processing stage. This
makes inference scale with the number of detections rather
than the length of the video. We describe hierarchical gram-
mars that model actions and subactions with a finite-state
machine. This allows us to efficiently process all frames in
a video directly using our grammar.

3. Grammar model
We will describe our segmental regular grammar in Sec-

tion ?? as a special case of a CFG [?]. First, we review the
CYK parsing algorithm for CFGs as it forms the basis for
our parsing algorithm. One notable aspect of our grammar
is that it generates variable-length segments instead of sin-
gle tokens; to derive this feature, we first describe a simple
modification to a CYK parser for handling such production
rules.

3.1. Context-free grammars
A weighted CFG in Chomsky Normal Form (CNF) is

specified by:

1. V is a finite set of non-terminal symbols

2. ⌃ is a set of terminal symbols

3. R is a set of rules of the form X ! Y Z or X ! w
for X, Y, Z 2 V and w 2 ⌃. Each rule r 2 R has

an associated score s(r, i, k, j) for instantiating it at
boundary points i, j with a transition point of k.

A general CFG contains rules of the form ↵ ! �, where
↵ is any nonterminal and � is any string of terminals and
nonterminals. We write nV for the number of non-terminal
symbols, and nR for the number of rules. One can show
that any CFG can be written in CNF form by adding new
rules with “dummy” nonterminals.

Given a sequence w1, . . . , wN , the CYK algorithm is a
O(nRN3

) dynamic programming algorithm for computing
the best-scoring parse [?]. The algorithm will compute a
table of partial parses, of size O(nV N2

). CYK explicitly
computes the best parse of each possible segment and each
possible symbol label for that segment. The key quantity
which is iteratively computed is ⇡[X, i, j], the score of the
best parse of the segment starting at frame i, ending at frame
j, and labeled as symbol X 2 V .

In the CYK algorithm, we first initialize the “bottom”
row of the table, which represents the best parse of each
one-frame-long segment:

⇡[X, i, i] = max

r2{X!w}
s(r, i) for i = 1 . . . N (1)

We can now populate the “second” row of the table,
which represents the optimal parses of 2-frame segments.
For a l-frame segment, we will look at all possible l � 1

splits and all possible nr production rules that could gen-
erate this segment. Each one can be scored by looking at
lower entries in the table, which have already been com-
puted. We then take the max, and update the entry for the
current l-long segment. We formally describe the algorithm
in Alg. ?? and visualize the core loop in Fig. ??.

3.2. Segmental context-free grammars
In this section, we describe an extension to CYK-parsing

that allows for production rules that generate multiple ter-
minals. Though our extension is somewhat straightforward,
we have not seen it derived in the literature and include it for
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Abstract. Actions exhibit complex temporal structure, such as sub-
actions of variable durations and compositional orderings. Much research
on action recognition ignores such structure and instead focuses on K-
way classification of temporally pre-segmented video clips. We describe
lightweight and e⇤cient grammars that segment a continuous video stream
into a hierarchical parse of multiple actions and subactions. We intro-
duce online parsing algorithms that are as fast as a simple sliding window
classifier, which scale linearly with the length of video and use constant
storage. We describe a simple but novel data-model based on a “bag-
of-articulated-poses”, and train it as well as other grammar parameters
using a structural SVM. We illustrate the e�ectiveness of our approach
over common baselines on a new 2-million frame dataset of continuous
YouTube videos.

Fig. 1: A sample video parsed to actions and subactions. Subactions are color-
coded on the time-line while ’white’ represents the background term. Given a
video and a grammar, our linear-time parser produces a valid sequence of actions
and subactions. The letters correspond to symbol labels for the grammar, shown
in Fig.4.

1 Introduction

Traditionally action recognition is approached as a classification problem on
pre-segmented clips; this is evidenced by the multitude of action benchmarks

↵

�

� X ! Y



Learning

Supervised: 

Score is linear in parameters 
(segment data model       , segment length prior     , and rule transition prior      ) 

Figure 6. A test video containing ‘javelin throw” actions. The bottom timeline shows ground-truth action labels (in gray), while the top
timeline shows inferred action and sub-action labels. The learned grammar infers three subactions loosely corresponding to running,
release, and throwing. The release sub-action is short and is not always visible in the figure. Our grammar model is able to enforce the
presence of such short but crucial sub-actions.

Figure 7. A test video containing ‘diving” actions, where ground-truth action labels are shown in gray. We latently infer 2 subactions
loosely correspond to initial bending and jumping. Some misalignment errors are due to ambiguities in the ground-truth labeling of
action boundaries. Overall, our parser produces a reasonable estimated count of action instances (though the first two action instances are
over-merged into one action segment.)

slower). Note that CYK can handle more general CFGs.
Analysis: Our subaction model performs best on actions

with clear structure, such as weightlifting, pole-vaulting,
and diving. Sometimes subactions can be semantically in-
terpretable, but this need not be case as the structure is la-
tently inferred. Overall, our model is reasonably successful
at labeling frames (62% accuracy) but still finds segment de-
tection challenging (22% AP). Reducing the overlap thresh-
old (for labeling an action segment as correct) from 40% to
10% increases AP from 22% to 43%. Ground-truth labeling
of action boundaries can be ambiguous, and so lower over-
lap thresholds are reasonable for evaluation. Moreover, low
thresholds still score the ability to count the number of ac-
tion instances in a video. Our results suggest that our parser
can be used for fairly accurate counting of action instances.

Conclusion: We have described segmental extensions
of grammars for action-parsing, focusing on efficient seg-
mental regular grammars. We show that such models cap-
ture temporal constraints at multiple scales, both between

actions and between subactions. We introduce parsing al-
gorithms that are linear-time, constant memory, and on-
line, and so quite practical for long-scale videos. We also
described max-margin algorithms for inferring latent sub-
actions form partially-labeled training data. To illustrate
our approach, we introduced a novel dataset of continuous
actions and demonstrated encouraging performance over a
number of standard baseline approaches.
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with clear structure, such as weightlifting, pole-vaulting,
and diving. Sometimes subactions can be semantically in-
terpretable, but this need not be case as the structure is la-
tently inferred. Overall, our model is reasonably successful
at labeling frames (62% accuracy) but still finds segment de-
tection challenging (22% AP). Reducing the overlap thresh-
old (for labeling an action segment as correct) from 40% to
10% increases AP from 22% to 43%. Ground-truth labeling
of action boundaries can be ambiguous, and so lower over-
lap thresholds are reasonable for evaluation. Moreover, low
thresholds still score the ability to count the number of ac-
tion instances in a video. Our results suggest that our parser
can be used for fairly accurate counting of action instances.

Conclusion: We have described segmental extensions
of grammars for action-parsing, focusing on efficient seg-
mental regular grammars. We show that such models cap-
ture temporal constraints at multiple scales, both between

actions and between subactions. We introduce parsing al-
gorithms that are linear-time, constant memory, and on-
line, and so quite practical for long-scale videos. We also
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our approach, we introduced a novel dataset of continuous
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with clear structure, such as weightlifting, pole-vaulting,
and diving. Sometimes subactions can be semantically in-
terpretable, but this need not be case as the structure is la-
tently inferred. Overall, our model is reasonably successful
at labeling frames (62% accuracy) but still finds segment de-
tection challenging (22% AP). Reducing the overlap thresh-
old (for labeling an action segment as correct) from 40% to
10% increases AP from 22% to 43%. Ground-truth labeling
of action boundaries can be ambiguous, and so lower over-
lap thresholds are reasonable for evaluation. Moreover, low
thresholds still score the ability to count the number of ac-
tion instances in a video. Our results suggest that our parser
can be used for fairly accurate counting of action instances.

Conclusion: We have described segmental extensions
of grammars for action-parsing, focusing on efficient seg-
mental regular grammars. We show that such models cap-
ture temporal constraints at multiple scales, both between

actions and between subactions. We introduce parsing al-
gorithms that are linear-time, constant memory, and on-
line, and so quite practical for long-scale videos. We also
described max-margin algorithms for inferring latent sub-
actions form partially-labeled training data. To illustrate
our approach, we introduced a novel dataset of continuous
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number of standard baseline approaches.
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slower). Note that CYK can handle more general CFGs.
Analysis: Our subaction model performs best on actions

with clear structure, such as weightlifting, pole-vaulting,
and diving. Sometimes subactions can be semantically in-
terpretable, but this need not be case as the structure is la-
tently inferred. Overall, our model is reasonably successful
at labeling frames (62% accuracy) but still finds segment de-
tection challenging (22% AP). Reducing the overlap thresh-
old (for labeling an action segment as correct) from 40% to
10% increases AP from 22% to 43%. Ground-truth labeling
of action boundaries can be ambiguous, and so lower over-
lap thresholds are reasonable for evaluation. Moreover, low
thresholds still score the ability to count the number of ac-
tion instances in a video. Our results suggest that our parser
can be used for fairly accurate counting of action instances.

Conclusion: We have described segmental extensions
of grammars for action-parsing, focusing on efficient seg-
mental regular grammars. We show that such models cap-
ture temporal constraints at multiple scales, both between

actions and between subactions. We introduce parsing al-
gorithms that are linear-time, constant memory, and on-
line, and so quite practical for long-scale videos. We also
described max-margin algorithms for inferring latent sub-
actions form partially-labeled training data. To illustrate
our approach, we introduced a novel dataset of continuous
actions and demonstrated encouraging performance over a
number of standard baseline approaches.
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Results

Figure 6. A test video containing ‘javelin throw” actions. The bottom timeline shows ground-truth action labels (in gray), while the top
timeline shows inferred action and sub-action labels. The learned grammar infers three subactions loosely corresponding to running,
release, and throwing. The release sub-action is short and is not always visible in the figure. Our grammar model is able to enforce the
presence of such short but crucial sub-actions.

Figure 7. A test video containing ‘diving” actions, where ground-truth action labels are shown in gray. We latently infer 2 subactions
loosely correspond to initial bending and jumping. Some misalignment errors are due to ambiguities in the ground-truth labeling of
action boundaries. Overall, our parser produces a reasonable estimated count of action instances (though the first two action instances are
over-merged into one action segment.)

slower). Note that CYK can handle more general CFGs.
Analysis: Our subaction model performs best on actions

with clear structure, such as weightlifting, pole-vaulting,
and diving. Sometimes subactions can be semantically in-
terpretable, but this need not be case as the structure is la-
tently inferred. Overall, our model is reasonably successful
at labeling frames (62% accuracy) but still finds segment de-
tection challenging (22% AP). Reducing the overlap thresh-
old (for labeling an action segment as correct) from 40% to
10% increases AP from 22% to 43%. Ground-truth labeling
of action boundaries can be ambiguous, and so lower over-
lap thresholds are reasonable for evaluation. Moreover, low
thresholds still score the ability to count the number of ac-
tion instances in a video. Our results suggest that our parser
can be used for fairly accurate counting of action instances.

Conclusion: We have described segmental extensions
of grammars for action-parsing, focusing on efficient seg-
mental regular grammars. We show that such models cap-
ture temporal constraints at multiple scales, both between

actions and between subactions. We introduce parsing al-
gorithms that are linear-time, constant memory, and on-
line, and so quite practical for long-scale videos. We also
described max-margin algorithms for inferring latent sub-
actions form partially-labeled training data. To illustrate
our approach, we introduced a novel dataset of continuous
actions and demonstrated encouraging performance over a
number of standard baseline approaches.
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Latently inferred subactions appear to be run, release, and throw. 



ResultsFigure 6. A test video containing ‘javelin throw” actions. The bottom timeline shows ground-truth action labels (in gray), while the top
timeline shows inferred action and sub-action labels. The learned grammar infers three subactions loosely corresponding to running,
release, and throwing. The release sub-action is short and is not always visible in the figure. Our grammar model is able to enforce the
presence of such short but crucial sub-actions.

Figure 7. A test video containing ‘diving” actions, where ground-truth action labels are shown in gray. We latently infer 2 subactions
loosely correspond to initial bending and jumping. Some misalignment errors are due to ambiguities in the ground-truth labeling of
action boundaries. Overall, our parser produces a reasonable estimated count of action instances (though the first two action instances are
over-merged into one action segment.)

slower). Note that CYK can handle more general CFGs.
Analysis: Our subaction model performs best on actions

with clear structure, such as weightlifting, pole-vaulting,
and diving. Sometimes subactions can be semantically in-
terpretable, but this need not be case as the structure is la-
tently inferred. Overall, our model is reasonably successful
at labeling frames (62% accuracy) but still finds segment de-
tection challenging (22% AP). Reducing the overlap thresh-
old (for labeling an action segment as correct) from 40% to
10% increases AP from 22% to 43%. Ground-truth labeling
of action boundaries can be ambiguous, and so lower over-
lap thresholds are reasonable for evaluation. Moreover, low
thresholds still score the ability to count the number of ac-
tion instances in a video. Our results suggest that our parser
can be used for fairly accurate counting of action instances.

Conclusion: We have described segmental extensions
of grammars for action-parsing, focusing on efficient seg-
mental regular grammars. We show that such models cap-
ture temporal constraints at multiple scales, both between

actions and between subactions. We introduce parsing al-
gorithms that are linear-time, constant memory, and on-
line, and so quite practical for long-scale videos. We also
described max-margin algorithms for inferring latent sub-
actions form partially-labeled training data. To illustrate
our approach, we introduced a novel dataset of continuous
actions and demonstrated encouraging performance over a
number of standard baseline approaches.
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Baselines

Action segmentation with 2-state semi-markov model: 
(Shi et al IJCV10, Hoai et al CVPR11)

Model subactions with 3-state semi-markov model:
Tang et al CVPR12 + NMS



Results for action segment detection (AP)

Segment Detection (average precision)/ Frame Labeling (% frames)
Action Subactions our model Segmental our model
name [28] (no length prior) actions [25]
weightlifting 0.20 / 0.51 0.13 / 0.74 0.27 / 0.6 0.53 / 0.6
javelin 0.006 / 0.54 0.11 / 0.64 0.36 / 0.59 0.36 / 0.65
long-jump 0 / 0.26 0.02 / 0.46 0.10 / 0.54 0.10 / 0.71
vault 0 / 0.28 0.12 / 0.49 0.06 / 0.34 0.11 / 0.69
bowling 0.007 / 0.39 0.08 / 0.45 0.21 / 0.51 0.25 / 0.54
diving 0 / 0.48 0.10 / 0.53 0.02 / 0.45 0.08 / 0.62
hammer-throw 0.006 / 0.25 0.04 / 0.36 0.16 / 0.29 0.23 / 0.63
tennis 0 / 0.15 0.01 / 0.37 0 / 0.37 0.08 / 0.52
Average 0.027 / 0.36 0.076 / 0.51 0.15 / 0.46 0.22 / 0.62

0

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.5

Segment Detection (AP)

Subaction scan-win [28]
Our model w/o prior
Segmental actions [25]
Our model

Overlap threshold
Figure 8. We compare our approach to various baselines, evaluating both action segment detection and frame labeling accuracy. On the left
table, we use a segment overlap threshold of 40%, but examine performance for different thresholds on the right figure. Please see text for
a discussion, but overall, our approach significantly outperforms past approaches based on subaction models [28] and segmental actions
[25] because our grammar simultaneously captures both types of constraints.
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Outline

-Data analysis: 
 Analyze big temporal data “Making tea”

-Functional prediction: 
what can user do in scene? Grab here

-Egocentric hand estimation
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Reflectant objects

Novel objects

Noisy depth data

Fig. 7. Good detections. We show a sample of challenging frames where the hand is correctly
detected by our system. Reflectant objects (top row: wine bottle, pan, phone, knife and plastic
bottle) produce incorrect depth maps due to interactions with our sensor’s infrared illuminant.
Novel objects (middle row: envelope, juice box, book, apple, spray and chocolate powder box)
require generalization to objects not synthesized at train-time, while noisy depth data (bottom
row) showcases the robustness of our system.

provided an insightful analysis of the performance of our algorithm on a new real-world
annotated dataset of egocentric scenes.
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Object touch (interaction) codes

Label object surfaces with body parts that come in contact with them 

hands
mouth

arms
back
bum

hands
bum
feet



Dataset of interaction region masks

bottle chair sofa monitor



Alternate perspective
Prediction of functional landmarks108
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bottle tv chair sofa

Figure 2. We show functional regions for a variety of everyday objects, visualized as translucent polygons. We derive these region labels
by first annotating objects with functional landmarks that define polygon corners.

sider “blind” baselines that do not look at any image data,
and just use the bounding box to predict functional region
masks. We show that such baselines do well for certain ob-
jects with little variability in 3D structure or pose. For ex-
ample, bottles tend to mostly be upright, in which case one
can simply “grasp” the bottom of an instance’s bounding
box and “put their mouth” on the top. For other objects
such as chairs, functional region prediction is much more
nuanced. We introduce novel but simple approaches based
on bottom-up geometric surface layout estimation, as well
as object-specific top-down models. Bottom-up geometric
models are effective for coarse-scale layout estimation [17].
However, top-down models can take advantage of object-
specific structural constraints; e.g., for a chair, the back rest
is above and perpendicular to the seat. We show that such
high-level constraints are important for good performance.

2. Related Work
Object affordances: J.J. Gibson coined the term affor-

dances to describe object function [14], though such notions
date back at least to the Gestalt school of psychology [18].
Early computer vision research relating to object function
include [22, 23, 25]. [22] describe methods for estimat-
ing the function of known objects by reasoning about their
constituent parts and relations; for example, a hammer can
be described by a handle connected to an end effector that
strikes targets. We explore top-down models that similarly
connect object shape to function, but our models are learned
from data rather than hand-coded. Along these lines, [15]
learn a “sittable” affordance detector of a chair by fitting
3D models of a sitting human skeleton to 3D models of
chairs. [26] describe a method for computing planar sur-
face approximations of everyday objects using view-based
deformable models. While they evaluate landmark predic-
tion, we focus on affordance region prediction.

Scene affordances: More recently, scene affordances in
indoor settings have been explored in [13, 16, 19]. [13, 16]
restrict the scene to a box-shaped room and estimate its 3D
layout [20]. [16] use the estimated layout and occupancy
model to fit cuboidal models of objects, which in turn define

a functional human workspace. Cuboidal approximations of
chairs and sofas are likely too coarse to resolve our desired
affordance labels (that specify where to rest one’s back and
bum). [13] estimate functional regions by observing human
actors interacting with objects in the scene - one can infer
that an object is “sittable” because multiple people have sat
on it. Our formulation differs in that we focus on estimating
affordance labels directly from a static image. Presumably
such reasoning is required in order estimate functional af-
fordances when presented with a novel scene of objects.

Spatially-defined attributes: Attributes are another
framework for reporting “interesting” properties of an ob-
ject. Much work formulates attribute prediction as a dis-
crete multilabel problem [9]. Often attributes are not tied
to particular spatial regions, though [2, 6, 24] consider
spatially-localized attributes, such as the type of nose in an
image of a face. Our work can viewed as similar in spirit, in
that we spatially localize functionally-important attributes
of an object.

Supervised part models: Our top-down models are
based on exemplar-based templates [21] and 2D pictorial
structures [11]. We show that nearest-neighbor classifica-
tion, followed by functional label transfer, is a surprisingly
effective approach. We also explore deformable part mod-
els (DPMs) [12] and variants [27, 5] that are tuned to report
detailed spatial reports of objects rather than just bounding
boxes. This is in contrast to other supervised part models
[1, 3] that ignore part localizations when reporting final out-
put at test time. Our functional perspective also addresses
one classic difficulty with supervision; it is often not clear
what are the right parts - for example, what are the natu-
ral parts of a sofa? We argue that one should define parts
that are necessary to understand how one interacts with an
object. From this perspective, an armrest is a good part be-
cause it is relevant for functional region prediction. In some
cases, functionally-relevant parts may look quite different
from classically-defined parts; for example, part-based car
detectors typically do not model the door handle, but such a
landmark is extremely relevant from our functional view.

2



How hard is this problem?

Desai & Ramanan “Predicting Functional Regions of Objects” 
Beyond Semantics Workshop, CVPR13

Benchmark evaluation of several standard approaches

Blind regression (from bounding box coordinates)
Regression from part locations 
Bottom-up geometric labeling of superpixels
Nearest neighbor matching + label transfer
...



Some initial conclusions

-Difficulty varies greatly per object

-Nearest neighbor + label transfer is the winner 

Blind prediction of bottle & TV regions works just as well as anything else

Simple and works annoyingly well (though considerable room for improvement)

Harder to ride a bike than sit on sofa (or watch TV)!

0
22.5
45
67.5
90

bikes chairs bottles sofas tv

% correctly-parsed objects



Strategic question

How to build models that produce detailed 
3D landmark reports for general objects?



Recognition by 3D Reconstruction

Input:
2D image

Output:
3D shape

camera viewpoint



...

✓1

✓2

✓3

Enumerate hypotheses     = (shape,viewpoint)       
and rendered HOG images

✓
w(✓)

Find one that correlates 
best with query image

Overall approach: 
“brute-force” enumeration of 3D hypotheses



A model of 3D shape and viewpoint

1) 3D shape of object = linear combinations of 3D basis shapes

B =
X

i

↵iBi

2) Standard perspective camera model

(shape coefficients, camera rotation, translation, focal length)

✓ = (↵, R, t, f)

p(✓) ⇠ C(R, t, f)B



View & shape-specific templates
✓1

✓2

✓3

w(✓1)

w(✓2)

w(✓3)

Treat each        as unique subcategory (e.g., 
side-view SUVs) and learn template for it 

✓n



Challenge: rare shapes & views

We need lots of templates, but will likely have little data of ‘rare’ car views

Zhu, Anguelov, & Ramanan  “Capturing long-tail distributions of object subcategories” CVPR14



Long tail distributions of categories (cf. LabelMe)

0

500

1000

1500

2000

person chair plane train boat sofa cow

PASCAL 2010 training data

“Zero-shot” learning



Soln: share information with parts

Use ‘wheels’ from common views/shapes to help model rare ones



Some formalities

...

✓1

✓2

✓3

S(I, ✓) = w(✓) · I
✓⇤ = argmax

✓2⌦
S(I, ✓)

Cast recognition and reconstruction as a maximization problem



Templates with shared parts

V:  set of visible parts 
mi: local mixture of part i 
pi:  pixel location of part i 

Figure 3. We learn local part mixtures by clustering the relative 3D
position of keypoint i and its connected neighbors in the underly-
ing 3D mesh. We show keypoint cluster means above µi

mi
, along

with their associated part templates �mi
i below. Each sythnesized

3D pose (and associated template) is constructed by adding to-
gether shifted copies of local part templates, which in turn allows
for efficient search.

where (5) is a standard perspective projection model, and
p

i is the i

th column of matrix P . We have assumed unity-
scaled pixels factors for simplicity (though they can easily
be added).

Appearance synthesis: To capture changes in ap-
pearance caused by geometry (frontal and foreshoretened
wheels look different), we associate each keypoint with a
discrete mixture m

i

. We will use separate local template to
model the appearance of each mixture. We now describe
a simple approach for synthesizing m

i

conditioned on P

(the view-dependant 3D shape). We associate each mixture
m

i

with a particular geometric configuration of nearby key-
points, written as µ

i

k

. These geometric configurations are
learned off-line by clustering the set of synthesized shapes.
Given a particular shape instance P , we synthesize its cor-
responding mixture labels m

i

by assigning each keypoint to
its closest cluster/mixture:

m

i

= k

⇤ where k

⇤
= argmin

k2M

||rel � µ

i

k

||2 (6)

and rel = {p
j

� p

i

: j 2 N(i)}. (7)

where µ

i

k

is defined as the average relative location of
neighboring points N(i) for cluster k. We define N(i)

be the set of keypoints connected to i under the 3D mesh
model, given by the 3 other keypoints with highest spatial
correlation to i. We visualize the 3D geometric configu-
rations µ

i

k

and their associated appearance-specific visual
templates wk

i

in Fig. 3.
Parameter quantization: In our experiments, we ex-

plore various strategies for producing a set of parameters ✓.
One option is to use the set of parameters encountered in
a set of training images. Alternatively, we can enumerate
parameters with a grid search over a uniform range (where
bounds on the camera rotation matrix is defined in terms of
elevation and azimuth Euler angles). To ensure translation-
invariance, we clamp camera translations to 0 (t = 0) dur-
ing the grid search. But we do search over focal lengths f
to model perspective effects. This produces a massive set

of thousands or millions of parameters vectors, constructed
either with a grid search or enumeration of training data.
In our results, we experiment with various quantized sub-
sets. We wish to quantize together parameters that yield
similar 2D projections. Specifically, we construct a vector
of 2D (x

i

, y

i

) keypoint positions for each discrete ✓, and
cluster this set with K-means. We denote the final set of
K-quantized parameter vectors as

⌦

K

= {✓1 . . . ✓K} (8)

4. Template model

Given a parameter vector ✓ and image I , we describe a
method for scoring a visual template w

✓

:

S(I, ✓) =

X

u2U

w

✓

[u] · I[u] (9)

where I[u] is an image feature extracted from a pixel lo-
cation and scale u = (x, y,�) in image I . We write
U for the set of all possible discrete pixel locations and
scales enumerated in a feature pyramid. In practice, w

✓

is
a single-scale template with local spatial support. For nota-
tional simplicity, we assume that templates are zero-padded
(across space and scales).

To efficiently represent our family of templates, we con-
struct each template w

✓

by adding together local keypoint
templates shifted to lie at locations given by Render(✓) (5).
We write �mi

i

for the (zero-padded) local visual template, or
“part”, associated with keypoint i, when tuned for mixture
m

i

:

S(I, ✓) =

NX

i=1

X

u2U

�

mi
i

[u] · I[u+ z

i

] (10)

where we drop the dependance of the rendered keypoint lo-
cation z

i

= z

i

(✓) and mixture m

i

= m

i

(✓) on parameter ✓.
If keypoint i is occluded given the viewpoint specified by
✓, then the associated m

i

acts as an occlusion-specific mix-
ture. In such cases, the learned template �

mi
i

may be set to
all zeros, or it may capture image features characteristic of
occlusions (such as t-junctions).

Let us define a dummy indexing variable u

0
= u + z

i

and switch the order of summations in the above equation.
This allows us to write the global template w

✓

from (9) as a
superposition of shifted keypoint templates:

w

✓

[u] =

NX

i=1

�

mi
i

[u� z

i

] (11)

where we have assumed keypoint templates � are zero-
padded outside of their default spatial extent.

all depend on } ✓

S(I, ✓) =
X

i2V (✓)

wmi(✓)
i · �(I, pi(✓))



Templates with shared parts

✓⇤ = argmax

✓2⌦
S(I, ✓)

How do we  define set of valid ?

One option: just use set of shapes/views observed in training set

✓ 2 ⌦

S(I, ✓) =
X

i2V (✓)

wmi(✓)
i · �(I, pi(✓))



Sharing
Helps address “one-shot” learning (subcategory seen at least once)

What about shapes/views that are never seen (“zero-shot” learning)?



Shape synthesis

Synthesis
engine



Shape synthesis

Synthesis
engine



Sharing versus synthesis

Part models perform implicit shape synthesis

+ Don’t need to pre-synthesize
- Limited to simplistic shape models with efficient inference (stars, trees, springs,...)

Zhu et al, BMVC 2012



Sharing versus synthesis

Part models perform implicit shape synthesis

+ Don’t need to pre-synthesize
- Limited to simple shapes with efficient computation (trees, springs,...)

Instead, lets explicitly synthesize shapes with a graphics engine
+ Can synthesize arbitrary shapes (e.g. 3D)
- Need to pre-synthesize millions of shapes



Aside: learning a 3D synthesis 
engine from 2D keypoints

•Stack all 2D landmarks into a large matrix; in noise-free case, it must be rank 
3K (K=# of basis shapes)

•Learn shape basis with rank-based non-rigid SFM (Torresani et al CVPR01)

Hejrati & Ramanan, NIPS12



Explicit set of synthesized templates

(Most shapes never seen during training)
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Figure 7. Recognition + Reconstruction visualizations of our method. Odd rows show the test image and recognized + reconstructed
object overlayed on it. Even rows illustrate the associated synthesized templates which detect object. As shown, the method is capable
of recognizing objects from various viewpoints, shapes and is robust to heavy occlusion. Because every synthesized template has a 3D
shape, recognition is inherently reconstructive. On the top right, we show results for images with multiple cars. Results for boxes suggest
that our synthesis model can handle various viewpoints, aspect ratios, and even perspective effects. However some images are genuinely
ambiguous, like the rubiks cube (bottom-right).

7

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

CVPR
#345

CVPR
#345

CVPR 2014 Submission #345. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 7. Recognition + Reconstruction visualizations of our method. Odd rows show the test image and recognized + reconstructed
object overlayed on it. Even rows illustrate the associated synthesized templates which detect object. As shown, the method is capable
of recognizing objects from various viewpoints, shapes and is robust to heavy occlusion. Because every synthesized template has a 3D
shape, recognition is inherently reconstructive. On the top right, we show results for images with multiple cars. Results for boxes suggest
that our synthesis model can handle various viewpoints, aspect ratios, and even perspective effects. However some images are genuinely
ambiguous, like the rubiks cube (bottom-right).
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Example detections
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Figure 7. Recognition + Reconstruction visualizations of our method. Odd rows show the test image and recognized + reconstructed
object overlayed on it. Even rows illustrate the associated synthesized templates which detect object. As shown, the method is capable
of recognizing objects from various viewpoints, shapes and is robust to heavy occlusion. Because every synthesized template has a 3D
shape, recognition is inherently reconstructive. On the top right, we show results for images with multiple cars. Results for boxes suggest
that our synthesis model can handle various viewpoints, aspect ratios, and even perspective effects. However some images are genuinely
ambiguous, like the rubiks cube (bottom-right).
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Car detection + reconstruction



Inference 

...



Inference 

(2) Score each template with 
lookup table (LUT) queries

With efficient LUTs, (1) is bottleneck

(1) Pre-compute tables 
of part responses 

...



Supervised learning

Learned model
fw(x) = w · �(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights
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Figure 3: We take a “data-driven” approach to orientation-modeling by clustering the relative locations of parts with respect
to their parents. These clusters are used to generate mixture labels for parts during training. For example, heads tend to
be upright, and so the associated mixture models focus on upright orientations. Because hands articulate to a large degree,
mixture models for the hand are spread apart to capture a larger variety of relative orientations.
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Figure 5: A visualization of our full-body model for T = 4, trained on the Parse dataset. Note that we show them as 4
separate models, but we emphasize that our representation allows for the composition of any part type with any other part
type, where the score associated with each combination decomposes into a tree (and so is efficient to search over) and is
learned from training data.

Image Parse Testset
Method Torso Head Upper legs Lower legs Upper arms Lower arms Total
R Gradient[?] 39.5 21.4 20.7 20.7 12.7 11.7 19.2
R Gradient+RGB[?] 52.1 37.5 31.0 29.0 17.5 13.6 27.2
ARS HOG [?] 81.4 75.6 63.2 55.1 47.6 31.7 55.2
JE HOG [?] 73.2 62.4 58.6 52.2 47.8 32.5 51.8
JE HOG+RGB [?] 77.6 68.8 61.5 54.9 53.2 39.3 56.4
SNH ROG [?] 54.8
SNH ROG+RGB [?] 91.2 76.6 71.5 64.9 50.0 34.2 60.9
Our Model HOG 89.8 87.8 78.5 69.0 64.4 36.1 67.4

Table 1: We compare our model to all previous published results on the Parse dataset, using the standard criteria of PCP [?].
Our total performance of 67.4% compares favorably to the best previous result of 60.9%. We also beat all previous results
on a per-part basis, except for torso and lower arm detection, for which we are second. [?] uses the same HOG feature set as
us, but embedded in a classic articulated pictorial structure. The relative improvement of our approach is 20%, indicating the
quality of our flexible part-mixture representation.

S(I, ✓) = w · �(I, ✓), ✓ 2 ⌦
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Anytime recognition + 3D reconstruction
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Car recognition/reconstruction results

Figure 8. Recognition + reconstructions from our method. Odd rows show the test image and recognized + reconstructed object overlaid
on it. Even rows illustrate the associated template that triggered the detection. Our method can recognize objects from various viewpoints,
shapes and is robust to heavy occlusion. Because every synthesized template has a 3D shape, recognition is inherently reconstructive. On
the top right, we show results for images with multiple cars. Our box results show accurate reconstructions across various viewpoints,
aspect ratios, and even perspective effects. However, some images are genuinely ambiguous, like the Rubik’s Cube (bottom-right).
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Reflectant objects

Novel objects

Noisy depth data

Fig. 7. Good detections. We show a sample of challenging frames where the hand is correctly
detected by our system. Reflectant objects (top row: wine bottle, pan, phone, knife and plastic
bottle) produce incorrect depth maps due to interactions with our sensor’s infrared illuminant.
Novel objects (middle row: envelope, juice box, book, apple, spray and chocolate powder box)
require generalization to objects not synthesized at train-time, while noisy depth data (bottom
row) showcases the robustness of our system.

provided an insightful analysis of the performance of our algorithm on a new real-world
annotated dataset of egocentric scenes.
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bottle tv chair sofa

Figure 2. We show functional regions for a variety of everyday objects, visualized as translucent polygons. We derive these region labels
by first annotating objects with functional landmarks that define polygon corners.

sider “blind” baselines that do not look at any image data,
and just use the bounding box to predict functional region
masks. We show that such baselines do well for certain ob-
jects with little variability in 3D structure or pose. For ex-
ample, bottles tend to mostly be upright, in which case one
can simply “grasp” the bottom of an instance’s bounding
box and “put their mouth” on the top. For other objects
such as chairs, functional region prediction is much more
nuanced. We introduce novel but simple approaches based
on bottom-up geometric surface layout estimation, as well
as object-specific top-down models. Bottom-up geometric
models are effective for coarse-scale layout estimation [17].
However, top-down models can take advantage of object-
specific structural constraints; e.g., for a chair, the back rest
is above and perpendicular to the seat. We show that such
high-level constraints are important for good performance.

2. Related Work
Object affordances: J.J. Gibson coined the term affor-

dances to describe object function [14], though such notions
date back at least to the Gestalt school of psychology [18].
Early computer vision research relating to object function
include [22, 23, 25]. [22] describe methods for estimat-
ing the function of known objects by reasoning about their
constituent parts and relations; for example, a hammer can
be described by a handle connected to an end effector that
strikes targets. We explore top-down models that similarly
connect object shape to function, but our models are learned
from data rather than hand-coded. Along these lines, [15]
learn a “sittable” affordance detector of a chair by fitting
3D models of a sitting human skeleton to 3D models of
chairs. [26] describe a method for computing planar sur-
face approximations of everyday objects using view-based
deformable models. While they evaluate landmark predic-
tion, we focus on affordance region prediction.

Scene affordances: More recently, scene affordances in
indoor settings have been explored in [13, 16, 19]. [13, 16]
restrict the scene to a box-shaped room and estimate its 3D
layout [20]. [16] use the estimated layout and occupancy
model to fit cuboidal models of objects, which in turn define

a functional human workspace. Cuboidal approximations of
chairs and sofas are likely too coarse to resolve our desired
affordance labels (that specify where to rest one’s back and
bum). [13] estimate functional regions by observing human
actors interacting with objects in the scene - one can infer
that an object is “sittable” because multiple people have sat
on it. Our formulation differs in that we focus on estimating
affordance labels directly from a static image. Presumably
such reasoning is required in order estimate functional af-
fordances when presented with a novel scene of objects.

Spatially-defined attributes: Attributes are another
framework for reporting “interesting” properties of an ob-
ject. Much work formulates attribute prediction as a dis-
crete multilabel problem [9]. Often attributes are not tied
to particular spatial regions, though [2, 6, 24] consider
spatially-localized attributes, such as the type of nose in an
image of a face. Our work can viewed as similar in spirit, in
that we spatially localize functionally-important attributes
of an object.

Supervised part models: Our top-down models are
based on exemplar-based templates [21] and 2D pictorial
structures [11]. We show that nearest-neighbor classifica-
tion, followed by functional label transfer, is a surprisingly
effective approach. We also explore deformable part mod-
els (DPMs) [12] and variants [27, 5] that are tuned to report
detailed spatial reports of objects rather than just bounding
boxes. This is in contrast to other supervised part models
[1, 3] that ignore part localizations when reporting final out-
put at test time. Our functional perspective also addresses
one classic difficulty with supervision; it is often not clear
what are the right parts - for example, what are the natu-
ral parts of a sofa? We argue that one should define parts
that are necessary to understand how one interacts with an
object. From this perspective, an armrest is a good part be-
cause it is relevant for functional region prediction. In some
cases, functionally-relevant parts may look quite different
from classically-defined parts; for example, part-based car
detectors typically do not model the door handle, but such a
landmark is extremely relevant from our functional view.
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