

Part I Unsupervised Feature Learning with Convolutional Neural Networks

Thomas Brox Computer Vision Group University of Freiburg, Germany

Research funded by ERC Starting Grant VideoLearn and Deutsche Telekom Stiftung

Thomas Brox

Status quo: CNNs generate great features

	Team name	Error (5 guesses)	Description							
	SuperVision	0.15315	Using extra training data from ImageNet Fall 2011 release							
ſ	SuperVision	0.16422	Using only supplied training data	VOC 2007 test	aero	bike	bird		tv	mAP
				R-CNN FT fc7 BB	68.1	72.8	56.8		64.8	58.5
ľ	ISI	0.26172	Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and CSIFT+FV, respectively.	DPM v5	33.2	60.3	10.2	•••	43.5	33.7
				DPM ST	23.8	58.2	10.5		44.9	29.1
				DPM HSC	32.2	58.3	11.5		45.2	34.3

ILSVRC 2012 classification Krizhevsky et al. 2012 PASCAL VOC object detection Girshick et al. 2014

Do we need these <u>massive amounts</u> of class labels to learn generic features?

Unsupervised feature learning

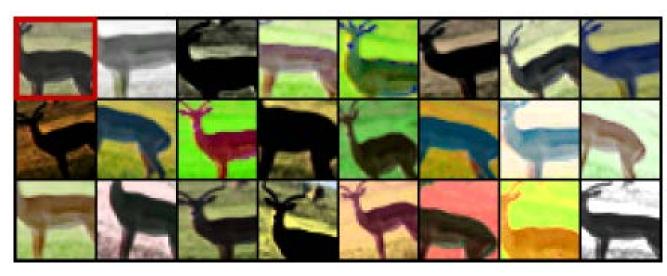
- UNI FREIBURG Dominant concept: reconstruction error + regularization
 - Existing frameworks:
 - Autoencoders (dimensionality reduction) (Hinton 1989, Vincent et al. 2008,...)
 - Sparse coding (sparsity prior) (Olshausen-Field 1996, Mairal et al. 2009, Bo et al. 2012,...)
 - Slowness prior

(Wiscott-Sejnowski 2002, Zou et al. 2012,...)

- Deep belief networks (prior in contrastive divergence) (Ranzato et al. 2007, Lee et al. 2009,...)
- Reconstruction error models the input distribution \rightarrow dubious objective

Exemplar CNN: discriminative objective

UNI FREIBURG Train CNN to discriminate surrogate classes



Alexey Dosovitskiy

Jost Tobias

Springenberg

- Take data augmentation to the extreme (translation, rotation, scaling, color, contrast, brightness)
- Transformations define invariance properties of the features to be learned

Acknowledgements to caffe.berkeleyvision.org

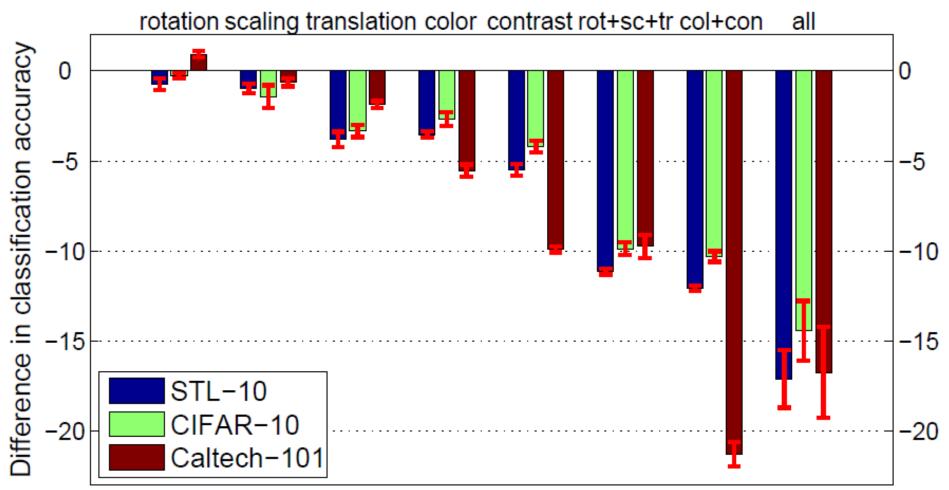
Application to classification

- UNI FREIBURG Pooled responses from each layer used as features
 - Training of linear SVM

	STL-10	CIFAR-10	Caltech-101
Convolutional K-means network	60.1	70.7	-
View-invariant K-means	63.7	72.6	-
Multi-way local pooling	-	-	77.3
Slowness on video	61.0	-	74.6
Hierarchical Matching Pursuit (HMP)	64.5	-	-
Multipath HMP	-	-	82.5
Exemplar CNN	72.8	75.3	85.5

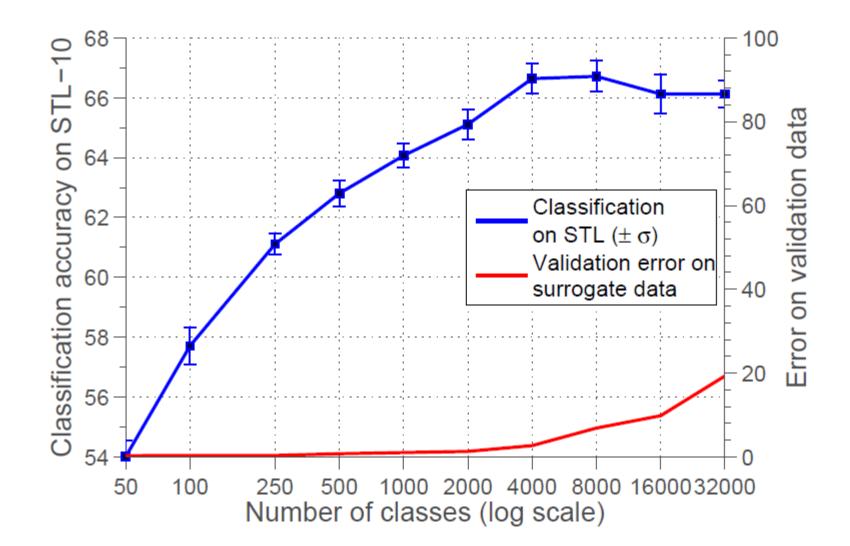
Outperforms all previous unsupervised feature learning approaches

Which transformations are most relevant?



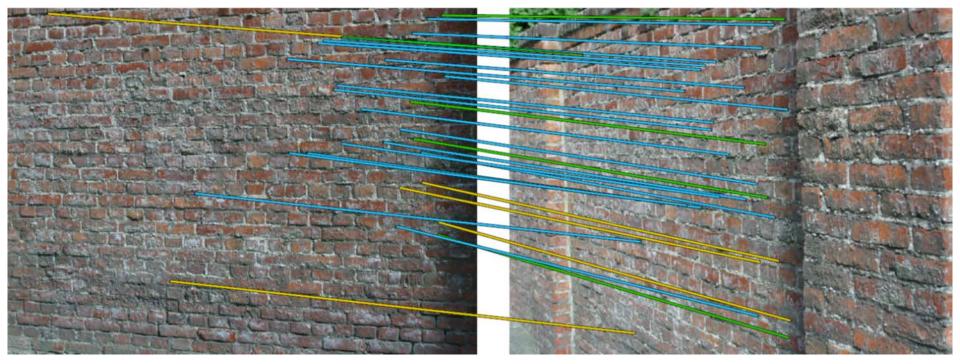
Removed transformations

How many surrogate classes?



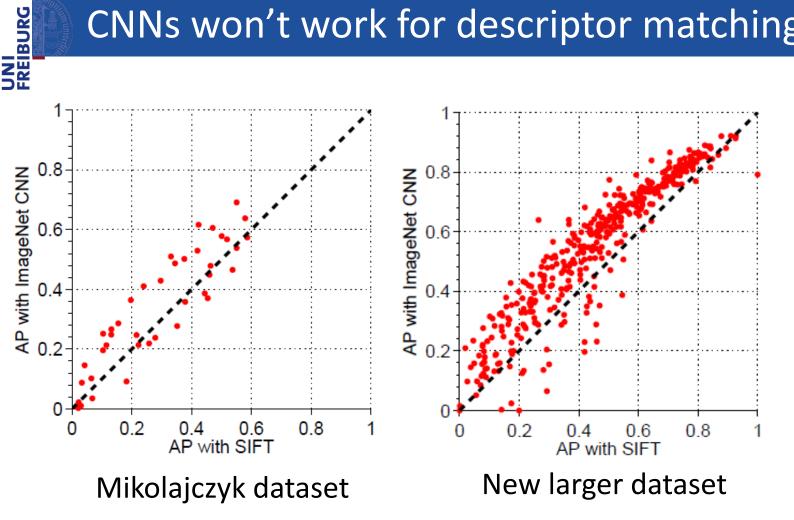
How many samples per class? 70 Classification accuracy on STI 65 1000 classes 60 2000 classes 4000 classes 55 random filters 50 45 16 32 64 100 150 300 8 Number of samples per class (log scale)

Application to descriptor matching



Descriptor matching between two images

CNNs won't work for descriptor matching, right?

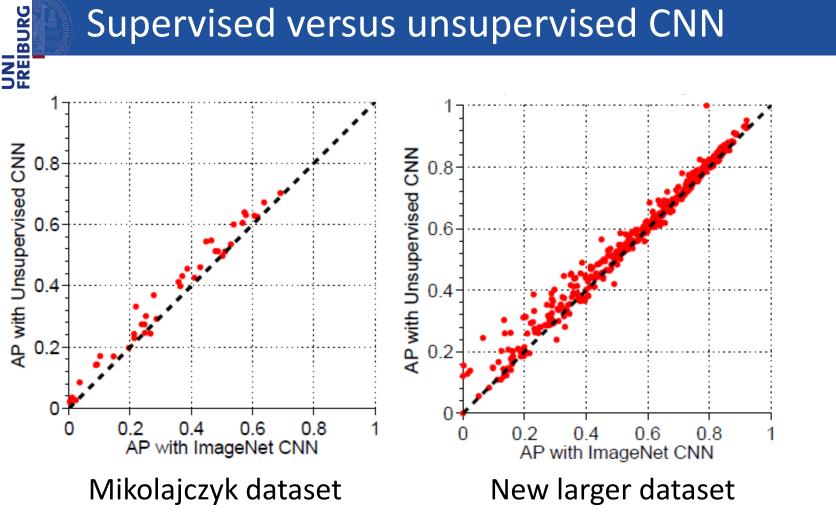


Philipp **Fischer**

Alexey Dosovitskiy

Descriptors from a CNN outperform SIFT

Supervised versus unsupervised CNN

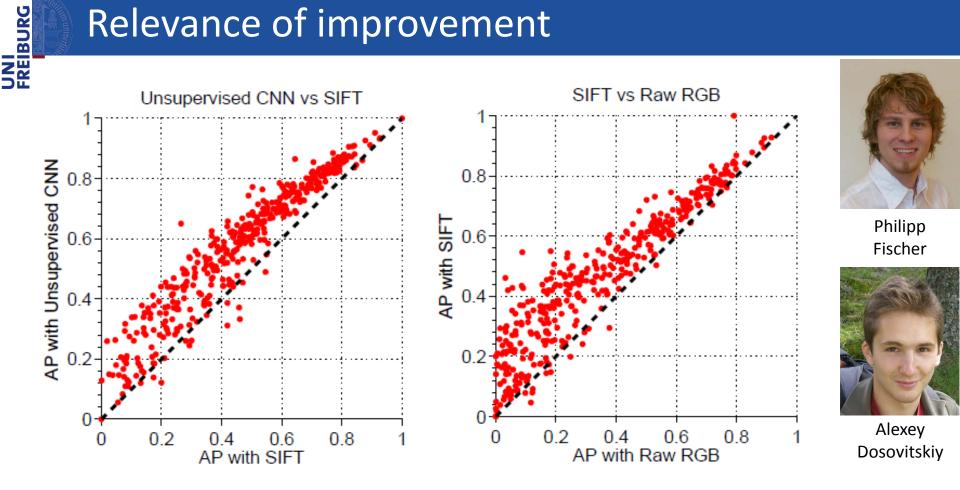


Philipp **Fischer**

Alexey Dosovitskiy

Unsupervised feature learning advantageous for descriptor matching

Relevance of improvement



Improvement of Examplar CNN over SIFT is as big as SIFT over color patches

Summary of part I

 STL-10
 CHAR-10

 Convolutional K-means network
 60.1
 70.7

 View-invariant K-means
 63.7
 72.6

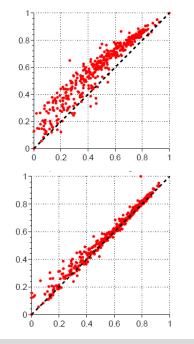
 Multi-way local pooling

 Slowness on video
 61.0

 Hierarchical Matching Pursuit (HMP)
 64.5

 Multipath HMP

 Surrogate Class CNN
 72.8
 75.3



Exemplar CNN: Unsupervised feature learning by discriminating surrogate classes

Outperforms previous unsupervised methods on classification

CNNs outperform SIFT even on descriptor matching

Unsupervised training advantageous for descriptor matching

Part II Benchmarking Video Segmentation

Thomas Brox Computer Vision Group University of Freiburg, Germany

Contains joint work with Fabio Galasso, Bernt Schiele (MPI Saarbrücken)

Research funded by DFG and ERC

Thomas Brox

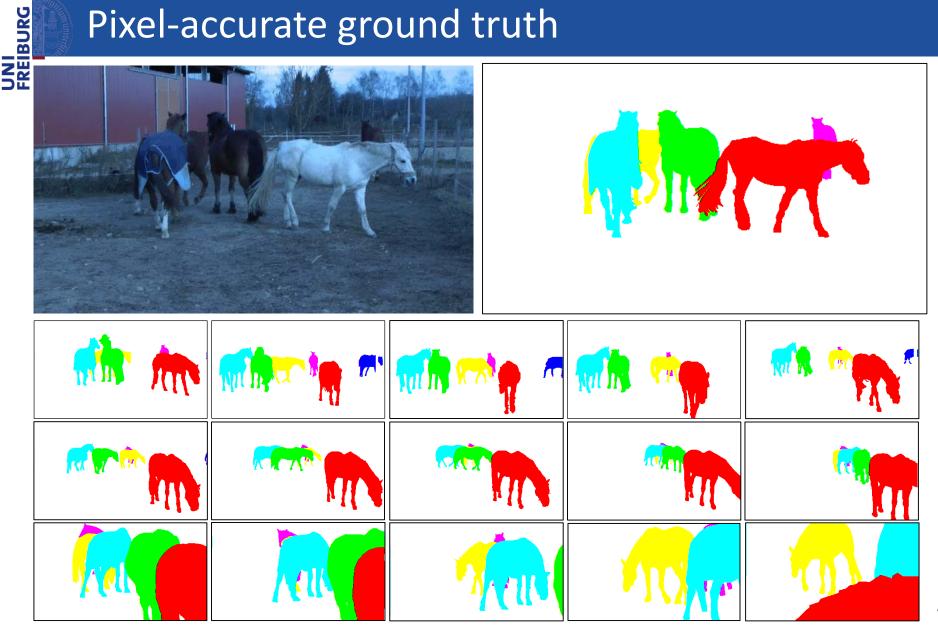
Motion segmentation

Brox-Malik ECCV 2010 Ochs et al. PAMI 2014

Benchmarking motion segmentation

Freiburg-Berkeley Motion Segmentation Dataset (FBMS-59) 59 sequences split into a training and a test set

Pixel-accurate ground truth

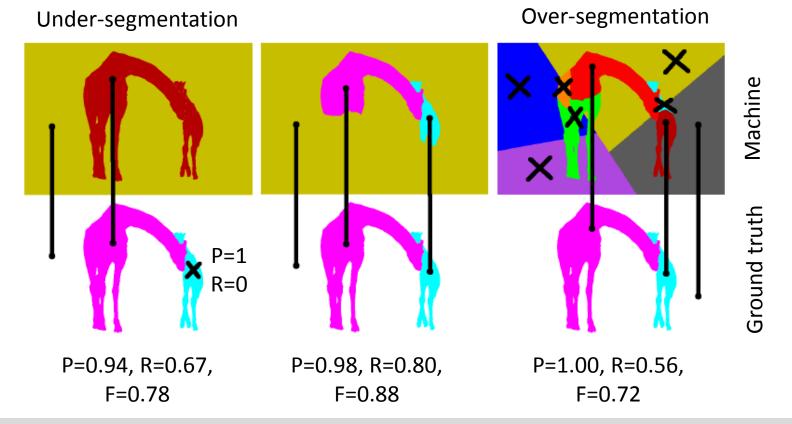


Ground truth mostly every 20 frames

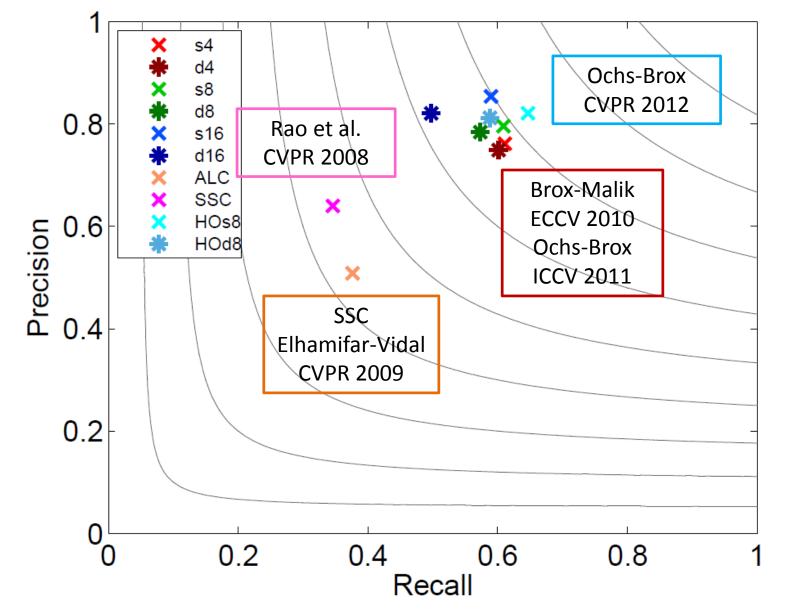
Precision-recall metric

Region c_j to ground truth g_i assignment with Hungarian method

$$P = \frac{1}{n} \sum_{i=1}^{n} \frac{c_j \cap g_i}{c_j} \qquad R = \frac{1}{n} \sum_{i=1}^{n} \frac{c_j \cap g_i}{g_i} \qquad F = \frac{2PR}{P+R}$$

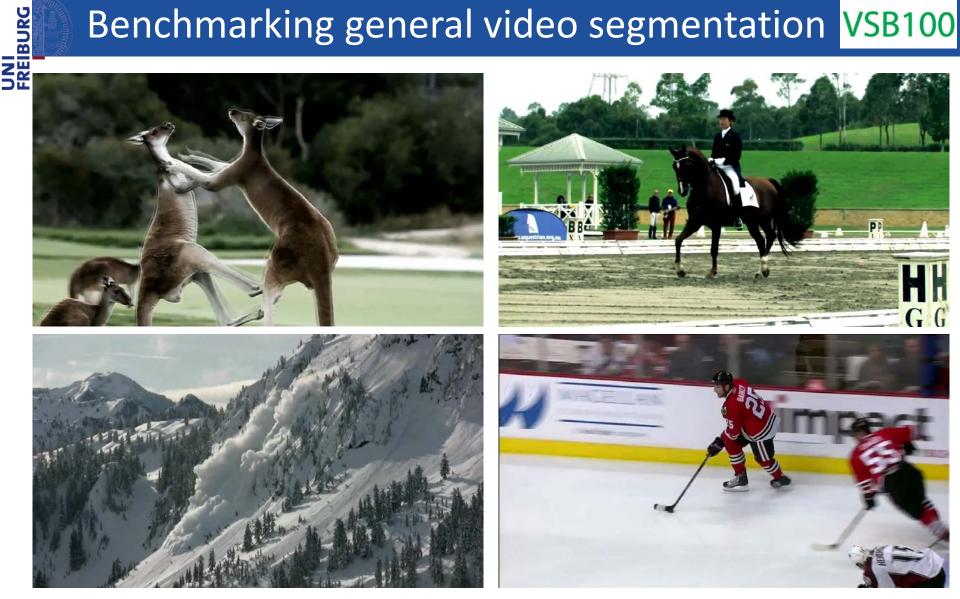


Results on the test set



Ochs et al. PAMI 2014

Benchmarking general video segmentation VSB100



VSB-100: Benchmark based on Berkeley Video Segmentation Dataset 100 HD videos (40 training, 60 test)

Four human annotations per video

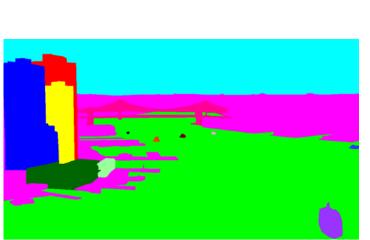
VSB100

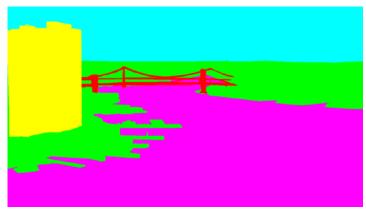
Fabio Galasso

Naveen S. Nagaraja

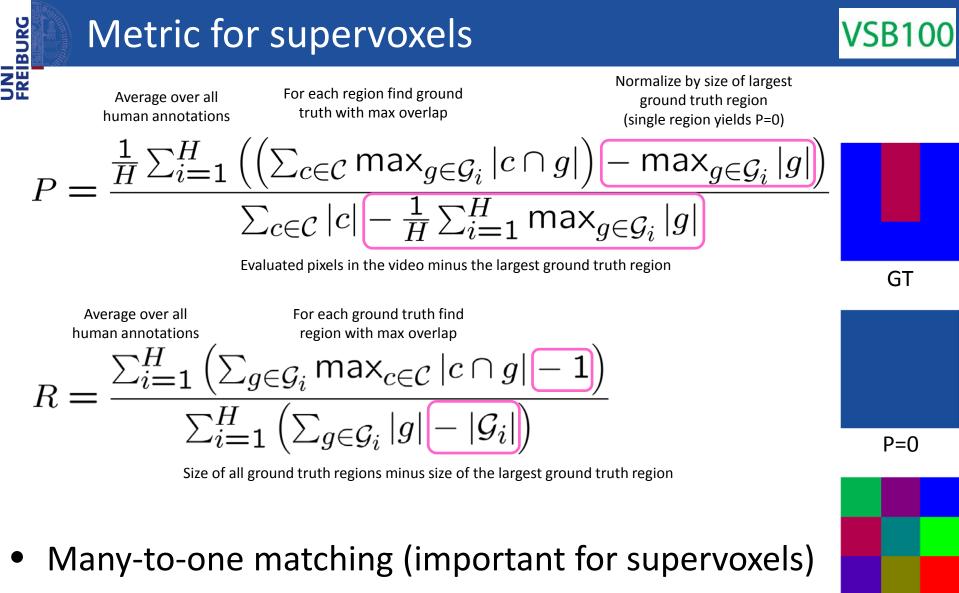
Bernt Schiele

Galasso et al. ICCV 13



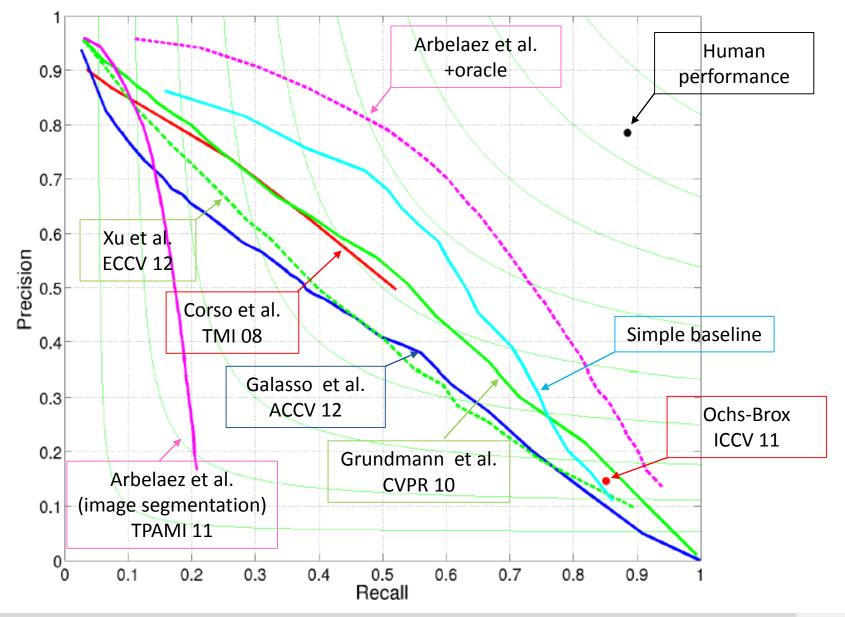


Thomas Brox



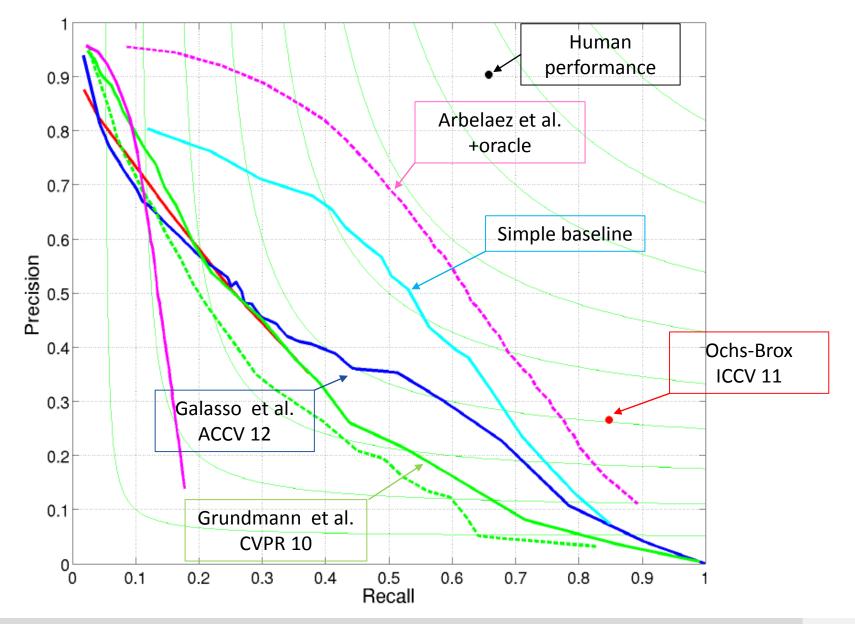
Normalization penalizes extreme segmentations

R=0



Thomas Brox

Motion segmentation subtask



Thomas Brox

About the "simple baseline"

- UNI FREIBURG 1. Take superpixel hierarchy from Arbelaez et al.
 - 2. Propagate labels to next frame using optical flow
 - 3. Next frame: label determined by voting

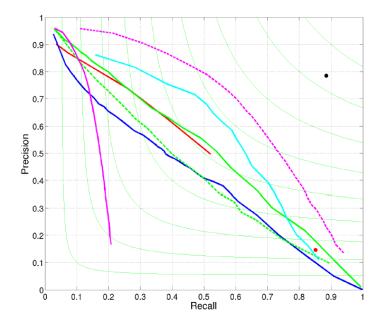
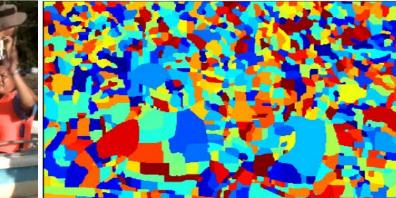


Image segmentation + optical flow < video segmentation

There is work to do

Balanced graph reduction



Superpixels

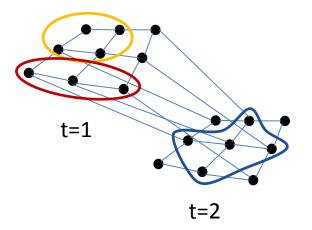
Fabio Galasso

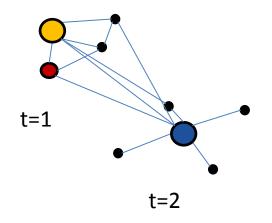
Margret Keuper

Bernt Schiele

Galasso et al. CVPR 14

Original pixels

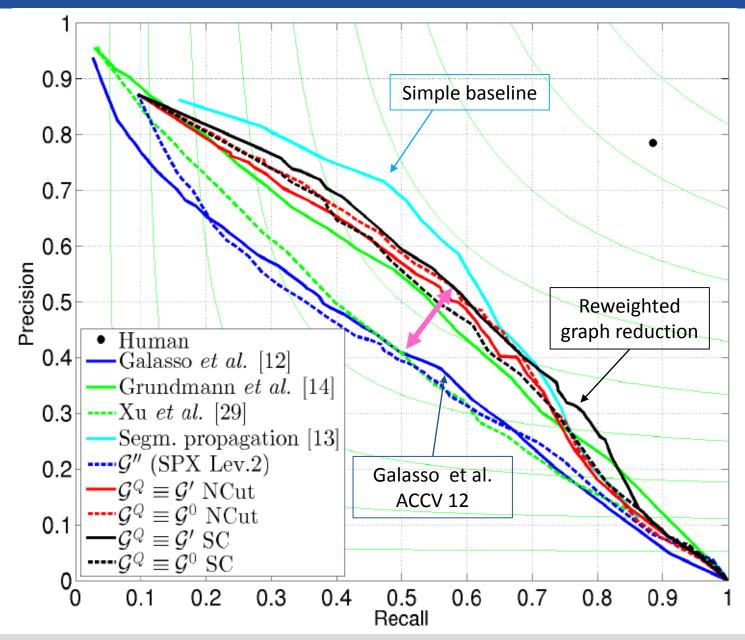




Edge reweighting necessary for weight balancing in spectral clustering

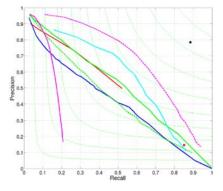
Thomas Brox

Balancing clearly improves results

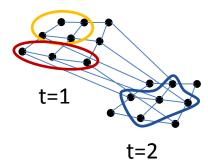


UNI FREIBURG

> FBMS-59: Motion segmentation benchmark



VSB-100: General video segmentation benchmark



Spectral clustering with superpixels: Don't forget to rebalance