Instance-level recognition

1) Local invariant features
2) Matching and recognition with local features
3) Efficient visual search

4) Very large scale indexing



Matching of descriptors




Matching and 3D reconstruction

« Establish correspondence between two (or more) images
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[Schaffalitzky and Zisserman ECCV 2002]



Matching and 3D reconstruction

« Establish correspondence between two (or more) images
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Building Rome in a Day

57,845 downloaded images, 11,868 registered images
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Object recognition

« Establish correspondence between the target image and
(multiple) images in the model database

[D. Lowe, 1999]



Visual search

« Establish correspondence between the query image and
all images from the database depicting the same object or
scene
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Matching of descriptors

* Find the nearest neighbor in the second image for each
descriptor, for example SIFT

Model (query) image 128D descriptor Target image
space
XJ - R128 X; € R128

Need to solve some variant of the “nearest neighbor problem” for all feature vectors,
X, € R128 in the query image:

Vj NN(j) = arg mz.in ||x; — x5,

where, X; € R128, are features in the target image.



Matching of descriptors

* Pruning strategies
— Ratio with respect to the second best match (d1/d2 << 1) [Lowe, '04]
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Model (query) image 128D descriptor Target image
space

X; € R128 X; € R128

If the 2" nearest neighbour is much further than the 15t nearest neighbour, the
match is more “unique” or discriminative.

Measure this by the ratio: r = dyy / donn

ris between 0 and 1
r is small the match is more unique.



Matching of descriptors

* Pruning strategies
— Ratio with respect to the second best match (d1/d2 << 1)
— Local neighborhood constraints (semi-local constraints)
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Neighbors of the point have to match and angles have to correspond.
Note that in practice not all neighbors have to be matched correctly.



Matching of descriptors

* Pruning strategies
— Ratio with respect to the second best match (d1/d2 << 1)
— Local neighborhood constraints (semi-local constraints)
— Backwards matching (matches are NN in both directions)



Matching of descriptors

* Pruning strategies
— Ratio with respect to the second best match (d1/d2 << 1)
— Local neighborhood constraints (semi-local constraints)
— Backwards matching (matches are NN in both directions)

« Geometric verification with global constraint

— All matches must be consistent with a global geometric
transformation

— However, there are many incorrect matches

— Need to estimate simultaneously the geometric transformation and
the set of consistent matches



Geometric verification with global constraint

« Example of a geometric verification
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Matches consistent with an affine
transformation

Tentative matches



Examples of global constraints

1 view and known 3D model.
« Consistency with a (known) 3D model.

2 views
« Epipolar constraint ;
« 2D transformations
» Similarity transformation =
* Affine transformation = ﬁ

* Projective transformation = Q

N-views O |
Are images consistent with a 3D model?



Modeling projection

Projection equation:  (x.y.z) = (f %f %)



Homogeneous coordinates

(x.3.2) = (f=.f )

|s this a linear transformation?

* no—division by z is nonlinear

Trick: add one more coordinate:
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(z,y) =
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coordinates
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Slide by Steve Seitz



Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

* Unit aspect ratio * No rotation
+ Optical center at (0,0) *Cameraat(0,0,0) K
* No skew vl o]
u]l [f 0 0] 0
|
x=K[I 0]|X=u|v/={o 7 o0
1| [0_0_110

Shide Credit: Saverese




Remove assumption: known optical center

Intrinsic Assumptions Extrinsic Assumptions

* Unit aspect ratio * No rotation
« No skew » Camera at (0,0,0)
------- | ¥
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Remove assumption: square pixels

Intrinsic Assumptions Extrinsic Assumptions
* No skew * No rotation
« Camera at (0,0,0)

u] fa 0 wuy! O]

X = K[I 0] =) w|v io B vyl 0




Remove assumption: non-skewed pixels

Intrinsic Assumptions

x=K[I 0|x=

Extrinsic Assumptions
* No rotation
« Camera at (0,0,0)
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Degrees of freedom
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Epipolar geometry
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Epipolar constraint: Uncalibrated case

x"Fx=0 Fundamental matrix

 F x is the epipolar line associated with x (I' = F X)

« FTx' is the epipolar line associated with x' (I' = Fx)
« Fe=0 and F'e'=0

« Fis singular (rank two)

* F has seven degrees of freedom



Plane projective transformations

Choose the world coordinate system such that
the plane of the points has zero z coordinate.
Then the 3 x 4 matrix P reduces to

X
x] P11 P12 P13 P14 y P11 P12 P14
T2 | = | p21 P22 P23 P24 o | = |P21 P22 P24
3 P31 P32 P33 P3a 1 P31 P32 P34

which is a 3 x 3 matrix representing a general
plane to plane projective transformation.

- X



Projective transformations continued

: A
) hi1 hi2 hiz | [ o1
o | = | h21 ha22 h23 T2 I
A

h.31 h32 h33 £r3
or x' = Hx, where H is a 3 x 3 non-singular _ .
homogeneous matrix. yd b

[P

* This is the most general transformation between the world
and image plane under imaging by a perspective camera.

« |t is often only the 3 x 3 form of the matrix that is important in
establishing properties of this transformation.

* A projective transformation is also called a ““homography"
and a "collineation”,

* H has 8 degrees of freedom.



Images of Planes

Projective transformations between images induced by a plane
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* H can be computed from the correspondence of four points on
the plane



Matching of descriptors

« Geometric verification with global constraint

— All matches must be consistent with a global geometric
transformation

— However, there are many incorrect matches

— Need to estimate simultaneously the geometric transformation and
the set of consistent matches

* Robust estimation of global constraints

— RANSAC (RANdom Sampling Consensus) [Fishler&Bolles'81]
— Hough transform [Lowe’04]



RANSAC: Example of robust line estimation

Fit a line to 2D data containing outliers

There are two problems
1. a line fit which minimizes perpendicular distance

2. a classification into inliers (valid points) and outliers

Solution: use robust statistical estimation algorithm RANSAC
(RANdom Sample Consensus) [Fishler & Bolles, 1981]

Slide credit; A. Zisserman



RANSAC robust line estimation

Repeat
1. Select random sample of 2 points
2. Compute the line through these points

3. Measure support (number of points within threshold
distance of the line)

Choose the line with the largest number of inliers

« Compute least squares fit of line to inliers (regression)

Slide credit; A. Zisserman



Slide credit: O. Chum



Slide credit: O. Chum



Slide credit: O. Chum



Slide credit: O. Chum



Slide credit: O. Chum
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Slide credit: O. Chum
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Slide credit: O. Chum
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Algorithm RANSAC

* Robust estimation with RANSAC of a homography

— Repeat

» Select 4 point matches
« Compute 3x3 homography

» Measure support (number of inliers within threshold, i.e. d?, <se; < t)
= d(x,H 'x')? + d(x', Hx)?

2
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— Choose (H with the largest number of inliers)

i ,
nmage =

— Re-estimate H with all inliers




Matching of descriptors

« Geometric verification with global constraint

— All matches must be consistent with a global geometric
transformation

— However, there are many incorrect matches

— Need to estimate simultaneously the geometric transformation and
the set of consistent matches

* Robust estimation of global constraint

— RANSAC (RANdom Sampling Consensus) [Fishler&Bolles'81]
— Hough transform [Lowe’04]



Strategy 2: Hough transform

* General outline:
— Discretize parameter space into bins

— For each feature point in the image, put a vote in every bin in the
parameter space that could have generated this point

— Find bins that have the most votes

©)
©)
©)

Image space Hough parameter space

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int.
Conf. High Energy Accelerators and Instrumentation, 1959



Hough transform for lines

Mapping

Line

Figure 1: Mapping of one unique line to the Hough space.



Hough transform for lines

20 30 4z S0 &0 70 80

(a) Point pyg. (b) All possible lines through pg repre-
sented in the Hough space.



Hough transform for lines

10 20 30 42 50 80 ' eg -80 -60 -40 -20 o 20 =2 &0 80
(a) Points py and p,. (b) All possible lines through py and/or

p represented in the Hough space.



Hough transform for object recognition

Suppose our features are scale- and rotation-covariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

Target im

e

=

David G. Lowe. “Distinctive image features from scale-
Invariant keypoints”, IJCV 60 (2), pp. 91-110, 2004.



Hough transform for object recognition

Suppose our features are scale- and rotation-covariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

« Of course, a hypothesis obtained from a single match is unreliable

« Solution: Coarsely quantize the transformation space. Let each

match vote for its hypothesis in the quantized space.

David G. Lowe. “Distinctive image features from scale-
Invariant keypoints”, IJCV 60 (2), pp. 91-110, 2004.



Similarity transformation is specified by four parameters:
scale factor s, rotation 8, and translations t, and t,.

! T t
= sR(0 + 1,” )
yl ( ) y t’y

— — — o h— ol

Recall, each SIFT detection has: position (x;, y;), scale s,
and orientation 6.

How many correspondences are needed to compute
similarity transformation?



Compute similarity transformation from a single
correspondence:

(Xas YarSas 04) <> (X4, Vi, Sas O)
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t, =X, —SR(O)X,
ty = y’A_SR(‘g)yA



Basic algorithm outline

1.

2.

H: 4D-accumulator array
Initialize accumulator H (only 2-d shown here)

to all zeros

For each tentative match
compute transformation tx
hypothesis: tx, ty, s, 6
H(tx,ty,s,0) = H(tx,ty,s,0) + 1
end
end ty

Find all bins (tx,ty,s,0) where H(tx,ty,s,0) has at least
three votes

Correct matches will consistently vote for the same
transformation while mismatches will spread votes.

Cost: Linear scan through the matches (step 2),
followed by a linear scan through the accumulator
(step 3).



Comparison

Hough Transform

«Advantages

— Can handle high percentage of
outliers (>95%)

— Extracts groupings from clutter in
linear time

*Disadvantages
— Quantization issues

— Only practical for small number of
dimensions (up to 4)

s Improvements available
— Probabilistic Extensions
— Continuous Voting Space

— Can be generalized to arbitrary
shapes and objects

RANSAC

«Advantages

— General method suited to large range
of problems

— [Easy to implement
— “Independent” of number of dimensions

Disadvantages

— Basic version only handles moderate
number of outliers (<50%)

Many variants available, e.g.

— PROSAC: Progressive RANSAC
[ChumO5]

— Preemptive RANSAC [Nister05]



Summary

Finding correspondences in images is useful for
* Image matching, panorama stitching
« Object recognition
« Large scale image search: next part of the lecture

Beyond local point matching
« Semi-local relations
» Global geometric relations:

I
 Epipolar constraint x 'Fx=0

- 3D constraint (when 3D model is available) |X = PX

2D tnfs: Similarity / Affine / Homography x = Hx
 Algorithms:

« RANSAC

* Hough transform




