
Instance-level recognition

1) Local invariant features

2) Matching and recognition with local features

3) Efficient visual search

Visual search

…

Image search system for large datasets

Image search
system

ranked image list

Large image dataset
(one million images or more)

query

• Issues for very large databases
• to reduce the query time
• to reduce the storage requirements
• with minimal loss in retrieval accuracy

Two strategies

1. Efficient approximate nearest neighbor search on local
feature descriptors

2. Quantize descriptors into a “visual vocabulary” and use
efficient techniques from text retrieval
(Bag-of-words representation)

Images

Local features invariant
descriptor

vectors

1. Compute local features in each image independently
2. Describe each feature by a descriptor vector
3. Find nearest neighbour vectors between query and database
4. Rank matched images by number of (tentatively) corresponding regions
5. Verify top ranked images based on spatial consistency

Strategy 1: Efficient approximate NN search

invariant
descriptor

vectors

Voting algorithm

local characteristics
vector of

()
1I 1I nI2I2I

Voting algorithm

1I 1I nI2I2I

1 1 02 1 1

I is the corresponding model image1

2 1 1

Finding nearest neighbour vectors

Establish correspondences between query image and images in the database by
nearest neighbour matching on SIFT vectors

128D descriptor
space

Model image Image database

Solve following problem for all feature vectors, , in the query image:

where, , are features from all the database images.

Quick look at the complexity of the NN-search

N … images
M … regions per image (~1000)
D … dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example:
• Matching two images (N=1), each having 1000 SIFT descriptors

Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C)
• Memory footprint: 1000 * 128 = 128kB / image

N = 1,000 … ~7min (~100MB)
N = 10,000 … ~1h7min (~ 1GB)
…
N = 107 ~115 days (~ 1TB)
…
All images on Facebook:
N = 1010 … ~300 years (~ 1PB)

of images CPU time Memory req.

Nearest-neighbor matching

Solve following problem for all feature vectors, xj, in the query image:

where xi are features in database images.

Nearest-neighbour matching is the major computational bottleneck
• Linear search performs dn operations for n features in the

database and d dimensions
• No exact methods are faster than linear search for d>10
• Approximate methods can be much faster, but at the cost of

missing some correct matches

Large scale object/scene recognition

• Each image described by approximately 1000 descriptors
– 109 descriptors to index for one million images!

• Database representation in RAM:
– Size of descriptors : 1 TB, search+memory intractable

Image search
system

ranked image list

Image dataset:
> 1 million images

query

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

querying

sparse frequency vector

centroids
(visual words)

Inverted
file

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

• “visual words”:
– 1 “word” (index) per local

descriptor
– only images ids in inverted file
 8 GB fits!

[Chum & al. 2007]

Indexing text with inverted files

Need to map feature descriptors to “visual words”

Inverted file: Term List of hits (occurrences in documents)

People [d1:hit hit hit], [d4:hit hit] …

Common [d1:hit hit], [d3: hit], [d4: hit hit hit] …

Sculpture [d2:hit], [d3: hit hit hit] …

Document
collection:

[Sivic and Zisserman, ICCV 2003]

Vector quantize descriptors
- Compute SIFT features from a subset of images
- K-means clustering (need to choose K)

Build a visual vocabulary

128D descriptor space 128D descriptor space

K-means clustering

Minimizing sum of squared Euclidean distances
between points xi and their nearest cluster centers

Algorithm:
• Randomly initialize K cluster centers
• Iterate until convergence:
 Assign each data point to the nearest center
 Recompute each cluster center as the mean of all points

assigned to it

Local minimum, solution dependent on initialization

Initialization important, run several times, select best

Visual words

Example: each group
of patches belongs to
the same visual word

16

Figure from Sivic & Zisserman, ICCV 2003

128D descriptor space

Samples of visual words (clusters on SIFT descriptors):

Samples of visual words (clusters on SIFT descriptors):

Sivic and Zisserman, ICCV 2003
Visual words: quantize descriptor space

Nearest neighbour matching

128D descriptor
space

Image 1 Image 2

• expensive to
do for all frames

Sivic and Zisserman, ICCV 2003

Nearest neighbour matching

128D descriptor
space

Image 1 Image 2

Vector quantize descriptors

128D descriptor
space

Image 1 Image 2

42

5

425 5

42

• expensive to
do for all frames

Visual words: quantize descriptor space

Sivic and Zisserman, ICCV 2003

Nearest neighbour matching

128D descriptor
space

Image 1 Image 2

Vector quantize descriptors

128D descriptor
space

Image 1 Image 2

42

5

425 5

42

New image

• expensive to
do for all frames

Visual words: quantize descriptor space

Sivic and Zisserman, ICCV 2003

Nearest neighbour matching

128D descriptor
space

Image 1 Image 2

Vector quantize descriptors

128D descriptor
space

Image 1 Image 2

42

5

425 5

42

New image

42

• expensive to
do for all frames

Visual words: quantize descriptor space

Vector quantize the descriptor space (SIFT)

The same visual word

542

Image Colelction of visual words

Representation: bag of (visual) words
Visual words are ‘iconic’ image patches or fragments
• represent their frequency of occurrence
• but not their position

Offline: Assign visual words and compute
histograms for each image

Normalize
patch

Detect patches

Compute SIFT
descriptor

542

Represent image as a
sparse histogram of visual
word occurrences

2
0
0
1
0
1
…

Find nearest
cluster center

Offline: create an index

Image credit: A. Zisserman K. Grauman, B. Leibe

Word
number

Posting
list

• For fast search, store a “posting list” for the dataset

• This maps visual word occurrences to the images they occur in

(i.e. like the “book index”)

At run time

Image credit: A. Zisserman K. Grauman, B. Leibe

Word
number

Posting
list

• User specifies a query region

• Generate a short-list of images using visual words in the region

1. Accumulate all visual words within the query region

2. Use “book index” to find other images with these words

3. Compute similarity for images sharing at least one word

At run time

Image credit: A. Zisserman K. Grauman, B. Leibe

• Score each image by the (weighted) number of common
visual words (tentative correspondences)

• Worst case complexity is linear in the number of images N

• In practice, it is linear in the length of the lists (<< N)

Word
number

Posting
list

Another interpretation:
Bags of visual words

Summarize entire image based
on its distribution (histogram)
of visual word occurrences

Slide: Grauman&Leibe, Image: L. Fei-Fei

Hofmann 2001

...1 00 2
t

d =

Analogous to bag of words
representation commonly used
for text documents

For a vocabulary of size K, each image is represented by a K-vector

where ti is the number of occurrences of visual word i

Images are ranked by the normalized scalar product between the query
vector vq and all vectors in the database vd:

Another interpretation: the bag-of-visual-words model

Scalar product can be computed efficiently using inverted file

Bag-of-features [Sivic&Zisserman’03]

Harris-Hessian-Laplace
regions + SIFT descriptors

Bag-of-features
processing

+tf-idf weighting

querying

sparse frequency vector

centroids
(visual words)

Inverted
file

ranked image
short-list

Set of SIFT
descriptors

Query
image

Geometric
verification

Re-ranked
list

[Chum & al. 2007]

1

2

3

3

4

5

Results

Geometric verification

Use the position and shape of the underlying features
to improve retrieval quality

Both images have many matches – which is correct?

Geometric verification

• Remove outliers, many matches are incorrect

• Estimate geometric transformation

• Robust strategies
– RANSAC
– Hough transform

Geometric verification

We can measure spatial consistency between the query
and each result to improve retrieval quality, re-rank

Many spatially consistent
matches – correct result

Few spatially consistent
matches – incorrect

result

Geometric verification

Gives localization of the object

Geometric verification – example

1. Query

3. Spatial verification (re-rank on # of inliers)

…

2. Initial retrieval set (bag of words model)

Evaluation dataset: Oxford buildings

All Soul's

Ashmolean

Balliol

Bodleian

Thom
Tower

Cornmarket

Bridge of
Sighs

Keble

Magdalen

University
Museum

Radcliffe
Camera

 Ground truth obtained for 11 landmarks
 Evaluate performance by mean Average Precision

Measuring retrieval performance: Precision - Recall

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n

all images

returned
images

relevant
images

• Precision: % of returned images that
are relevant

• Recall: % of relevant images that are
returned

Average Precision

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

recall

pr
ec

is
io

n • A good AP score requires both high
recall and high precision

• Application-independentAP

Performance measured by mean Average Precision (mAP)
over 55 queries on 100K or 1.1M image datasets

Query images Prec.

Rec.

• high precision at low recall (like google)

• variation in performance over queries

• does not retrieve all instances

Obtaining visual words is like a sensor measuring the image

“noise” in the measurement process means that some visual
words are missing or incorrect, e.g. due to
• Missed detections
• Changes beyond built in invariance
• Quantization effects

Consequence: Visual word in query is missing

Why aren’t all objects retrieved?

Clustered and Clustered and
quantized to
visual words

sparse frequency vector

Set of SIFT
descriptorsquery image

[Lowe04, Mikolajczyk07] [Sivic03, Philbin07]

descriptors

Hessian-Affine
regions + SIFT

descriptors

1. Query expansion
2. Better quantization

Query Expansion in text

In text :
• Reissue top n responses as queries
• Blind relevance feedback
• Danger of topic drift

In vision:
• Reissue spatially verified image regions as queries

Automatic query expansion

Visual word representations of two images of the same
object may differ (due to e.g. detection/quantization noise)
resulting in missed returns

Initial returns may be used to add new relevant visual words
to the query

Strong spatial model prevents ‘drift’ by discarding false
positives

[Chum, Philbin, Sivic, Isard, Zisserman, ICCV’07;

Chum, Mikulik, Perdoch, Matas, CVPR’11]

Visual query expansion - overview
1. Original query

3. Spatial verification

4. New enhanced query

…

2. Initial retrieval set

5. Additional retrieved images

Query Image Originally retrieved image Originally not retrieved

Query Expansion

Query Expansion

Query Expansion

Query Expansion

Query Expansion

…

New expanded query is formed as

• the average of visual word vectors of spatially verified returns

• only inliers are considered

• regions are back-projected to the original query image

Spatially verified retrievals with matching regions overlaid

New expanded query

Query Image

Query image Originally retrieved Retrieved only
after expansion

Query Expansion

Query
image

Expanded results (improved)

Original results

Prec.

Prec.

Rec.

Rec.

Quantization errors

Typically, quantization has a significant impact on the final
performance of the system [Sivic03,Nister06,Philbin07]

Quantization errors split features that should be grouped
together and confuse features that should be separated

Voronoi
cells

Visual words – approximate NN search

• Map descriptors to words by quantizing the feature space
– Quantize via k-means clustering to obtain visual words
– Assign descriptors to closest visual words

• Bag-of-features as approximate nearest neighbor search

Bag-of-features matching function

Descriptor matching with k-nearest neighbors

where q(x) is a quantizer, i.e., assignment to a visual word and
δa,b is the Kronecker operator (δa,b=1 iff a=b)

Approximate nearest neighbor search evaluation
•ANN algorithms usually returns a short-list of nearest neighbors

– this short-list is supposed to contain the NN with high probability
– exact search may be performed to re-order this short-list

•Proposed quality evaluation of ANN search: trade-off between
– NN recall = probability that the NN is in this list

against
– NN precision = proportion of vectors in the short-list

- the lower this proportion
- the more information we have about the vector
- the lower the complexity if we perform exact search on the short-list

•ANN search algorithms usually have some parameters to handle this trade-off

ANN evaluation of bag-of-features
•ANN algorithms
returns a list of
potential neighbors

•NN recall
= probability that the
NN is in this list

•NN precision:
= proportion of vectors
in the short-list

•In BOF, this trade-off
is managed by the
number of clusters k

N
N

 r
ec

al
l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1
rate of points retrieved

k=100

200

500

1000

2000

5000
10000

20000
30000

50000

BOW

20K visual word: false matches

200K visual word: good matches missed

Problem with bag-of-features

• The matching performed by BOF is weak
– for a “small” visual dictionary: too many false matches
– for a “large” visual dictionary: many true matches are missed

• No good trade-off between “small” and “large” !
– either the Voronoi cells are too big
– or these cells can’t absorb the descriptor noise
 intrinsic approximate nearest neighbor search of BOF is not

sufficient
– possible solutions
 soft assignment [Philbin et al. CVPR’08]
 additional short codes [Jegou et al. ECCV’08]

Beyond bags-of-visual-words

• Soft-assign each descriptor to multiple cluster centers
[Philbin et al. 2008, Van Gemert et al. 2008]

A: 0.1
B: 0.5
C: 0.4

B: 1.0 Hard Assignment

Soft Assignment

Beyond bag-of-visual-words

Hamming embedding [Jegou et al. 2008]

• Standard quantization using bag-of-visual-words
• Additional localization in the Voronoi cell by a binary

signature

Hamming Embedding

Representation of a descriptor x
– Vector-quantized to q(x) as in standard BOF
+ short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

where h(a,b) Hamming distance

Hamming Embedding

•Nearest neighbors for Hamming distance those for Euclidean distance
 a metric in the embedded space reduces dimensionality curse effects

•Efficiency
– Hamming distance = very few operations
– Fewer random memory accesses: 3 x faster that BOF with same

dictionary size!

Hamming Embedding

•Off-line (given a quantizer)
– draw an orthogonal projection matrix P of size db × d

 this defines db random projection directions
– for each Voronoi cell and projection direction, compute the median

value for a training set

•On-line: compute the binary signature b(x) of a given
descriptor

– project x onto the projection directions as z(x) = (z1,…zdb)
– bi(x) = 1 if zi(x) is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ECCV’08, ICJV’10]

Hamming neighborhood

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ra
te

 o
f N

N
 re

tri
ev

ed
 (r

ec
al

l)

rate of cell points retrieved

8 bits
16 bits
32 bits
64 bits

128 bits

Trade-off between memory
usage and accuracy

More bits yield higher
accuracy

In practice, 64 bits (8 byte)

ANN evaluation of Hamming Embedding
0.7

N
N

 r
ec

al
l

0

0.1

0.2

0.3

0.4

0.5

0.6

1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

rate of points retrieved

k=100

200

500

1000

2000

5000
10000

20000
30000

50000

ht=16

18

20

22

HE+BOW
BOW

32 28
24 compared to BOW: at least

10 times less points in the
short-list for the same level

of NN recall

Hamming Embedding
provides a much better

trade-off between recall and
ambiguity removal

Matching points - 20k word vocabulary

201 matches 240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary
69 matches 35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches 8 matches

10x more matches with the corresponding image!

INRIA holidays dataset

• Evaluation for the INRIA holidays dataset, 1491 images
– 500 query images + 991 annotated true positives
– Most images are holiday photos of friends and family

• 1 million & 10 million distractor images from Flickr
• Vocabulary construction on a different Flickr set

• Evaluation metric: mean average precision (in [0,1],
bigger = better)
– Average over precision/recall curve

Holiday dataset – example queries

Dataset : Venice Channel

Query

Base 4Base 3

Base 2Base 1

Dataset : San Marco square

Query Base 1 Base 3Base 2

Base 9Base 8

Base 4 Base 5 Base 7Base 6

Example distractors - Flickr

Experimental evaluation
• Evaluation on our holidays dataset, 500 query images, 1 million distracter

images
• Metric: mean average precision (in [0,1], bigger = better)

Average query time (4 CPU cores)

Compute descriptors 880 ms

Quantization 600 ms

Search – baseline 620 ms

Search – WGC 2110 ms

Search – HE 200 ms

Search – HE+WGC 650 ms
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000000100000100001000

m
A

P

database size

baseline
WGC

HE
WGC+HE

+re-ranking

Results – Venice Channel

Base 1 Flickr

Flickr Base 4

Query

Image retrieval - products
• Search for places and particular objects

– For example on a smart phone

Courtesy Google

Google image search

