
A brief introduction to deep learning

for generative modeling

Jakob Verbeek

INRIA, Grenoble, France

Breaking the Surface 2019

Biograd na Moru, Croatia

Plan for this presentation

1. Introduction to deep learning

• Machine learning basics

• Deep learning building blocks (MLP, convolution, back-propagation)

2. Deep generative models

• Generative modeling basics

• Generative adversarial networks

• Variational autoencoders

• Flow-based density estimation

1/66

Part I

Brief introduction to

(deep) learning

2/66

Machine learning paradigms

• Supervised Learning: use of labeled training set

• ex: email spam detector with training set of already labeled emails

• Unsupervised Learning: discover patterns in unlabeled data

• ex: cluster similar documents based on text content

• Reinforcement Learning: learning sequential decision making

based on feedback or reward

• ex: learning to play a game by winning or losing

3/66

Machine learning paradigms

• Supervised Learning: use of labeled training set

• ex: email spam detector with training set of already labeled emails

• Unsupervised Learning: discover patterns in unlabeled data

• ex: cluster similar documents based on text content

• Reinforcement Learning: learning sequential decision making

based on feedback or reward

• ex: learning to play a game by winning or losing

3/66

Machine learning paradigms

• Supervised Learning: use of labeled training set

• ex: email spam detector with training set of already labeled emails

• Unsupervised Learning: discover patterns in unlabeled data

• ex: cluster similar documents based on text content

• Reinforcement Learning: learning sequential decision making

based on feedback or reward

• ex: learning to play a game by winning or losing

3/66

Machine learning paradigms

• Supervised Learning: use of labeled training set

• ex: email spam detector with training set of already labeled emails

• Unsupervised Learning: discover patterns in unlabeled data

• ex: cluster similar documents based on text content

• Reinforcement Learning: learning sequential decision making

based on feedback or reward

• ex: learning to play a game by winning or losing

3/66

What is Deep Learning

• Part of the ML field of learning representations of data

• Learning algorithms derive meaning out of data by using a hierarchy

of multiple layers of units (neurons)

• Each layer computes linear function of its inputs, which is passed

through a non linear function

• Learning = find optimal model parameters from data

• ex: deep speech transcription system has 10-20M of parameters

4/66

What is Deep Learning

• Part of the ML field of learning representations of data

• Learning algorithms derive meaning out of data by using a hierarchy

of multiple layers of units (neurons)

• Each layer computes linear function of its inputs, which is passed

through a non linear function

• Learning = find optimal model parameters from data

• ex: deep speech transcription system has 10-20M of parameters

4/66

What is Deep Learning

• Part of the ML field of learning representations of data

• Learning algorithms derive meaning out of data by using a hierarchy

of multiple layers of units (neurons)

• Each layer computes linear function of its inputs, which is passed

through a non linear function

• Learning = find optimal model parameters from data

• ex: deep speech transcription system has 10-20M of parameters

4/66

What is Deep Learning

• Part of the ML field of learning representations of data

• Learning algorithms derive meaning out of data by using a hierarchy

of multiple layers of units (neurons)

• Each layer computes linear function of its inputs, which is passed

through a non linear function

• Learning = find optimal model parameters from data

• ex: deep speech transcription system has 10-20M of parameters

4/66

What is Deep Learning

• Part of the ML field of learning representations of data

• Learning algorithms derive meaning out of data by using a hierarchy

of multiple layers of units (neurons)

• Each layer computes linear function of its inputs, which is passed

through a non linear function

• Learning = find optimal model parameters from data

• ex: deep speech transcription system has 10-20M of parameters

4/66

A very brief history

Figure from https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

• 2012 breakthrough due to

• Lots of labeled data (ex: ImageNet)

• Computation (ex: GPU)

• Algorithmic & architectural progresses (ex: SGD, ReLU)

5/66

A very brief history

Figure from https://www.slideshare.net/LuMa921/deep-learning-a-visual-introduction

• 2012 breakthrough due to

• Lots of labeled data (ex: ImageNet)

• Computation (ex: GPU)

• Algorithmic & architectural progresses (ex: SGD, ReLU) 5/66

Success stories of deep learning in recent years

• Convolutional neural networks

• For stationary signals such as audio, images, and video,

sampled on regular grid structure

• Applictions: Object detection, semantic segmentation, image

retrieval, pose estimation, action recognition, . . .

RGB Input Ground-truth Predictions

Semantic segmentation pixel labeling [Lin et al., 2017]

6/66

Success stories of deep learning in recent years

• Convolutional neural networks

• For stationary signals such as audio, images, and video,

sampled on regular grid structure

• Applictions: Object detection, semantic segmentation, image

retrieval, pose estimation, action recognition, . . .

RGB Input Ground-truth Predictions

Semantic segmentation pixel labeling [Lin et al., 2017]

6/66

Success stories of deep learning in recent years

• Convolutional neural networks

• For stationary signals such as audio, images, and video,

sampled on regular grid structure

• Applictions: Object detection, semantic segmentation, image

retrieval, pose estimation, action recognition, . . .

RGB Input Ground-truth Predictions

Semantic segmentation pixel labeling [Lin et al., 2017]

6/66

Success stories of deep learning in recent years

• Convolutional neural networks

• For stationary signals such as audio, images, and video,

sampled on regular grid structure

• Applictions: Object detection, semantic segmentation, image

retrieval, pose estimation, action recognition, . . .

RGB Input Ground-truth Predictions

Semantic segmentation pixel labeling [Lin et al., 2017]

6/66

Success stories of deep learning in recent years

• Convolutional neural networks

• For stationary signals such as audio, images, and video,

sampled on regular grid structure

• Applictions: Object detection, semantic segmentation, image

retrieval, pose estimation, action recognition, . . .

RGB Input Ground-truth Predictions

Semantic segmentation pixel labeling [Lin et al., 2017] 6/66

Success stories of deep learning in recent years

• Recurrent neural networks

• For variable length sequence data, e.g. in natural language

• Applications: Machine translation, image captioning, speech

recognition, . . .

Figure from: https://smerity.com/media/images/articles/2016/

7/66

Success stories of deep learning in recent years

• Recurrent neural networks

• For variable length sequence data, e.g. in natural language

• Applications: Machine translation, image captioning, speech

recognition, . . .

Figure from: https://smerity.com/media/images/articles/2016/

7/66

Success stories of deep learning in recent years

• Recurrent neural networks

• For variable length sequence data, e.g. in natural language

• Applications: Machine translation, image captioning, speech

recognition, . . .

Figure from: https://smerity.com/media/images/articles/2016/

7/66

Success stories of deep learning in recent years

• Recurrent neural networks

• For variable length sequence data, e.g. in natural language

• Applications: Machine translation, image captioning, speech

recognition, . . .

Figure from: https://smerity.com/media/images/articles/2016/

7/66

Success stories of deep learning in recent years

• Recurrent neural networks

• For variable length sequence data, e.g. in natural language

• Applications: Machine translation, image captioning, speech

recognition, . . .

Figure from: https://smerity.com/media/images/articles/2016/

7/66

It’s all about the features!

• Conventional vision / audio processing approach

1. Features extraction (engineered) : SIFT, MFCC, . . .

2. Feature pooling (unsupervised): bag-of-words, Fisher vectors, . . .

3. Image recognition (supervised): linear/kernel classifier, . . .

Image from [Chatfield et al., 2011]

8/66

It’s all about the features!

• Conventional vision / audio processing approach

1. Features extraction (engineered) : SIFT, MFCC, . . .

2. Feature pooling (unsupervised): bag-of-words, Fisher vectors, . . .

3. Image recognition (supervised): linear/kernel classifier, . . .

Image from [Chatfield et al., 2011]

8/66

It’s all about the features!

• Conventional vision / audio processing approach

1. Features extraction (engineered) : SIFT, MFCC, . . .

2. Feature pooling (unsupervised): bag-of-words, Fisher vectors, . . .

3. Image recognition (supervised): linear/kernel classifier, . . .

Image from [Chatfield et al., 2011]

8/66

It’s all about the features!

• Conventional vision / audio processing approach

1. Features extraction (engineered) : SIFT, MFCC, . . .

2. Feature pooling (unsupervised): bag-of-words, Fisher vectors, . . .

3. Image recognition (supervised): linear/kernel classifier, . . .

Image from [Chatfield et al., 2011]

8/66

It’s all about the features!

• Conventional vision / audio processing approach

1. Features extraction (engineered) : SIFT, MFCC, . . .

2. Feature pooling (unsupervised): bag-of-words, Fisher vectors, . . .

3. Image recognition (supervised): linear/kernel classifier, . . .

Image from [Chatfield et al., 2011]

8/66

It’s all about the features!

• Conventional vision / audio processing approach

1. Features extraction (engineered) : SIFT, MFCC, . . .

2. Feature pooling (unsupervised): bag-of-words, Fisher vectors, . . .

3. Image recognition (supervised): linear/kernel classifier, . . .

Image from [Chatfield et al., 2011]

8/66

It’s all about the features

• Deep learning blurs boundary feature / classifier

• Starts from raw input signal, e.g. image pixels

• Stacks simple linear transformations with non-linearities in between

• Learns progressively more abstract representation

• End-to-end training of entire pipeline minimizing specific loss

• Supervised learning from lots of labeled data

9/66

It’s all about the features

• Deep learning blurs boundary feature / classifier

• Starts from raw input signal, e.g. image pixels

• Stacks simple linear transformations with non-linearities in between

• Learns progressively more abstract representation

• End-to-end training of entire pipeline minimizing specific loss

• Supervised learning from lots of labeled data

9/66

It’s all about the features

• Deep learning blurs boundary feature / classifier

• Starts from raw input signal, e.g. image pixels

• Stacks simple linear transformations with non-linearities in between

• Learns progressively more abstract representation

• End-to-end training of entire pipeline minimizing specific loss

• Supervised learning from lots of labeled data

9/66

It’s all about the features

• Deep learning blurs boundary feature / classifier

• Starts from raw input signal, e.g. image pixels

• Stacks simple linear transformations with non-linearities in between

• Learns progressively more abstract representation

• End-to-end training of entire pipeline minimizing specific loss

• Supervised learning from lots of labeled data

9/66

It’s all about the features

• Deep learning blurs boundary feature / classifier

• Starts from raw input signal, e.g. image pixels

• Stacks simple linear transformations with non-linearities in between

• Learns progressively more abstract representation

• End-to-end training of entire pipeline minimizing specific loss

• Supervised learning from lots of labeled data

9/66

It’s all about the features

• Deep learning blurs boundary feature / classifier

• Starts from raw input signal, e.g. image pixels

• Stacks simple linear transformations with non-linearities in between

• Learns progressively more abstract representation

• End-to-end training of entire pipeline minimizing specific loss

• Supervised learning from lots of labeled data

9/66

It’s all about the features

• Deep learning blurs boundary feature / classifier

• Starts from raw input signal, e.g. image pixels

• Stacks simple linear transformations with non-linearities in between

• Learns progressively more abstract representation

• End-to-end training of entire pipeline minimizing specific loss

• Supervised learning from lots of labeled data

9/66

Training a model by empirical risk minimization

• Given labeled training data (xi , yi)i=1...N with xi ∈ X , yi ∈ Y
• Learn a prediction function f : X → Y.

min
f∈F

1

N

N∑
i=1

L(yi , f (xi))

empirical risk, data fit

+ λΩ(f)
regularization

• The targets yi can be in

• { -1, + 1}: binary classification

• {1, . . . , K}: multi-class classification

• R: regression

• Rn: multivariate regression

• Loss function L evaluates predictions, often convex

10/66

Training a model by empirical risk minimization

• Given labeled training data (xi , yi)i=1...N with xi ∈ X , yi ∈ Y
• Learn a prediction function f : X → Y.

min
f∈F

1

N

N∑
i=1

L(yi , f (xi))

empirical risk, data fit

+ λΩ(f)
regularization

• The targets yi can be in

• { -1, + 1}: binary classification

• {1, . . . , K}: multi-class classification

• R: regression

• Rn: multivariate regression

• Loss function L evaluates predictions, often convex

10/66

Training a model by empirical risk minimization

• Given labeled training data (xi , yi)i=1...N with xi ∈ X , yi ∈ Y
• Learn a prediction function f : X → Y.

min
f∈F

1

N

N∑
i=1

L(yi , f (xi))

empirical risk, data fit

+ λΩ(f)
regularization

• The targets yi can be in

• { -1, + 1}: binary classification

• {1, . . . , K}: multi-class classification

• R: regression

• Rn: multivariate regression

• Loss function L evaluates predictions, often convex

10/66

Training a model by empirical risk minimization

• Given labeled training data (xi , yi)i=1...N with xi ∈ X , yi ∈ Y
• Learn a prediction function f : X → Y.

min
f∈F

1

N

N∑
i=1

L(yi , f (xi))

empirical risk, data fit

+ λΩ(f)
regularization

• Not just risk minimization

• Need to generalize to unseen examples

• Occam’s razor (favor simplicity)

• Regularization: control the complexity of solutions

11/66

Training a model by empirical risk minimization

• Given labeled training data (xi , yi)i=1...N with xi ∈ X , yi ∈ Y
• Learn a prediction function f : X → Y.

min
f∈F

1

N

N∑
i=1

L(yi , f (xi))

empirical risk, data fit

+ λΩ(f)
regularization

• Linear regression example.

• Assume linear relation between y and features x ∈ Rp

• f (x) = wT x + b, parametrized by w , b in Rp+1

• L is often convex, Ω(f) often squared l2-norm ||w ||2.

• Optimize by gradient descent: follow the steepest direction.

• The problem is convex: local optimum is global.

• Features and classification are decoupled

12/66

Training a model by empirical risk minimization

• Given labeled training data (xi , yi)i=1...N with xi ∈ X , yi ∈ Y
• Learn a prediction function f : X → Y.

min
f∈F

1

N

N∑
i=1

L(yi , f (xi))

empirical risk, data fit

+ λΩ(f)
regularization

• Deep learning example.

• Composition of linear transformations and non-linearities

• Parametrization of deep models

F : f (x) = σk(Akσk−1(Ak−1 . . . σ2(A2σ1(A1x))))

• Adaptive features, universal approximation theorem

• Hard to optimize: non-convex, high-dimensional

13/66

Multi-layer perceptron, or “fully connected network”

• Stack of linear operations y = Wx + b

• Non-linearities in between, e.g. ReLU(x) = max(0, x)

• One connection = one parameter

• Limitations: No invariances, poor scaling of nr parameters

14/66

Multi-layer perceptron, or “fully connected network”

• Stack of linear operations y = Wx + b

• Non-linearities in between, e.g. ReLU(x) = max(0, x)

• One connection = one parameter

• Limitations: No invariances, poor scaling of nr parameters

14/66

Multi-layer perceptron, or “fully connected network”

• Stack of linear operations y = Wx + b

• Non-linearities in between, e.g. ReLU(x) = max(0, x)

• One connection = one parameter

• Limitations: No invariances, poor scaling of nr parameters

14/66

Multi-layer perceptron, or “fully connected network”

• Stack of linear operations y = Wx + b

• Non-linearities in between, e.g. ReLU(x) = max(0, x)

• One connection = one parameter

• Limitations: No invariances, poor scaling of nr parameters

14/66

Multi-layer perceptron, or “fully connected network”

• Stack of linear operations y = Wx + b

• Non-linearities in between, e.g. ReLU(x) = max(0, x)

• One connection = one parameter

• Limitations: No invariances, poor scaling of nr parameters

14/66

Multi-layer perceptron, or “fully connected network”

• Stack of linear operations y = Wx + b

• Non-linearities in between, e.g. ReLU(x) = max(0, x)

• One connection = one parameter

• Limitations: No invariances, poor scaling of nr parameters

14/66

Convolutional networks

• Very sparse weight matrix W

• Weights shared across positions, translation equivariant processing

• Computations single instruction multiple data (SIMD): GPU

15/66

Convolutional networks

• Very sparse weight matrix W

• Weights shared across positions, translation equivariant processing

• Computations single instruction multiple data (SIMD): GPU

15/66

Convolutional networks

• Very sparse weight matrix W

• Weights shared across positions, translation equivariant processing

• Computations single instruction multiple data (SIMD): GPU

15/66

Convolutional networks

• Very sparse weight matrix W

• Weights shared across positions, translation equivariant processing

• Computations single instruction multiple data (SIMD): GPU

15/66

Convolutional networks

• Very sparse weight matrix W

• Weights shared across positions, translation equivariant processing

• Computations single instruction multiple data (SIMD): GPU

15/66

Pooling operations

• Reduce spatial dimension

• Increase receptive field

• Or just down-sample after convolution (“strided convolution”)

16/66

Pooling operations

• Reduce spatial dimension

• Increase receptive field

• Or just down-sample after convolution (“strided convolution”)

16/66

Pooling operations

• Reduce spatial dimension

• Increase receptive field

• Or just down-sample after convolution (“strided convolution”)

16/66

Pooling operations

• Reduce spatial dimension

• Increase receptive field

• Or just down-sample after convolution (“strided convolution”)

16/66

Pooling operations

• Reduce spatial dimension

• Increase receptive field

• Or just down-sample after convolution (“strided convolution”)

16/66

Training deep networks

• Stack convolutions, pooling, and non-linearities

• Forward propagation from input x to output y

• Train by stochastic gradient descent, using small batches of data

1

n

n∑
i=1

∇θL(yi , fθ(xi)), with n� N

• Efficient gradient computations via backpropagation algorithm

17/66

Training deep networks

• Stack convolutions, pooling, and non-linearities

• Forward propagation from input x to output y

• Train by stochastic gradient descent, using small batches of data

1

n

n∑
i=1

∇θL(yi , fθ(xi)), with n� N

• Efficient gradient computations via backpropagation algorithm

17/66

Training deep networks

• Stack convolutions, pooling, and non-linearities

• Forward propagation from input x to output y

• Train by stochastic gradient descent, using small batches of data

1

n

n∑
i=1

∇θL(yi , fθ(xi)), with n� N

• Efficient gradient computations via backpropagation algorithm

17/66

Training deep networks

• Stack convolutions, pooling, and non-linearities

• Forward propagation from input x to output y

• Train by stochastic gradient descent, using small batches of data

1

n

n∑
i=1

∇θL(yi , fθ(xi)), with n� N

• Efficient gradient computations via backpropagation algorithm

17/66

Feature visualization

Features visualisation

Figure from distill.pub

18/66

Feature visualization

Features visualisation

Figure from distill.pub 18/66

Take-home messages

• Core idea

• Many processing layers from raw input to output

• Learning features and classifier jointly

• In practice

• Strategy efficient across disciplines (vision, speech, NLP, games etc.)

• Large-scale applications widely adopted in industry

• Computation and labeled (!) data hungry

• In theory

• Optimization still poorly understood

• Generalization still poorly understood

• Experimental results ’ahead’ of theory

19/66

Take-home messages

• Core idea

• Many processing layers from raw input to output

• Learning features and classifier jointly

• In practice

• Strategy efficient across disciplines (vision, speech, NLP, games etc.)

• Large-scale applications widely adopted in industry

• Computation and labeled (!) data hungry

• In theory

• Optimization still poorly understood

• Generalization still poorly understood

• Experimental results ’ahead’ of theory

19/66

Take-home messages

• Core idea

• Many processing layers from raw input to output

• Learning features and classifier jointly

• In practice

• Strategy efficient across disciplines (vision, speech, NLP, games etc.)

• Large-scale applications widely adopted in industry

• Computation and labeled (!) data hungry

• In theory

• Optimization still poorly understood

• Generalization still poorly understood

• Experimental results ’ahead’ of theory

19/66

The Limits to Growth

More labeled data

A sustainable approach?

From Andrew Ng’s Keynote at Nvidia’s GPU Technology Conf. 2015

20/66

The Limits to Growth

More labeled data

A sustainable approach?

From Andrew Ng’s Keynote at Nvidia’s GPU Technology Conf. 2015

20/66

The Limits to Growth

More labeled data

A sustainable approach?

From Andrew Ng’s Keynote at Nvidia’s GPU Technology Conf. 2015

20/66

The Limits to Growth

More labeled data

A sustainable approach?

From Andrew Ng’s Keynote at Nvidia’s GPU Technology Conf. 2015

20/66

Part II

Unsupervised deep learning

21/66

Motivations for unsupervised deep learning

1. Improve supervised learning from few samples

• Unlabeled data often abundantly available

• Learn representations/features from unlabeled data

2. Generative models for image and other complex data

• Unconditional density estim. pθ(x), sampling, outlier detection, . . .

• Conditional density estim. pθ(x|y): text-to-speech, image

colorization, video forecasting, etc.

Image colorization [Royer et al., 2017]

22/66

Motivations for unsupervised deep learning

1. Improve supervised learning from few samples

• Unlabeled data often abundantly available

• Learn representations/features from unlabeled data

2. Generative models for image and other complex data

• Unconditional density estim. pθ(x), sampling, outlier detection, . . .

• Conditional density estim. pθ(x|y): text-to-speech, image

colorization, video forecasting, etc.

Image colorization [Royer et al., 2017]

22/66

Motivations for unsupervised deep learning

1. Improve supervised learning from few samples
• Unlabeled data often abundantly available

• Learn representations/features from unlabeled data

2. Generative models for image and other complex data

• Unconditional density estim. pθ(x), sampling, outlier detection, . . .

• Conditional density estim. pθ(x|y): text-to-speech, image

colorization, video forecasting, etc.

Image colorization [Royer et al., 2017]

22/66

Motivations for unsupervised deep learning

1. Improve supervised learning from few samples
• Unlabeled data often abundantly available

• Learn representations/features from unlabeled data

2. Generative models for image and other complex data

• Unconditional density estim. pθ(x), sampling, outlier detection, . . .

• Conditional density estim. pθ(x|y): text-to-speech, image

colorization, video forecasting, etc.

Image colorization [Royer et al., 2017]

22/66

Motivations for unsupervised deep learning

1. Improve supervised learning from few samples
• Unlabeled data often abundantly available

• Learn representations/features from unlabeled data

2. Generative models for image and other complex data

• Unconditional density estim. pθ(x), sampling, outlier detection, . . .

• Conditional density estim. pθ(x|y): text-to-speech, image

colorization, video forecasting, etc.

Image colorization [Royer et al., 2017]

22/66

Motivations for unsupervised deep learning

1. Improve supervised learning from few samples
• Unlabeled data often abundantly available

• Learn representations/features from unlabeled data

2. Generative models for image and other complex data
• Unconditional density estim. pθ(x), sampling, outlier detection, . . .

• Conditional density estim. pθ(x|y): text-to-speech, image

colorization, video forecasting, etc.

Image colorization [Royer et al., 2017]

22/66

Motivations for unsupervised deep learning

1. Improve supervised learning from few samples
• Unlabeled data often abundantly available

• Learn representations/features from unlabeled data

2. Generative models for image and other complex data
• Unconditional density estim. pθ(x), sampling, outlier detection, . . .

• Conditional density estim. pθ(x|y): text-to-speech, image

colorization, video forecasting, etc.

Image colorization [Royer et al., 2017]

22/66

Motivations for unsupervised deep learning

1. Improve supervised learning from few samples
• Unlabeled data often abundantly available

• Learn representations/features from unlabeled data

2. Generative models for image and other complex data
• Unconditional density estim. pθ(x), sampling, outlier detection, . . .

• Conditional density estim. pθ(x|y): text-to-speech, image

colorization, video forecasting, etc.

Image colorization [Royer et al., 2017] 22/66

Gaussian mixture models

p(z = k) = πk (1)

p(x|z = k) = N (x ;µk , σID) (2)

p(x) =
∑
z

p(z)p(x|z) (3)

• Estimation: Expectation-Maximization (EM) algorithm

• Sampling: pick component from prior distribution p(z),

then draw sample from conditional distribution p(x|z)

Figure from [Bishop, 2006]

23/66

Gaussian mixture models

p(z = k) = πk (1)

p(x|z = k) = N (x ;µk , σID) (2)

p(x) =
∑
z

p(z)p(x|z) (3)

• Estimation: Expectation-Maximization (EM) algorithm

• Sampling: pick component from prior distribution p(z),

then draw sample from conditional distribution p(x|z)

Figure from [Bishop, 2006] 23/66

Gaussian mixture models

p(z = k) = πk (1)

p(x|z = k) = N (x ;µk , σID) (2)

p(x) =
∑
z

p(z)p(x|z) (3)

• Estimation: Expectation-Maximization (EM) algorithm

• Sampling: pick component from prior distribution p(z),

then draw sample from conditional distribution p(x|z)

Figure from [Bishop, 2006] 23/66

Gaussian mixture models

p(z = k) = πk (1)

p(x|z = k) = N (x ;µk , σID) (2)

p(x) =
∑
z

p(z)p(x|z) (3)

• Estimation: Expectation-Maximization (EM) algorithm

• Sampling: pick component from prior distribution p(z),

then draw sample from conditional distribution p(x|z)

Figure from [Bishop, 2006] 23/66

Linear latent variable models

• Probabilistic Principal Component Analysis

[Roweis, 1997, Tipping and Bishop, 1999]

p(z) = N (z ; 0, Id) (4)

p(x|z) = N (x;µ+ Wz , σID) (5)

p(x) =

∫
z

p(z)p(x|z) (6)

• Estimation: SVD or EM algorithm

• Sampling: pick point in subspace from prior p(z),

then draw sample from conditional distribution p(x|z)

Figure from [Bishop, 2006]

24/66

Linear latent variable models

• Probabilistic Principal Component Analysis

[Roweis, 1997, Tipping and Bishop, 1999]

p(z) = N (z ; 0, Id) (4)

p(x|z) = N (x;µ+ Wz , σID) (5)

p(x) =

∫
z

p(z)p(x|z) (6)

• Estimation: SVD or EM algorithm

• Sampling: pick point in subspace from prior p(z),

then draw sample from conditional distribution p(x|z)

Figure from [Bishop, 2006]

24/66

Linear latent variable models

• Probabilistic Principal Component Analysis

[Roweis, 1997, Tipping and Bishop, 1999]

p(z) = N (z ; 0, Id) (4)

p(x|z) = N (x;µ+ Wz , σID) (5)

p(x) =

∫
z

p(z)p(x|z) (6)

• Estimation: SVD or EM algorithm

• Sampling: pick point in subspace from prior p(z),

then draw sample from conditional distribution p(x|z)

Figure from [Bishop, 2006]

24/66

Non-linear latent variable models

• Simple distribution p(z) on latent variable z,

e.g. standard Gaussian

• Non-linear function x = fθ(z) maps latent variable to data space,

e.g. deep neural net

• Sampling: pick point in subspace from prior p(z),

then draw sample from conditional distribution p(x|z)

Figure from Aaron Courville

25/66

Non-linear latent variable models

• Simple distribution p(z) on latent variable z,

e.g. standard Gaussian

• Non-linear function x = fθ(z) maps latent variable to data space,

e.g. deep neural net

• Sampling: pick point in subspace from prior p(z),

then draw sample from conditional distribution p(x|z)

Figure from Aaron Courville

25/66

Non-linear latent variable models

• Simple distribution p(z) on latent variable z,

e.g. standard Gaussian

• Non-linear function x = fθ(z) maps latent variable to data space,

e.g. deep neural net

• Sampling: pick point in subspace from prior p(z),

then draw sample from conditional distribution p(x|z)

Figure from Aaron Courville

25/66

Learning deep latent variable models

• Marginal distribution on x obtained by integrating out z

p(z) = N (z; 0, I), (7)

pθ(x) =

∫
z

p(z)p(x|fθ(z)). (8)

• Problem: Evaluation of pθ(x) intractable due to integral involving

flexible non-linear deep net fθ(·)

• Solutions by different unsupervised deep learning paradigms

• Avoid integral: Generative adversarial networks (GAN)

• Approximate integral: Variational autoencoders (VAE)

• Tractable integral: constrain fθ to invertible “flow”

• Avoid latent variables: autoregressive models

26/66

Learning deep latent variable models

• Marginal distribution on x obtained by integrating out z

p(z) = N (z; 0, I), (7)

pθ(x) =

∫
z

p(z)p(x|fθ(z)). (8)

• Problem: Evaluation of pθ(x) intractable due to integral involving

flexible non-linear deep net fθ(·)

• Solutions by different unsupervised deep learning paradigms

• Avoid integral: Generative adversarial networks (GAN)

• Approximate integral: Variational autoencoders (VAE)

• Tractable integral: constrain fθ to invertible “flow”

• Avoid latent variables: autoregressive models

26/66

Learning deep latent variable models

• Marginal distribution on x obtained by integrating out z

p(z) = N (z; 0, I), (7)

pθ(x) =

∫
z

p(z)p(x|fθ(z)). (8)

• Problem: Evaluation of pθ(x) intractable due to integral involving

flexible non-linear deep net fθ(·)

• Solutions by different unsupervised deep learning paradigms

• Avoid integral: Generative adversarial networks (GAN)

• Approximate integral: Variational autoencoders (VAE)

• Tractable integral: constrain fθ to invertible “flow”

• Avoid latent variables: autoregressive models

26/66

Learning deep latent variable models

• Marginal distribution on x obtained by integrating out z

p(z) = N (z; 0, I), (7)

pθ(x) =

∫
z

p(z)p(x|fθ(z)). (8)

• Problem: Evaluation of pθ(x) intractable due to integral involving

flexible non-linear deep net fθ(·)

• Solutions by different unsupervised deep learning paradigms

• Avoid integral: Generative adversarial networks (GAN)

• Approximate integral: Variational autoencoders (VAE)

• Tractable integral: constrain fθ to invertible “flow”

• Avoid latent variables: autoregressive models

26/66

Learning deep latent variable models

• Marginal distribution on x obtained by integrating out z

p(z) = N (z; 0, I), (7)

pθ(x) =

∫
z

p(z)p(x|fθ(z)). (8)

• Problem: Evaluation of pθ(x) intractable due to integral involving

flexible non-linear deep net fθ(·)

• Solutions by different unsupervised deep learning paradigms

• Avoid integral: Generative adversarial networks (GAN)

• Approximate integral: Variational autoencoders (VAE)

• Tractable integral: constrain fθ to invertible “flow”

• Avoid latent variables: autoregressive models

26/66

Learning deep latent variable models

• Marginal distribution on x obtained by integrating out z

p(z) = N (z; 0, I), (7)

pθ(x) =

∫
z

p(z)p(x|fθ(z)). (8)

• Problem: Evaluation of pθ(x) intractable due to integral involving

flexible non-linear deep net fθ(·)

• Solutions by different unsupervised deep learning paradigms

• Avoid integral: Generative adversarial networks (GAN)

• Approximate integral: Variational autoencoders (VAE)

• Tractable integral: constrain fθ to invertible “flow”

• Avoid latent variables: autoregressive models

26/66

Learning deep latent variable models

• Marginal distribution on x obtained by integrating out z

p(z) = N (z; 0, I), (7)

pθ(x) =

∫
z

p(z)p(x|fθ(z)). (8)

• Problem: Evaluation of pθ(x) intractable due to integral involving

flexible non-linear deep net fθ(·)

• Solutions by different unsupervised deep learning paradigms

• Avoid integral: Generative adversarial networks (GAN)

• Approximate integral: Variational autoencoders (VAE)

• Tractable integral: constrain fθ to invertible “flow”

• Avoid latent variables: autoregressive models

26/66

Part III

Generative adversarial networks

27/66

Generative adversarial networks [Goodfellow et al., 2014]

• Sample p(z), map it using deep net to x = Gθ(z)

• Instead of trying to evaluate p(x), use classifier Dφ

• Dφ(x) ∈ [0, 1] probability x is real vs.synth. image

Figure from Kevin McGuinness

28/66

Generative adversarial networks [Goodfellow et al., 2014]

• Sample p(z), map it using deep net to x = Gθ(z)

• Instead of trying to evaluate p(x), use classifier Dφ

• Dφ(x) ∈ [0, 1] probability x is real vs.synth. image

Figure from Kevin McGuinness

28/66

Generative adversarial networks [Goodfellow et al., 2014]

• Sample p(z), map it using deep net to x = Gθ(z)

• Instead of trying to evaluate p(x), use classifier Dφ

• Dφ(x) ∈ [0, 1] probability x is real vs.synth. image

Figure from Kevin McGuinness

28/66

Discriminator architecture for images

Figure from Kevin McGuinness

• Recognition CNN model, with sigmoid output layer

• Binary classification output: real / synthetic

29/66

Generator architecture for images

• Unit Gaussian prior on z ∈ IRD , typically 102 to 103 dimensions

• Up-convolutional deep network (reverse recognition CNN)

• Pooling layers replaced with upsampling layers

(nearest neighbor, bi-linear, or learned)

• Low-resolution layers induce long-range correlations

• High-resolution layers induce short-range correlations

Figure from [Radford et al., 2016]

30/66

Generator architecture for images

• Unit Gaussian prior on z ∈ IRD , typically 102 to 103 dimensions

• Up-convolutional deep network (reverse recognition CNN)

• Pooling layers replaced with upsampling layers

(nearest neighbor, bi-linear, or learned)

• Low-resolution layers induce long-range correlations

• High-resolution layers induce short-range correlations

Figure from [Radford et al., 2016] 30/66

Generator architecture for images

• Unit Gaussian prior on z ∈ IRD , typically 102 to 103 dimensions

• Up-convolutional deep network (reverse recognition CNN)

• Pooling layers replaced with upsampling layers

(nearest neighbor, bi-linear, or learned)

• Low-resolution layers induce long-range correlations

• High-resolution layers induce short-range correlations

Figure from [Radford et al., 2016] 30/66

Training GANs

• Discriminator: maximize classification for a given generator

• Generator: degrade classification of a given discriminator

• Samples z pass through two differentiable modules

• Discriminator acts as trainable loss function

31/66

Training GANs

• Discriminator: maximize classification for a given generator

• Generator: degrade classification of a given discriminator

• Samples z pass through two differentiable modules

• Discriminator acts as trainable loss function

31/66

Training GANs

• Discriminator: maximize classification for a given generator

• Generator: degrade classification of a given discriminator

• Samples z pass through two differentiable modules

• Discriminator acts as trainable loss function
31/66

GAN Optimization problem

• Objective function V (φ, θ): performance of discriminator

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEx∼p(z)[ln (1− Dφ(Gθ(z)))]

min
θ

max
φ

V (φ, θ)

• Assuming infinite data and model capacity,

and reaching optimal discriminator at each iteration

1. Unique global optimum for G at data distribution

2. Convergence to optimum guaranteed

32/66

GAN Optimization problem

• Objective function V (φ, θ): performance of discriminator

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEx∼p(z)[ln (1− Dφ(Gθ(z)))]

min
θ

max
φ

V (φ, θ)

• Assuming infinite data and model capacity,

and reaching optimal discriminator at each iteration

1. Unique global optimum for G at data distribution

2. Convergence to optimum guaranteed

32/66

GAN Optimization problem

• Objective function V (φ, θ): performance of discriminator

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEx∼p(z)[ln (1− Dφ(Gθ(z)))]

min
θ

max
φ

V (φ, θ)

• Assuming infinite data and model capacity,

and reaching optimal discriminator at each iteration

1. Unique global optimum for G at data distribution

2. Convergence to optimum guaranteed

32/66

GAN Optimization problem

• Objective function V (φ, θ): performance of discriminator

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEx∼p(z)[ln (1− Dφ(Gθ(z)))]

min
θ

max
φ

V (φ, θ)

• Assuming infinite data and model capacity,

and reaching optimal discriminator at each iteration

1. Unique global optimum for G at data distribution

2. Convergence to optimum guaranteed

32/66

GAN Optimization problem

• Objective function V (φ, θ): performance of discriminator

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEx∼p(z)[ln (1− Dφ(Gθ(z)))]

min
θ

max
φ

V (φ, θ)

• Assuming infinite data and model capacity,

and reaching optimal discriminator at each iteration

1. Unique global optimum for G at data distribution

2. Convergence to optimum guaranteed

32/66

Training GANs in practice

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))]

• Replace expectations with sample average in mini-batch

• Parallel stochastic gradient descent on φ and θ

33/66

Training GANs in practice

V (φ, θ) = IEx∼pdata(x)[lnDφ(x)] + IEz∼p(z)[ln(1− Dφ(fθ(z)))]

• Replace expectations with sample average in mini-batch

• Parallel stochastic gradient descent on φ and θ

33/66

Issues with GANs in practice

• GANs known to be difficult to train in practice

• Formulated as mini-max objective between two networks

• Optimization can oscillate between solutions

• Picking “compatible” generator and discriminator architectures

• Training fails if the discriminator is too strong

• Mode collapse: failure to capture parts of training data

• Optimizes KL-divergence in the “wrong” direction,

reverse from MLE [Lucas et al., 2019]

34/66

Issues with GANs in practice

• GANs known to be difficult to train in practice

• Formulated as mini-max objective between two networks

• Optimization can oscillate between solutions

• Picking “compatible” generator and discriminator architectures

• Training fails if the discriminator is too strong

• Mode collapse: failure to capture parts of training data

• Optimizes KL-divergence in the “wrong” direction,

reverse from MLE [Lucas et al., 2019]

34/66

Issues with GANs in practice

• GANs known to be difficult to train in practice

• Formulated as mini-max objective between two networks

• Optimization can oscillate between solutions

• Picking “compatible” generator and discriminator architectures

• Training fails if the discriminator is too strong

• Mode collapse: failure to capture parts of training data

• Optimizes KL-divergence in the “wrong” direction,

reverse from MLE [Lucas et al., 2019]

34/66

GANs offer outstanding sample quality

Class conditional ProGan [Karras et al., 2018] samples, for LSUN 256×256

35/66

GANs offer outstanding sample quality

Class conditional ProGan [Karras et al., 2018] samples, for LSUN 256×256

35/66

GAN generalizes beyond training data

Examples taken from Brock et al. 2019

36/66

GAN generalizes beyond training data

Examples taken from Brock et al. 2019 36/66

Part IV

Variational Autoencoders

37/66

Autoencoders

• Learn latent representation z via reconstruction of data x

• Autoencoder recovers PCA if [Baldi and Hornik, 1989]

1. Encoder and decoder are both linear

2. Optimizing `2 reconstruction loss

min
V ,W

N∑
n=1

||xn − VWxn||2 (9)

38/66

Autoencoders

• Learn latent representation z via reconstruction of data x
• Autoencoder recovers PCA if [Baldi and Hornik, 1989]

1. Encoder and decoder are both linear

2. Optimizing `2 reconstruction loss

min
V ,W

N∑
n=1

||xn − VWxn||2 (9)

38/66

Deep non-linear autoencoders

• Stack many non-linear layers in encoder and decoder

• Non-linear representation learning

• Does not provide a generative model that can be sampled

39/66

Deep non-linear autoencoders

• Stack many non-linear layers in encoder and decoder

• Non-linear representation learning

• Does not provide a generative model that can be sampled

39/66

Deep non-linear autoencoders

• Stack many non-linear layers in encoder and decoder

• Non-linear representation learning

• Does not provide a generative model that can be sampled

39/66

Autoencoding variational Bayes [Kingma and Welling, 2014]

• Encoder g compute approximate posterior distribution

• Maps data x to latent code z

qφ(z|x) = N (z; gµφ (x), gσφ (x)) (10)

• Decoder f implements generative latent variable model

• Maps latent code z to observation x

pθ(x|z) = N (x; f µθ (z), f σθ (z)) (11)

Figure from kvfrans@github

40/66

Autoencoding variational Bayes [Kingma and Welling, 2014]

• Encoder g compute approximate posterior distribution

• Maps data x to latent code z

qφ(z|x) = N (z; gµφ (x), gσφ (x)) (10)

• Decoder f implements generative latent variable model

• Maps latent code z to observation x

pθ(x|z) = N (x; f µθ (z), f σθ (z)) (11)

Figure from kvfrans@github

40/66

Autoencoding variational Bayes [Kingma and Welling, 2014]

• Encoder g compute approximate posterior distribution

• Maps data x to latent code z

qφ(z|x) = N (z; gµφ (x), gσφ (x)) (10)

• Decoder f implements generative latent variable model

• Maps latent code z to observation x

pθ(x|z) = N (x; f µθ (z), f σθ (z)) (11)

Figure from kvfrans@github

40/66

Autoencoding variational Bayes [Kingma and Welling, 2014]

• Encoder g compute approximate posterior distribution

• Maps data x to latent code z

qφ(z|x) = N (z; gµφ (x), gσφ (x)) (10)

• Decoder f implements generative latent variable model

• Maps latent code z to observation x

pθ(x|z) = N (x; f µθ (z), f σθ (z)) (11)

Figure from kvfrans@github 40/66

Objective function: Evidence lower bound (ELBO)

• Variational bound on data likelihood using Jensen inequality

• Same bound that underlies the EM algorithm

ln pθ(x) ≥ ln pθ(x)− DKL(qφ(z|x)||p(z|x)) (12)

= Eqφ(z|x)[ln(pθ(x|z))]− DKL(qφ(z|x)||p(z)) (13)

• ELBO is function of inference net and generative net

F (θ, φ) = IEqφ [ln pθ(x|z)]− DKL

(
qφ(z|x)||p(z)

)
(14)

• Optimize both networks jointly with SGD

41/66

Objective function: Evidence lower bound (ELBO)

• Variational bound on data likelihood using Jensen inequality

• Same bound that underlies the EM algorithm

ln pθ(x) ≥ ln pθ(x)− DKL(qφ(z|x)||p(z|x)) (12)

= Eqφ(z|x)[ln(pθ(x|z))]− DKL(qφ(z|x)||p(z)) (13)

• ELBO is function of inference net and generative net

F (θ, φ) = IEqφ [ln pθ(x|z)]− DKL

(
qφ(z|x)||p(z)

)
(14)

• Optimize both networks jointly with SGD

41/66

Objective function: Evidence lower bound (ELBO)

• Variational bound on data likelihood using Jensen inequality

• Same bound that underlies the EM algorithm

ln pθ(x) ≥ ln pθ(x)− DKL(qφ(z|x)||p(z|x)) (12)

= Eqφ(z|x)[ln(pθ(x|z))]− DKL(qφ(z|x)||p(z)) (13)

• ELBO is function of inference net and generative net

F (θ, φ) = IEqφ [ln pθ(x|z)]− DKL

(
qφ(z|x)||p(z)

)
(14)

• Optimize both networks jointly with SGD

41/66

Objective function: Evidence lower bound (ELBO)

• Variational bound on data likelihood using Jensen inequality

• Same bound that underlies the EM algorithm

ln pθ(x) ≥ ln pθ(x)− DKL(qφ(z|x)||p(z|x)) (12)

= Eqφ(z|x)[ln(pθ(x|z))]− DKL(qφ(z|x)||p(z)) (13)

• ELBO is function of inference net and generative net

F (θ, φ) = IEqφ [ln pθ(x|z)]− DKL

(
qφ(z|x)||p(z)

)
(14)

• Optimize both networks jointly with SGD

41/66

Computation ELBO for variational autoencoder

F (θ, φ) = IEqφ [ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(15)

• Regularization term keeps q from collapsing to single point z

• Closed form if both terms are Gaussian, for p(z) = N (z; 0, I)

DKL (qφ(z|x)||p(z)) =
1

2

[
1 + ln gσφ (x)− gµφ (x)− gσφ (x)

]
(16)

• Differentiable function of inference net parameters

42/66

Computation ELBO for variational autoencoder

F (θ, φ) = IEqφ [ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(15)

• Regularization term keeps q from collapsing to single point z

• Closed form if both terms are Gaussian, for p(z) = N (z; 0, I)

DKL (qφ(z|x)||p(z)) =
1

2

[
1 + ln gσφ (x)− gµφ (x)− gσφ (x)

]
(16)

• Differentiable function of inference net parameters

42/66

Computation ELBO for variational autoencoder

F (θ, φ) = IEqφ [ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(15)

• Regularization term keeps q from collapsing to single point z

• Closed form if both terms are Gaussian, for p(z) = N (z; 0, I)

DKL (qφ(z|x)||p(z)) =
1

2

[
1 + ln gσφ (x)− gµφ (x)− gσφ (x)

]
(16)

• Differentiable function of inference net parameters

42/66

Computation ELBO for variational autoencoder

F (θ, φ) = IEqφ [ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(17)

• Reconstruction term: to what extent can x be reconstructed from

z following approximate posterior q(z|x)

• Use unbiased sample approximation of intractable expectation

zs ∼ qφ(z|x)

IEqφ [ln pθ(x|z)] ≈ 1

S

S∑
s=1

ln pθ(x|zs) (18)

• Estimator is non-differentiable due to sampling operator

43/66

Computation ELBO for variational autoencoder

F (θ, φ) = IEqφ [ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(17)

• Reconstruction term: to what extent can x be reconstructed from

z following approximate posterior q(z|x)

• Use unbiased sample approximation of intractable expectation

zs ∼ qφ(z|x)

IEqφ [ln pθ(x|z)] ≈ 1

S

S∑
s=1

ln pθ(x|zs) (18)

• Estimator is non-differentiable due to sampling operator

43/66

Computation ELBO for variational autoencoder

F (θ, φ) = IEqφ [ln pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−DKL

(
qφ(z|x)||p(z)

)︸ ︷︷ ︸
Regularization

(17)

• Reconstruction term: to what extent can x be reconstructed from

z following approximate posterior q(z|x)

• Use unbiased sample approximation of intractable expectation

zs ∼ qφ(z|x)

IEqφ [ln pθ(x|z)] ≈ 1

S

S∑
s=1

ln pθ(x|zs) (18)

• Estimator is non-differentiable due to sampling operator

43/66

Re-parametrization trick

• Side-step non-differentiable sampling operator by re-parametrizing

samples zs ∼ qφ(z|x) = N
(

z; gµφ (x), gσφ (x)
)

• Use inference net to modulate samples from a unit Gaussian

zs = gµφ (x) + gσφ (x)� εs , εs ∼ N (εs ; 0, I) (19)

• Samples zs differentiable function of inference net param. φ,

given unit Gaussian samples εs

• Unbiased differentiable approximation of ELBO

F (θ, φ) ≈ 1

S

S∑
s=1

ln pθ
(
x|gµφ (x) + gσφ (x)� εs

)
(20)

−1

2

[
1 + ln gσφ (x)− gµφ (x)− gσφ (x)

]
(21)

44/66

Re-parametrization trick

• Side-step non-differentiable sampling operator by re-parametrizing

samples zs ∼ qφ(z|x) = N
(

z; gµφ (x), gσφ (x)
)

• Use inference net to modulate samples from a unit Gaussian

zs = gµφ (x) + gσφ (x)� εs , εs ∼ N (εs ; 0, I) (19)

• Samples zs differentiable function of inference net param. φ,

given unit Gaussian samples εs

• Unbiased differentiable approximation of ELBO

F (θ, φ) ≈ 1

S

S∑
s=1

ln pθ
(
x|gµφ (x) + gσφ (x)� εs

)
(20)

−1

2

[
1 + ln gσφ (x)− gµφ (x)− gσφ (x)

]
(21)

44/66

Re-parametrization trick

• Side-step non-differentiable sampling operator by re-parametrizing

samples zs ∼ qφ(z|x) = N
(

z; gµφ (x), gσφ (x)
)

• Use inference net to modulate samples from a unit Gaussian

zs = gµφ (x) + gσφ (x)� εs , εs ∼ N (εs ; 0, I) (19)

• Samples zs differentiable function of inference net param. φ,

given unit Gaussian samples εs

• Unbiased differentiable approximation of ELBO

F (θ, φ) ≈ 1

S

S∑
s=1

ln pθ
(
x|gµφ (x) + gσφ (x)� εs

)
(20)

−1

2

[
1 + ln gσφ (x)− gµφ (x)− gσφ (x)

]
(21)

44/66

Re-parametrization trick

• Side-step non-differentiable sampling operator by re-parametrizing

samples zs ∼ qφ(z|x) = N
(

z; gµφ (x), gσφ (x)
)

• Use inference net to modulate samples from a unit Gaussian

zs = gµφ (x) + gσφ (x)� εs , εs ∼ N (εs ; 0, I) (19)

• Samples zs differentiable function of inference net param. φ,

given unit Gaussian samples εs

• Unbiased differentiable approximation of ELBO

F (θ, φ) ≈ 1

S

S∑
s=1

ln pθ
(
x|gµφ (x) + gσφ (x)� εs

)
(20)

−1

2

[
1 + ln gσφ (x)− gµφ (x)− gσφ (x)

]
(21)

44/66

Re-parametrization trick in a cartoon

Figure from [Doersch, 2016]

45/66

Re-parametrization trick in a cartoon

Figure from [Doersch, 2016]

45/66

Autoencoding variational Bayes training algorithm

• For each data point x in a mini-batch

1. Sample one or multiple values {εs}
2. Use back-propagation to compute

gθ = ∇θF (θ, φ, {εs})
gφ = ∇φF (θ, φ, {εs})

3. Gradient-based parameter update

Figure from Aaron Courville 46/66

VAE compared to GAN

• VAE does not suffer from GAN training instability

• GANs typically have higher sample quality than VAE

• VAE defines likelihood p(x) for all data x,

can e.g. be used for loss-less compression

Figure from [Hou et al., 2017], models trained on CelebA dataset

47/66

Part V

Deep invertible transformations

48/66

Modeling via the change of variable formula

• Learn invertible “flow”, f (·), between latent and data space

• Latent and data space have same dimensionality

Figure from [Dinh et al., 2017]

49/66

Modeling via the change of variable formula

• Learn invertible “flow”, f (·), between latent and data space

• Latent and data space have same dimensionality

Figure from [Dinh et al., 2017]

49/66

Modeling via the change of variable formula

• Learn invertible “flow”, f (·), between latent and data space

• Latent and data space have same dimensionality

Figure from [Dinh et al., 2017]

49/66

Change of variables formula for invertible function

• Express density estimation in latent space

y = f (x), (22)

Jf =
∂y

∂x>
, (23)

pX (x) = pY (y)× |det (Jf)| (24)

• Place simple prior on latent variables, e.g. unit Gaussian

• Sampling: y ∼ p(y), map through inverse x = f −1(y)

• Naive computation of determinant costs O(D3)

• Impose structure on f (·) to make both operations efficient

50/66

Change of variables formula for invertible function

• Express density estimation in latent space

y = f (x), (22)

Jf =
∂y

∂x>
, (23)

pX (x) = pY (y)× |det (Jf)| (24)

• Place simple prior on latent variables, e.g. unit Gaussian

• Sampling: y ∼ p(y), map through inverse x = f −1(y)

• Naive computation of determinant costs O(D3)

• Impose structure on f (·) to make both operations efficient

50/66

Change of variables formula for invertible function

• Express density estimation in latent space

y = f (x), (22)

Jf =
∂y

∂x>
, (23)

pX (x) = pY (y)× |det (Jf)| (24)

• Place simple prior on latent variables, e.g. unit Gaussian

• Sampling: y ∼ p(y), map through inverse x = f −1(y)

• Naive computation of determinant costs O(D3)

• Impose structure on f (·) to make both operations efficient

50/66

Change of variables formula for invertible function

• Express density estimation in latent space

y = f (x), (22)

Jf =
∂y

∂x>
, (23)

pX (x) = pY (y)× |det (Jf)| (24)

• Place simple prior on latent variables, e.g. unit Gaussian

• Sampling: y ∼ p(y), map through inverse x = f −1(y)

• Naive computation of determinant costs O(D3)

• Impose structure on f (·) to make both operations efficient

50/66

Change of variables formula for invertible function

• Express density estimation in latent space

y = f (x), (22)

Jf =
∂y

∂x>
, (23)

pX (x) = pY (y)× |det (Jf)| (24)

• Place simple prior on latent variables, e.g. unit Gaussian

• Sampling: y ∼ p(y), map through inverse x = f −1(y)

• Naive computation of determinant costs O(D3)

• Impose structure on f (·) to make both operations efficient

50/66

Non-volume Preserving transformations (NVP) [Dinh et al., 2017]

• Stack many invertible “coupling layers”

• Each has simple inverse and determinant

1. Partition variables in groups x = (x1, x2).

For example, half of pixels in one group

2. Keep group x1 unchanged

3. Let x1 transform x2 via translation and scaling

y1 = x1

y2 = t (x1) + x2 � exp (s(x1))

51/66

Non-volume Preserving transformations (NVP) [Dinh et al., 2017]

• Stack many invertible “coupling layers”

• Each has simple inverse and determinant

1. Partition variables in groups x = (x1, x2).

For example, half of pixels in one group

2. Keep group x1 unchanged

3. Let x1 transform x2 via translation and scaling

y1 = x1

y2 = t (x1) + x2 � exp (s(x1))

51/66

Non-volume Preserving transformations (NVP) [Dinh et al., 2017]

• Stack many invertible “coupling layers”

• Each has simple inverse and determinant

1. Partition variables in groups x = (x1, x2).

For example, half of pixels in one group

2. Keep group x1 unchanged

3. Let x1 transform x2 via translation and scaling

y1 = x1

y2 = t (x1) + x2 � exp (s(x1))

51/66

Non-volume Preserving transformations (NVP) [Dinh et al., 2017]

• Stack many invertible “coupling layers”

• Each has simple inverse and determinant

1. Partition variables in groups x = (x1, x2).

For example, half of pixels in one group

2. Keep group x1 unchanged

3. Let x1 transform x2 via translation and scaling

y1 = x1

y2 = t (x1) + x2 � exp (s(x1))

51/66

Properties: Efficient inversion

• Inverse transformation

x1 = y1 (25)

x2 = (y2 − t (x1))� exp (−s(x1)) (26)

• No need to invert s(·) and t(·)
• Can use complex non-invertible functions, e.g. deep CNN

52/66

Properties: Efficient inversion

• Inverse transformation

x1 = y1 (25)

x2 = (y2 − t (x1))� exp (−s(x1)) (26)

• No need to invert s(·) and t(·)
• Can use complex non-invertible functions, e.g. deep CNN

52/66

Properties: Efficient determinant computation

• Triangular structure of Jacobian

∂f (x)

∂x>
=

 Id 0
∂y2

∂x>1
diag(exp(s(x1)))

• Determinant given by product of Jacobian’s

diagonal terms

ln

∣∣∣∣det

(
∂f (x)

∂x>

)∣∣∣∣ = 1>s(x1)

• Log-likelihood easily computed, optimize using

stochastic gradient decent

ln pX (x) = ln pY (f (x)) + 1>s(x1)

53/66

Properties: Efficient determinant computation

• Triangular structure of Jacobian

∂f (x)

∂x>
=

 Id 0
∂y2

∂x>1
diag(exp(s(x1)))

• Determinant given by product of Jacobian’s

diagonal terms

ln

∣∣∣∣det

(
∂f (x)

∂x>

)∣∣∣∣ = 1>s(x1)

• Log-likelihood easily computed, optimize using

stochastic gradient decent

ln pX (x) = ln pY (f (x)) + 1>s(x1)

53/66

Implementation

• Layers cycle through various partitionings

• Checkerboard mask

• Channel-wise mask

• Multi-scale architecture

• Down sample at regular intervals

• Squeeze 2h × 2w × c map into h × w × 4c

• “Freeze” half the channels / latent vars.

54/66

Implementation

• Layers cycle through various partitionings

• Checkerboard mask

• Channel-wise mask

• Multi-scale architecture

• Down sample at regular intervals

• Squeeze 2h × 2w × c map into h × w × 4c

• “Freeze” half the channels / latent vars.

54/66

Implementation

• Layers cycle through various partitionings

• Checkerboard mask

• Channel-wise mask

• Multi-scale architecture

• Down sample at regular intervals

• Squeeze 2h × 2w × c map into h × w × 4c

• “Freeze” half the channels / latent vars.

54/66

Implementation

• Layers cycle through various partitionings

• Checkerboard mask

• Channel-wise mask

• Multi-scale architecture

• Down sample at regular intervals

• Squeeze 2h × 2w × c map into h × w × 4c

• “Freeze” half the channels / latent vars.

54/66

Implementation

• Layers cycle through various partitionings

• Checkerboard mask

• Channel-wise mask

• Multi-scale architecture

• Down sample at regular intervals

• Squeeze 2h × 2w × c map into h × w × 4c

• “Freeze” half the channels / latent vars.

54/66

Illustration multi-scale feature hierarchy

• Images obtained after re-sampling part of latent variables

• From left to right: original, keeping 1
2 ,

1
4 ,

1
8 ,

1
16

ImageNet 64× 64

CelebA 64× 64

55/66

Illustration multi-scale feature hierarchy

• Images obtained after re-sampling part of latent variables

• From left to right: original, keeping 1
2 ,

1
4 ,

1
8 ,

1
16

ImageNet 64× 64

CelebA 64× 64

55/66

Illustration multi-scale feature hierarchy

• Images obtained after re-sampling part of latent variables

• From left to right: original, keeping 1
2 ,

1
4 ,

1
8 ,

1
16

ImageNet 64× 64

CelebA 64× 64
55/66

Flow vs. VAE & GAN

• Flow offers stable training (6=GAN) with exact likelihood (6=VAE)

• VAE offers best likelihood on held-out data

• GAN may offer best samples, but flows can come very close

Samples from flow model trained on CelebA 256×256 [Kingma and Dhariwal, 2018]

56/66

Flow vs. VAE & GAN

• Flow offers stable training (6=GAN) with exact likelihood (6=VAE)

• VAE offers best likelihood on held-out data

• GAN may offer best samples, but flows can come very close

Samples from flow model trained on CelebA 256×256 [Kingma and Dhariwal, 2018] 56/66

Part VI

Autoregressive density estimation

57/66

Autoregressive modeling

• Avoid intractable integral over latent variables

• Consider generic factorization of joint probability

p(x1:D) = p(x1)
D∏
i=2

p(xi |x<i) (27)

with x<i = x1, . . . , xi−1

• Use deep neural net to model complex conditionals p(xi |x<i)

• Tractable exact likelihood computations

• Slow sequential one-by-one sampling of pixels

• Cannot rely on latent variables to induce dependencies

58/66

Autoregressive modeling

• Avoid intractable integral over latent variables

• Consider generic factorization of joint probability

p(x1:D) = p(x1)
D∏
i=2

p(xi |x<i) (27)

with x<i = x1, . . . , xi−1

• Use deep neural net to model complex conditionals p(xi |x<i)

• Tractable exact likelihood computations

• Slow sequential one-by-one sampling of pixels

• Cannot rely on latent variables to induce dependencies

58/66

Autoregressive modeling

• Avoid intractable integral over latent variables

• Consider generic factorization of joint probability

p(x1:D) = p(x1)
D∏
i=2

p(xi |x<i) (27)

with x<i = x1, . . . , xi−1

• Use deep neural net to model complex conditionals p(xi |x<i)

• Tractable exact likelihood computations

• Slow sequential one-by-one sampling of pixels

• Cannot rely on latent variables to induce dependencies

58/66

Autoregressive modeling

• Avoid intractable integral over latent variables

• Consider generic factorization of joint probability

p(x1:D) = p(x1)
D∏
i=2

p(xi |x<i) (27)

with x<i = x1, . . . , xi−1

• Use deep neural net to model complex conditionals p(xi |x<i)

• Tractable exact likelihood computations

• Slow sequential one-by-one sampling of pixels

• Cannot rely on latent variables to induce dependencies

58/66

Autoregressive modeling

• Avoid intractable integral over latent variables

• Consider generic factorization of joint probability

p(x1:D) = p(x1)
D∏
i=2

p(xi |x<i) (27)

with x<i = x1, . . . , xi−1

• Use deep neural net to model complex conditionals p(xi |x<i)

• Tractable exact likelihood computations

• Slow sequential one-by-one sampling of pixels

• Cannot rely on latent variables to induce dependencies

58/66

Pixel Convolutional Neural Networks [Oord et al., 2016a]

• Predict pixels one-by-one in row-major

ordering

• Translation invariant definition of

conditionals p(xi |x<i)

• Decouple number of pixels from

number of parameters

59/66

Pixel Convolutional Neural Networks [Oord et al., 2016a]

• Predict pixels one-by-one in row-major

ordering

• Translation invariant definition of

conditionals p(xi |x<i)

• Decouple number of pixels from

number of parameters

59/66

Pixel Convolutional Neural Networks [Oord et al., 2016a]

• Predict pixels one-by-one in row-major

ordering

• Translation invariant definition of

conditionals p(xi |x<i)

• Decouple number of pixels from

number of parameters

59/66

Pixel Convolutional Neural Networks

• Use limited context via CNN layers

• Only local dependencies per layer

• Adding layers increases context

• Masked convolutions to ensure

autoregressive property

• Block pixels below / right

• Blind spot filled using two feature stacks

• Efficient parallel training,

sampling remains slow

60/66

Pixel Convolutional Neural Networks

• Use limited context via CNN layers

• Only local dependencies per layer

• Adding layers increases context

• Masked convolutions to ensure

autoregressive property

• Block pixels below / right

• Blind spot filled using two feature stacks

• Efficient parallel training,

sampling remains slow

60/66

Pixel Convolutional Neural Networks

• Use limited context via CNN layers

• Only local dependencies per layer

• Adding layers increases context

• Masked convolutions to ensure

autoregressive property

• Block pixels below / right

• Blind spot filled using two feature stacks

• Efficient parallel training,

sampling remains slow

60/66

Pixel Convolutional Neural Networks

• Use limited context via CNN layers

• Only local dependencies per layer

• Adding layers increases context

• Masked convolutions to ensure

autoregressive property

• Block pixels below / right

• Blind spot filled using two feature stacks

• Efficient parallel training,

sampling remains slow

60/66

Pixel Convolutional Neural Networks

• Use limited context via CNN layers

• Only local dependencies per layer

• Adding layers increases context

• Masked convolutions to ensure

autoregressive property

• Block pixels below / right

• Blind spot filled using two feature stacks

• Efficient parallel training,

sampling remains slow

60/66

WaveNet: Autoregressive audio model

• Autoregressive CNN model in 1 dimension of raw waveform

Figure from [Kalchbrenner et al., 2017]

61/66

Multiscale autoregressive modeling [Reed et al., 2017]

• Address the inherently limited sampling

efficiency of autoregressive models

p(x1:N) =
N∏
i=1

p(xi |x<i)

• Sample image along a scale pyramid

• Pixel-CNN for base resolution, e.g. 4×4

• Autoregressive upsampling networks

• Impose group structure among pixels

• Sample independent within group

• Sample autoregressive across groups

62/66

Multiscale autoregressive modeling [Reed et al., 2017]

• Address the inherently limited sampling

efficiency of autoregressive models

p(x1:N) =
N∏
i=1

p(xi |x<i)

• Sample image along a scale pyramid

• Pixel-CNN for base resolution, e.g. 4×4

• Autoregressive upsampling networks

• Impose group structure among pixels

• Sample independent within group

• Sample autoregressive across groups

62/66

Multiscale autoregressive modeling [Reed et al., 2017]

• Address the inherently limited sampling

efficiency of autoregressive models

p(x1:N) =
N∏
i=1

p(xi |x<i)

• Sample image along a scale pyramid

• Pixel-CNN for base resolution, e.g. 4×4

• Autoregressive upsampling networks

• Impose group structure among pixels

• Sample independent within group

• Sample autoregressive across groups

62/66

Sampling pixels in groups

• Group pixels along position in 2× 2 blocks

• Group 1 given from previous resolution

• Sample remaining pixels in three steps

• Example network to predict group 2 from group 1

• Use CNN without pooling to predict/sample new columns

• Interleave pixel columns from group 1 and 2

63/66

Sampling pixels in groups

• Group pixels along position in 2× 2 blocks

• Group 1 given from previous resolution

• Sample remaining pixels in three steps

• Example network to predict group 2 from group 1

• Use CNN without pooling to predict/sample new columns

• Interleave pixel columns from group 1 and 2

63/66

Example results of upsampling real low-resolution images

• About 100× speed-up w.r.t. pixel-CNN sampling

64/66

Pixel CNN compared to VAE and GAN

• Exact likelihoods unlike VAE and GAN

• No latent variable representation learning

• Convincing samples at low resolutions, too slow for high resolution

Class-conditional pixelCNN 32×32 samples trained on ImageNet [Oord et al., 2016b] 65/66

Pixel CNN compared to VAE and GAN

• Exact likelihoods unlike VAE and GAN

• No latent variable representation learning

• Convincing samples at low resolutions, too slow for high resolution

Class-conditional pixelCNN 32×32 samples trained on ImageNet [Oord et al., 2016b] 65/66

Pixel CNN compared to VAE and GAN

• Exact likelihoods unlike VAE and GAN

• No latent variable representation learning

• Convincing samples at low resolutions, too slow for high resolution

Class-conditional pixelCNN 32×32 samples trained on ImageNet [Oord et al., 2016b] 65/66

Take home message

• Deep learning forms the basis of state of the art in many domains

• Speech recognition, image understanding, machine translation,

advertising, remote sensing, 3D shape processing, finance, medical

imaging, autonomous driving, . . .

• Supervised deep learning flourishes with more data and compute

• Lots of work models that are efficient in memory, compute, and

energy once trained (models probably running on your phone...)

• Deep learning brought unprecedented progress in generative models

• No need for labeled training data!

• Semi-supervised learning, prediction of missing data, . . .

• Generation of realistic (and varied) samples of speech, images, . . .

66/66

Take home message

• Deep learning forms the basis of state of the art in many domains

• Speech recognition, image understanding, machine translation,

advertising, remote sensing, 3D shape processing, finance, medical

imaging, autonomous driving, . . .

• Supervised deep learning flourishes with more data and compute

• Lots of work models that are efficient in memory, compute, and

energy once trained (models probably running on your phone...)

• Deep learning brought unprecedented progress in generative models

• No need for labeled training data!

• Semi-supervised learning, prediction of missing data, . . .

• Generation of realistic (and varied) samples of speech, images, . . .

66/66

Take home message

• Deep learning forms the basis of state of the art in many domains

• Speech recognition, image understanding, machine translation,

advertising, remote sensing, 3D shape processing, finance, medical

imaging, autonomous driving, . . .

• Supervised deep learning flourishes with more data and compute

• Lots of work models that are efficient in memory, compute, and

energy once trained (models probably running on your phone...)

• Deep learning brought unprecedented progress in generative models

• No need for labeled training data!

• Semi-supervised learning, prediction of missing data, . . .

• Generation of realistic (and varied) samples of speech, images, . . .

66/66

Take home message

• Deep learning forms the basis of state of the art in many domains

• Speech recognition, image understanding, machine translation,

advertising, remote sensing, 3D shape processing, finance, medical

imaging, autonomous driving, . . .

• Supervised deep learning flourishes with more data and compute

• Lots of work models that are efficient in memory, compute, and

energy once trained (models probably running on your phone...)

• Deep learning brought unprecedented progress in generative models

• No need for labeled training data!

• Semi-supervised learning, prediction of missing data, . . .

• Generation of realistic (and varied) samples of speech, images, . . .

66/66

Take home message

• Deep learning forms the basis of state of the art in many domains

• Speech recognition, image understanding, machine translation,

advertising, remote sensing, 3D shape processing, finance, medical

imaging, autonomous driving, . . .

• Supervised deep learning flourishes with more data and compute

• Lots of work models that are efficient in memory, compute, and

energy once trained (models probably running on your phone...)

• Deep learning brought unprecedented progress in generative models

• No need for labeled training data!

• Semi-supervised learning, prediction of missing data, . . .

• Generation of realistic (and varied) samples of speech, images, . . .

66/66

Take home message

• Deep learning forms the basis of state of the art in many domains

• Speech recognition, image understanding, machine translation,

advertising, remote sensing, 3D shape processing, finance, medical

imaging, autonomous driving, . . .

• Supervised deep learning flourishes with more data and compute

• Lots of work models that are efficient in memory, compute, and

energy once trained (models probably running on your phone...)

• Deep learning brought unprecedented progress in generative models

• No need for labeled training data!

• Semi-supervised learning, prediction of missing data, . . .

• Generation of realistic (and varied) samples of speech, images, . . .

66/66

Take home message

• Deep learning forms the basis of state of the art in many domains

• Speech recognition, image understanding, machine translation,

advertising, remote sensing, 3D shape processing, finance, medical

imaging, autonomous driving, . . .

• Supervised deep learning flourishes with more data and compute

• Lots of work models that are efficient in memory, compute, and

energy once trained (models probably running on your phone...)

• Deep learning brought unprecedented progress in generative models

• No need for labeled training data!

• Semi-supervised learning, prediction of missing data, . . .

• Generation of realistic (and varied) samples of speech, images, . . .

66/66

Thanks for your attention!

Jakob Verbeek

INRIA, Grenoble, France

jakob.verbeek@inria.fr

References i

Baldi, P. and Hornik, K. (1989).

Neural networks and principal component analysis: Learning from examples without local

minima.

Neural Networks.

Bishop, C. (2006).

Pattern recognition and machine learning.

Spinger-Verlag.

Chatfield, K., Lempitsky, V., Vedaldi, A., and Zisserman, A. (2011).

The devil is in the details: an evaluation of recent feature encoding methods.

In BMVC.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017).

Density estimation using real NVP.

In ICLR.

Doersch, C. (2016).

Tutorial on variational autoencoders.

arXiv:1606.05908.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., and Bengio, Y. (2014).

Generative adversarial nets.

In NeurIPS.

References ii

Hou, X., Shen, L., Sun, K., and Qiu, G. (2017).

Deep feature consistent variational autoencoder.

In WACV, volume abs/1610.00291.

Kalchbrenner, N., van den Oord, A., Simonyan, K., Danihelka, I., Vinyals, O., Graves, A.,

and Kavukcuoglu, K. (2017).

Video pixel networks.

In ICML.

Karras, T., Aila, T., and abd J. Lehtinen, S. L. (2018).

Progressive growing of GANSs for improved quality, stability, and variation.

In ICLR.

Kingma, D. and Dhariwal, P. (2018).

Glow: Generative flow with invertible 1x1 convolutions.

In NeurIPS.

Kingma, D. and Welling, M. (2014).

Auto-encoding variational Bayes.

In ICLR.

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017).

Feature pyramid networks for object detection.

In CVPR.

References iii

Lucas, T., Shmelkov, K., Alahari, K., Schmid, C., and Verbeek, J. (2019).

Adaptive density estimation for generative models.

In NeurIPS.

Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K. (2016a).

Pixel recurrent neural networks.

In ICML.

Oord, A. v. d., Kalchbrenner, N., Vinyals, O., Espeholt, L., Graves, A., and Kavukcuoglu, K.

(2016b).

Conditional image generation with PixelCNN decoders.

In NeurIPS.

Radford, A., Metz, L., and Chintala, S. (2016).

Unsupervised representation learning with deep convolutional generative adversarial

networks.

In ICLR.

Reed, S., van den Oord, A., Kalchbrenner, N., Colmenarejo, S. G., Wang, Z., Belov, D., and

de Freitas, N. (2017).

Parallel multiscale autoregressive density estimation.

In ICML.

References iv

Roweis, S. (1997).

EM Algorithms for PCA and SPCA.

In NeurIPS.

Royer, A., Kolesnikov, A., and Lampert, C. (2017).

Probabilistic image colorization.

In BMVC.

Tipping, M. E. and Bishop, C. M. (1999).

Mixtures of probabilistic principal component analysers.

Neural Computation, 11(2):443–482.

	Brief introduction to (deep) learning
	Unsupervised deep learning
	Generative adversarial networks
	Variational Autoencoders
	Deep invertible transformations
	Autoregressive density estimation
	Appendix

