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Status quo: CNNs generate great features

Do we need these massive amounts 
of class labels to learn generic features?

ILSVRC 2012 classification
Krizhevsky et al. 2012

PASCAL VOC object detection
Girshick et al. 2014
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• Dominant concept: reconstruction error + regularization

• Existing frameworks:
– Autoencoders (dimensionality reduction)

(Hinton 1989, Vincent et al. 2008,…)

– Sparse coding (sparsity prior)
(Olshausen-Field 1996, Mairal et al. 2009, Bo et al. 2012,…)

– Slowness prior
(Wiscott-Sejnowski 2002, Zou et al. 2012,…)

– Deep belief networks (prior in contrastive divergence)
(Ranzato et al. 2007, Lee et al. 2009,…)

• Reconstruction error models the input distribution
 dubious objective

Unsupervised feature learning
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• Train CNN to discriminate surrogate classes

• Take data augmentation to the extreme
(translation, rotation, scaling, color, contrast, brightness)

• Transformations define invariance properties 
of the features to be learned

Exemplar CNN: discriminative objective

Alexey 
Dosovitskiy

Jost Tobias
Springenberg

Acknowledgements to caffe.berkeleyvision.org
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• Pooled responses from each layer used as features
• Training of linear SVM 

Application to classification

Outperforms all previous unsupervised 
feature learning approaches

STL-10 CIFAR-10 Caltech-101

Convolutional K-means network 60.1 70.7 -

View-invariant K-means 63.7 72.6 -

Multi-way local pooling - - 77.3

Slowness on video 61.0 - 74.6

Hierarchical Matching Pursuit (HMP) 64.5 - -

Multipath HMP - - 82.5

Exemplar CNN 72.8 75.3 85.5
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Which transformations are most relevant?
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How many surrogate classes?
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How many samples per class?
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Application to descriptor matching

Descriptor matching between two images
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CNNs won’t work for descriptor matching, right?

Mikolajczyk dataset New larger dataset

Descriptors from a CNN outperform SIFT

Philipp 
Fischer

Alexey 
Dosovitskiy

10



Thomas Brox

Supervised versus unsupervised CNN

Mikolajczyk dataset New larger dataset

Unsupervised feature learning advantageous 
for descriptor matching

Philipp 
Fischer

Alexey 
Dosovitskiy
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Relevance of improvement

Philipp 
Fischer

Alexey 
Dosovitskiy

Improvement of Examplar CNN over SIFT 
is as big as SIFT over color patches
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Exemplar CNN: Unsupervised feature learning 
by discriminating surrogate classes

Outperforms previous unsupervised methods 
on classification

CNNs outperform SIFT even on descriptor 
matching

Unsupervised training advantageous for 
descriptor matching

Summary of part I
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Motion segmentation

Brox-Malik
ECCV 2010
Ochs et al.
PAMI 2014
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Benchmarking motion segmentation

Freiburg-Berkeley Motion Segmentation Dataset (FBMS-59)
59 sequences split into a training and a test set
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Pixel-accurate ground truth

Ground truth mostly every 20 frames
…
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Precision-recall metric

Under-segmentation Over-segmentation
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P=0.94, R=0.67, 
F=0.78

P=0.98, R=0.80, 
F=0.88

P=1.00, R=0.56, 
F=0.72

Region        to ground truth       assignment with Hungarian method

P=1 
R=0
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Results on the test set

Ochs et al.
PAMI 2014Brox-Malik 

ECCV 2010
Ochs-Brox 
ICCV 2011

Ochs-Brox 
CVPR 2012

SSC
Elhamifar-Vidal 

CVPR 2009

Rao et al.
CVPR 2008
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Benchmarking general video segmentation

VSB-100: Benchmark based on Berkeley Video Segmentation Dataset
100 HD videos (40 training, 60 test)
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Four human annotations per video

Fabio 
Galasso

Naveen S. 
Nagaraja

Bernt Schiele

Galasso et al.
ICCV 13
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• Many-to-one matching (important for supervoxels)
• Normalization penalizes extreme segmentations

Metric for supervoxels
Average over all 

human annotations

Normalize by size of largest 
ground truth region

(single region yields P=0)

For each region find ground 
truth with max overlap

Evaluated pixels in the video minus the largest ground truth region

Average over all 
human annotations

For each ground truth find 
region with max overlap

Size of all ground truth regions minus size of the largest ground truth region

GT

P=0

R=0
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Results

Galasso et al. 
ACCV 12

Grundmann et al. 
CVPR 10

Ochs-Brox 
ICCV 11

Simple baseline
Corso et al. 

TMI 08

Xu et al. 
ECCV 12

Human 
performance

Arbelaez et al.
(image segmentation) 

TPAMI 11

Arbelaez et al.
+oracle
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Motion segmentation subtask

Galasso et al. 
ACCV 12

Grundmann et al. 
CVPR 10

Ochs-Brox 
ICCV 11

Simple baseline

Human 
performance

Arbelaez et al.
+oracle
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1. Take superpixel hierarchy from 
Arbelaez et al.

2. Propagate labels to next frame
using optical flow

3. Next frame: 
label determined by voting

Image segmentation + optical flow > video segmentation?

About the “simple baseline”

Image segmentation + optical flow < video segmentation

There is work to do
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Balanced graph reduction

Fabio 
Galasso

Margret 
Keuper

Bernt Schiele

Galasso et al.
CVPR 14

Original pixels Superpixels

t=1

t=2

t=1

t=2

Edge reweighting necessary for weight balancing in 
spectral clustering
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Balancing clearly improves results

Simple baseline

Galasso et al. 
ACCV 12

Reweighted 
graph reduction
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FBMS-59: 
Motion segmentation benchmark

VSB-100:
General video segmentation benchmark

Spectral clustering with superpixels:
Don’t forget to rebalance

Summary of part II

t=1

t=2
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