Learning from 3D Data for Image Interpretation

Martial Hebert Abhinav Gupta David Fouhey, Adrien Matricon, Wajahat Hussain

Slides adapted from David Fouhey

- Mid-level primitives learned from image+3D can be used to transfer geometric information?
- Geometric reasoning can use this local evidence to produce a consistent geometric interpretation?

Pattern Repetition

Common patterns correspond to common geometric configurations

Pattern Repetition

Pattern Repetition

Physical/Geometric Constraints

Primitives

<u>Visually</u> <u>Discriminative</u>

<u>Geometrically</u> <u>Informative</u>

Image

Surface Normals

Saurabh Singh et al. Discriminative Mid-Level Patches

Geometric configurations from large-scale RGBD data.

NYU v2 Dataset (Silberman et al., 2012)

Detector

Canonical Form

Instances

Detector

Canonical Form

Detector

Canonical Form

Detector

Canonical Form

Instances

 $\min_{\mathbf{y},\mathbf{w},\mathbf{N}} R(w) + \sum_{i} c_1 y_i \Delta(\mathbf{N}, \mathbf{x}_i^G) + c_2 L(\mathbf{w}, \mathbf{N}, \mathbf{x}_i^A, y_i)$

Primitive

Patch

Approach: iterative procedure

У

 \mathbf{W}

Initialize y by clustering sampled patches

Sparse Transfer

Sparse Transfer

Sparse Transfer

Dense Transfer

Sample Results – Qualitative

Confidences

Most Confident Result

Least Confident Result

Cross-dataset

PETS

B3DO

Failures

	Summary Stats (⁰) (Lower Better)			% Good Pixels (Higher Better)			
	Mean	Median	RMSE	11.25°	22.5°	300	
3D Primitives	<u>33.0</u>	<u>28.3</u>	<u>40.0</u>	<u>18.8</u>	<u>40.7</u>	<u>52.4</u>	
Singh et al.	35.0	32.4	40.6	11.2	32.1	45.8	
Karsch et al.	40.8	37.8	46.9	7.9	25.8	38.2	
Hoiem et al.	41.2	34.8	49.3	9.0	31.7	43.9	
Saxena et al.	47.1	42.3	56.3	11.2	28.0	37.4	
RF + Dense SIFT	36.0	33.4	41.7	11.4	31.1	44.2	

Using geometric and physical constraints

The Story So Far (Sparse)

The Story So Far (Dense)

The Story So Far

Adding Physical/Geometric Constraints

Adding Physical/Geometric Constraints

Past Physical Constraints

Camera-in-a-box

Hedau et al. 2009, Flint et al. 2011, Satkin et al. 2012, Schwing et al. 2012, etc.

Top-down Cuboid

Lee et al. 2010, Gupta et al. 2010, Xiao et al. 2012, etc.

Digression: Inspiration from the past....

Kanade's Origami World, 1978

From the past....

• Kanade's chair... (Artificial Intelligence, 1981)

Edges between surfaces

Concave (-)

Convex (+)

Edges between surfaces

Concave (-)

Convex (+)

vp₁

Schwing 2013, Hedau 2010

vp₁

Labeling

x_i : is cell *i* on?

Formulation

$\arg \max_{\mathbf{x} \in \{0,1\}^n} \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{H} \mathbf{x} \quad \text{s.t.} \quad \mathbf{A} \mathbf{x} \le \mathbf{1}$

Variable

x_i : is cell *i* on?

Unary Potentials

c_i : should cell *i* be on?

$$\underset{\mathbf{x}\in\{0,1\}^n}{\arg\max} \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{H} \mathbf{x} \quad \text{s.t.} \quad \mathbf{A} \mathbf{x} \leq \mathbf{1}$$

Binary Potentials

$H_{i,j}$: should cells *i* and *j* both be on?

$$\underset{\mathbf{x}\in\{0,1\}^n}{\arg\max} \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{H} \mathbf{x} \quad \text{s.t.} \quad \mathbf{A} \mathbf{x} \leq \mathbf{1}$$

Binary Potentials

Convex (+) Concave (-)

- - •

Binary Potentials

Convex (+)

Concave (-)

Constraints

What configurations are forbidden?

$$\underset{\mathbf{x}\in\{0,1\}^n}{\operatorname{arg\,max}} \mathbf{c}^T \mathbf{x} + \mathbf{x}^T \mathbf{H} \mathbf{x} \quad \text{s.t.} \quad \mathbf{A} \mathbf{x} \leq \mathbf{1}$$

Input

Ground Truth

3D Primitives

Projected 3D Primitives

Proposed

Qualitative Results

Input

Ground Truth

3D Primitives

Projected 3D Primitives

Proposed

Input

Ground Truth

3D Primitives

Projected 3D Primitives

Proposed

Random Qualitative Results

3D Primitives

Proposed

Quantitative Results

	Summary Stats (⁰) (Lower Better)			% Good Pixels (Higher Better)		
	Mean	Median	RMSE	11.25°	22.5 ⁰	300
Proposed	<u>37.5</u>	<u>17.2</u>	<u>53.2</u>	<u>41.9</u>	<u>53.9</u>	<u>58.0</u>
3D Primitives	38.5	19.0	54.2	41.7	52.4	56.3
Hedau et al.	43.2	24.8	59.4	39.1	48.8	52.3
Lee et al.	47.6	43.4	60.6	28.1	39.7	43.9
Karsch et al.	46.6	43.0	53.6	5.4	19.9	31.5
Hoiem et al.	45.6	38.2	55.1	8.6	30.5	41.0

Style vs. structure?

Tenenbaum & Freeman. Separating Style and Content with Bilinear Models. Neural Computation. 2000.

Casablanca Hotel, New York

More general environments?

KITTI Dataset: Geiger, Lenz, Urtasun, '12

- Large regions without surface interpretation
- Fewer linear/planar structures to anchor
- Irregular distribution of 3D training data

Discovered Primitives (Examples)

Contact points

Object surfaces + Contact points

Next:

Better reasoning Semantic information Less structured environments Evaluation Applications

Data-Driven 3D Primitives For Single-Image Understanding, Fouhey, Gupta, Hebert, In ICCV 2013. *Unfolding an Indoor Origami World,* Fouhey, Gupta, Hebert, In ECCV 2014.

• Harvested from tripadvisor.com

Countries	8	USA, Japan, London, Germany, Canada, Australia, Thailand, Indonesia
Cities	> 10	New York, London, Berlin, Sydney, Tokyo, Las Vegas, San Francisco etc.
Chains	~ 5	Hilton, Marriott, Intercontinental, Sheraton, Best Western etc.

Sheraton Los Angeles

Meritan Apartments Sydney

Le Champlain Quebec

Project digression....

Missing Children Child Sexual

Exploitation

CyberTipline

Child Victim Identification

Sex Offender Tracking

Child Sex Trafficking

Voluntary Industry Initiatives

International Collaboration

Success Stories

FAQ

Child Safety & Prevention

Law Enforcement Training

Victim & Family Support

Safety starts

with NetSmartz

CyberTipline

The CyberTipline[®] receives leads and tips regarding suspected crimes of sexual exploitation committed against children. More than 2.3 million reports of suspected child sexual exploitation have been made to the CyberTipline between 1998 and March 2014.

If you have information regarding possible child sexual exploitation, report it to the CyberTipline.

MAKE A CYBERTIPLINE REPORT

Purpose and function

The CyberTipline is operated in partnership with the FBI, Immigration and Customs Enforcement, U.S. Postal Inspection Service, U.S. Secret Service, military criminal investigative

organizations, U.S. Department of Justice, Internet Crimes Against Children Task Force program, as well as other state and local law enforcement agencies. Reports to the CyberTipline are made by the

Next:

Better reasoning Semantic information Less structured environments Evaluation Applications

Data-Driven 3D Primitives For Single-Image Understanding, Fouhey, Gupta, Hebert, In ICCV 2013. *Unfolding an Indoor Origami World,* Fouhey, Gupta, Hebert, In ECCV 2014.

Results – Quantitative

