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Motivation 1: integrated perception and actuation



Motivation 2: wearable (mobile) cameras
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Google Glass




Outline

-Egocentric hand estimation

-Data analysis:
Analyze big temporal data

“Making tea” i

-Functional prediction:

what can user do 1n scene? Grab here




Egocentric hand pose estimation

Challenges: -hands have a higher (effective) DOFs than bodies
-self-occlusion due to egocentric viewpoint

-occlusions to objects



Past approaches

Skin-pixel classification: Li & Kitani, CVPR13, ICCV13

Motion segmentation:  Ren & Gu, CVPRI0, Fathi et al CVPR 11



Observation: RGB-D saves the day

Produces accurate depth over “near-field workspace”

Mimic near-field depth from human vision (stereopsis)

TOF camera




Does depth solve 1t all?

Hand detection in egocentric views
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PXC = Intel’s Perceptual Computing Software



Our approach

Make use of massive synthetic training set

Mount avatar with virtual egocentric cameras

Use animation library of household objects and scenes



Our approach

Make use of massive synthetic training set

Mount avatar with virtual egocentric cameras

Use animation library of household objects and scenes

Naturally enforces “egocentric” priors over viewpoint, grasping poses, etc.



Recognition

Decision / regression trees Nearest-neighbor on volumetric
depth features



RGN

1st Candidate Best of top 10 Candidates

Ground-truth annotations Ground-truth annotations (RGB)
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Rogez et al, ECCV 14 Workshop on Consumer Depth Cameras



Ablative analysis

| s Full system
=== N0 object prior
No depth (RGB)
No pose prior
No viewpoint prior

|
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Depth & egocentric priors (over viewpoint & grasping poses) are crucial



Ongoing work:
hand grasp region prediction

Functionally-motivated pose classes

Disc grasp Dynamic lateral tripod  Lumbrical grasp

(Though we are finding it hard to publish in computer vision venues!)
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Temporal data analysis

Challenges: -analyze large collections of temporal big-data vs YouTube clips
- some daily activities can take a long time (interrupted)

- some daily activities exhibit “internal structure” (more on this)

' > / ] i '

Start boiling Do other things

: o Pour in cu Drink tea
water (while waiting) P
start wait steep time

boiling water tea leaves



Classic models for capturing temporal structure
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Markov models



Classic models for capturing temporal structure
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Markov models

... but does this really matter?

Maybe local bag-of-feature templates suffice

“Making tea” template

) (o C ¢ = .
B /f . A’ o ‘ = nrrs

P. Smyth “Oftentimes a strong data model will do the job”



But some annoying details...

How to find multiple actions of differing lengths?
Can we do better that window scan of O(NL) + heuristic NMS ?

N = length of video
L = maximum temporal length

——




Insufficiently well-known fact

We can do all this for 1-D (temporal) signals with grammars

sentence

2 TN

noun-phrase verb-phrase

1N/ N\

article adjective noun verb adverb

“The hungry rabbit eats quickly”



Application to actions

Production rules:

S—N
S—SAR
S — SBR

b nk pause _ press bg yank  press b

b [“Clean and jerk™ action rule
(3 latent subactions)

B — A

a g g “Snatch” action rule
(2 latent subactions)
\ N\ \ A— HE

Context-free grammars (CFGs): surprisingly simple to implement but poor scalabity O(N?)

Our contribution: many restricted grammars (like above) can be parsed in O(NL)

In theory & practice, no more expensive than a sliding window!



Real power of CFGs: recursion

e.g., rules for generating valid sequences of parenthesis

“((00)NO”

S —{}
S — (5)
S — 58S

If we don’t make use of this recursion, we can often make do with a simpler grammar.

’ Regular grammar:
m X — uvw
(@, X — Yuvw




Intuition: compile regular grammar into a semi-markov model

Production rules:

S -
S—SAR
S — SBR

yank  press “Snatch” action rule
(2 latent subactions)

A — R

S | “Clean and jerk” action rule

(3 latent subactions)

B — A

Semi-markov models = markov models with “counting” states



But aren’t semi-markov models already standard?
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Action segmentation with 2-state semi-markov model:
(Shi et al [JCV10, Hoai et al CVPR11)

< ®

Model subactions with 3-state semi-markov model:
Tang et al CVPR12 (+ NMS?)
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Our work
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Single model enforces temporal constraints at multiple scales (actions, sub-actions)

ank ause press yank  press

Use production rules to implicitly manage additional dummy /
counting states used by underlying markov model



Inference

yank  press

Maximum segment-length
(7

0 O(NL) time
O(L) storage

\ Possible Naturally online
symbols
Elllllllll time

t  (current frame)




Scoring each segment

_——
video data (D) ! J time

S(D,’F,i,j) :ar'¢(Daiaj)+6r'w(j_i)+7r

(v : data model

5 . prior over length of segment

“Y: prior of transitionruler=_X — Y I



Learning

Score 1s linear in parameters
(segment data model (¥ , segment length prior 6 , and rule transition prior ’7/ )

Structured SVM solver

Supervised:

Weakly-supervised:
(Latent)




RGN

Latently inferred subactions appear to be 1111, release, and throw.



RGN

‘You're now ready for 10m

-

Latently inferred subactions appear to be and jump.



Baselines
—_—

Action segmentation with 2-state semi-markov model:
(Shi et al I[JICV 10, Hoai et al CVPR11)

;.

Model subactions with 3-state semi-markov model:
Tang et al CVPR12 + NMS



Results for action segment detection (AP)

Segment Detection (AP)

O Subaction scan-win [28]
©O  Our model w/o prior

Segmental actions [25]
©O  Our model

0

0.1 0.2 0.3 0.4 0.5
Overlap threshold

Pirsiavash & Ramanan, CVPR14
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Object touch (interaction) codes

Label object surfaces with body parts that come 1n contact with them




Dataset of interaction region masks

chair monitor




Alternate perspective

Prediction of functional landmarks

ny E——
Back Top Left
Back Top Right
Front Base Left
Front Base Right
Left Junction
Handle Front Left
Handle Front Right
Handle Left Junction
Handle Right Junction

Right Junction
Seat Left Front
Seat Right Front




How hard 1s this problem?

Benchmark evaluation of several standard approaches

Blind regression (from bounding box coordinates)
Regression from part locations

Bottom-up geometric labeling of superpixels
Nearest neighbor matching + label transfer

Desai & Ramanan “Predicting Functional Regions of Objects”
Beyond Semantics Workshop, CVPR13



Some 1nitial conclusions

% correctly-parsed objects

bikes chairs bottles sofas

920
67.5
45
22.5

-Difficulty varies greatly per object
Harder to ride a bike than sit on sofa (or watch TV)!

Blind prediction of bottle & TV regions works just as well as anything else

-Nearest neighbor + label transfer 1s the winner
Simple and works annoyingly well (though considerable room for improvement)



Strategic question

How to build models that produce detailed
3D landmark reports for general objects?



Recognition by 3D Reconstruction
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Output:
3D shape
camera viewpoint



Overall approach:
“brute-force” enumeration of 3D hypotheses

Enumerate hypotheses () = (shape,viewpoint) Find one that correlates
and rendered HOG 1mages w (9) best with query image



A model of 3D shape and viewpoint

1) 3D shape of object = linear combinations of 3D basis shapes

2) Standard perspective camera model
p(0) ~ C(R,t, f)B
0 = (CV, Ra ta f)

(shape coefficients, camera rotation, translation, focal length)



View & shape-specific templates
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Treat each 0, as unique subcategory (e.g.,
side-view SUVs) and learn template for 1t




Challenge: rare shapes & views

Long Tail

¥
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We need lots of templates, but will likely have little data of ‘rare’ car views

Zhu, Anguelov, & Ramanan “Capturing long-tail distributions of object subcategories” CVPR 14



Long tail distributions of categories (cf. LabelMe)

PASCAL 2010 training data

4000

1500

1000

500
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person chair plane train boat sofa cow




Soln: share information with parts

Long Tail

Use ‘wheels’ from common views/shapes to help model rare ones



Some formalities

Cast recognition and reconstruction as a maximization problem

= argmax S(1,0)



Templates with shared parts

SU,0)= Y w6l pi(6))
i€V (0)
V: set of visible parts

m;: local mixture of parti ¢~ all depend on ()
pi: pixel location of part 1




Templates with shared parts

1€V (0)

0" = arg max S(1,0)

How do we define set of valid 0 € ) ?

One option: just use set of shapes/views observed in training set



Sharing

Helps address “one-shot” learning (subcategory seen at least once)

Long Tail
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What about shapes/views that are never seen (“zero-shot” learning)?



Shape synthesis
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Shape synthesis

Synthesis

engine
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Sharing versus synthesis

Part models perform implicit shape synthesis
Zhu et al, BMVC 2012
+ Don’t need to pre-synthesize
- Limited to simplistic shape models with efficient inference (stars, trees, springs,...)



Sharing versus synthesis
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Part models perform implicit shape synthesis

+ Don’t need to pre-synthesize
- Limited to simple shapes with efficient computation (trees, springs,...)

Instead, lets explicitly synthesize shapes with a graphics engine

+ Can synthesize arbitrary shapes (e.g. 3D)
- Need to pre-synthesize millions of shapes



Aside: learning a 3D synthesis
engine from 2D keypoints

eStack all 2D landmarks into a large matrix; in noise-free case, it must be rank
3K (K=# of basis shapes)

*[_carn shape basis with rank-based non-rigid SFM (Torresani et al CVPRO1)
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Hejrati & Ramanan, NIPS12



Explicit set of synthesized templates

(Most shapes never seen during training)



Example detections
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Car detection + reconstruction
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Inference
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Inference

| T
»* @ » L
(1) Pre-compute tables (2) Score each template with
of part responses lookup table (LUT) queries

With efficient LUTs, (1) 1s bottleneck



Supervised learning
S(I,0)=w-®(I,0), 6€Q
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Supervised learning
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| - K
!L
, 5
i I :

[,0)=w-®(I,0), 0¢c

o |

’ ~
SYETH
ALl

s A
- -

-
'-\l s .
14 \rws
13 s
. AN
At B R
PR N L Rt
2 — — T
LB . . 2
g s '
P " o S
3
H _—
&~ sy
Poaw
. L]
' [
'
’
’ . s LR

Learn classifiers for never-before-
seen templates with synthesis

(Apply sparse learning tricks to deal
with large set of negatives)



Evaluation - SUN Primitive dataset




Quantitative performance

™ Object Detection ™ Landmark Estimation

40

0
Xiao et al. Oracle
voc-re5 NIPS12




Quantitative performance

<-Ours
=f-0racle Synth
©-DPM

«@-=Xiao et al.

125

*  Runtime (sec)

Tune Q (set of quantized 3D parameters) to a fixed size by vector quantization

2| = {20.50,100,500,1000}



Anytime recognition + 3D reconstruction

Search through {) in a coarse-to-fine fashion




Car recognition/reconstruction results
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A look back

-Egocentric hand estimation

-Data analysis:
‘big’ temporal data

-Recognition as
3D reconstruction




