Bag-of-features for category classification

Cordelia Schmid

Category recognition

• Image classification: assigning a class label to the image

Category recognition

• Image classification: assigning a class label to the image

Car: present Cow: present Bike: not present Horse: not present

• Object localization: define the location and the category

Category recognition

• Image classification: assigning a class label to the image

• Supervised scenario: given a set of training images

Image classification

• Given

Positive training images containing an object class

Negative training images that don't

• Classify

A test image as to whether it contains the object class or not

Bag-of-features for image classification

- Origin: texture recognition
 - Texture is characterized by the repetition of basic elements or *textons*

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001 Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Texture recognition

Bag-of-features for image classification

[Csurka et al. WS'2004], [Nowak et al. ECCV'06], [Zhang et al. IJCV'07]

Bag-of-features for image classification

Step 1: feature extraction

- Scale-invariant image regions + SIFT
 - Affine invariant regions give "too" much invariance
 - Rotation invariance for many realistic collections "too" much invariance
- Dense descriptors
 - Improve results in the context of categories (for most categories)
 - Interest points do not necessarily capture "all" features
- Color-based descriptors

Dense features

- Multi-scale dense grid: extraction of small overlapping patches at multiple scales -Computation of the SIFT descriptor for each grid cells

-Exp.: Horizontal/vertical step size 3-6 pixel, scaling factor of 1.2 per level

Bag-of-features for image classification

Examples for visual words

Airplanes	
Motorbikes	
Faces	
Wild Cats	
Leaves	
People	
Bikes	

- Cluster descriptors
 - K-means
 - Gaussian mixture model
- Assign each visual word to a cluster
 - Hard or soft assignment
- Build frequency histogram

Gaussian mixture model (GMM)

• Mixture of Gaussians: weighted sum of Gaussians

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \, \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where
$$\mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma}) = (2\pi)^{(-d/2)} |\boldsymbol{\Sigma}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

Hard or soft assignment

- K-means \rightarrow hard assignment
 - Assign to the closest cluster center
 - Count number of descriptors assigned to a center
- Gaussian mixture model \rightarrow soft assignment
 - Estimate distance to all centers
 - Sum over number of descriptors
- Represent image by a frequency histogram

Image representation

- each image is represented by a vector, typically 1000-4000 dimension, normalization with L2 norm
- fine grained represent model instances
- coarse grained represent object categories

Bag-of-features for image classification

Step 3: Classification

• Learn a decision rule (classifier) assigning bag-offeatures representations of images to different classes

Training data

Vectors are histograms, one from each training image

Train classifier, e.g. SVM

Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data point

from Duda et al.

Voronoi partitioning of feature space for 2-categories and 2-D data

k-Nearest Neighbors

- For a new point, find the k closest points from the training data
- Labels of the k points "vote" to classify

Nearest Neighbor Classifier

- For each test data point : assign label of nearest training data point
- K-nearest neighbors: labels of the k nearest points, vote to classify
- Works well provided there is lots of data and the distance function is good

Linear classifiers

• Find linear function (*hyperplane*) to separate positive and negative examples

Linear classifiers - margin

Support vector machines

• Find hyperplane that maximizes the *margin* between the positive and negative examples

 $\mathbf{x}_{i} \text{ positive } (y_{i} = 1): \qquad \mathbf{x}_{i} \cdot \mathbf{w} + b \ge 1$ $\mathbf{x}_{i} \text{ negative } (y_{i} = -1): \qquad \mathbf{x}_{i} \cdot \mathbf{w} + b \le -1$

For support vectors: $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$

Data not perfectly separable, introduction of slack variable $y^{(i)}(w^T x^{(i)} + b) \ge 1 - \xi_i$

Kernels for bags of features

- Hellinger kernel $K(h_1, h_2) = \sum_{i=1}^N \sqrt{h_1(i)h_2(i)}$
- Histogram intersection kernel $I(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i))$
- Generalized Gaussian kernel $K(h_1, h_2) = \exp\left(-\frac{1}{A}D(h_1, h_2)^2\right)$
- *D* can be Euclidean distance, χ^2 distance etc.

$$D_{\chi^2}(h_1, h_2) = \sum_{i=1}^{N} \frac{(h_1(i) - h_2(i))^2}{h_1(i) + h_2(i)}$$

Multi-class SVMs

- Mutil-class formulations exist, but they are not widely used in practice. It is more common to obtain multi-class SVMs by combining two-class SVMs in various ways.
- One versus all:
 - Training: learn an SVM for each class versus the others
 - Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value
- One versus one:
 - Training: learn an SVM for each pair of classes
 - Testing: each learned SVM "votes" for a class to assign to the test example

Why does SVM learning work?

• Learns foreground and background visual words

foreground words - high weight

background words - low weight

Illustration

Localization according to visual word probability

foreground word more probable

background word more probable

Bag-of-features for image classification

• Excellent results in the presence of background clutter

Examples for misclassified images

Books- misclassified into faces, faces, buildings

Buildings- misclassified into faces, trees, trees

Cars- misclassified into buildings, phones, phones

Bag of visual words summary

- Advantages:
 - largely unaffected by position and orientation of object in image
 - fixed length vector irrespective of number of detections
 - very successful in classifying images according to the objects they contain

- Disadvantages:
 - no explicit use of configuration of visual word positions
 - poor at localizing objects within an image
 - no explicit image understanding

Evaluation of image classification (object localization)

- PASCAL VOC [05-12] datasets
- PASCAL VOC 2007
 - Training and test dataset available
 - Used to report state-of-the-art results
 - Collected January 2007 from Flickr
 - 500 000 images downloaded and random subset selected
 - 20 classes manually annotated
 - Class labels per image + bounding boxes
 - 5011 training images, 4952 test images
 - Exhaustive annotation with the 20 classes
- Evaluation measure: average precision

PASCAL 2007 dataset

Bus

Cow

PASCAL 2007 dataset

ImageNet: large-scale image classification dataset

IMAGENET has 14M images from 22k classes

Standard Subsets

- ImageNet Large Scale Visual Recognition Challenge 2010 (ILSVRC)
 - 1000 classes and 1.4M images
- ImageNet10K dataset
 - 10184 classes and ~ 9 M images

(a) Star Anise (92.45%)

(e) European gallinule (15.00%)

(b) Geyser (85.45%)

(f) Sea Snake (10.00 %)

(g) Paintbrush (4.68 %)

Evaluation

- Average Precision [TREC] averages precision over the entire range of recall
 - Curve interpolated to reduce influence of "outliers"

- A good score requires both high recall and high precision
- Application-independent
- Penalizes methods giving high precision but low recall

Spatial pyramid matching

- Add spatial information to the bag-of-features
- Perform matching in 2D image space

[Lazebnik, Schmid & Ponce, CVPR 2006]

Related work

Similar approaches:

Subblock description [Szummer & Picard, 1997]

SIFT [Lowe, 1999]

GIST [Torralba et al., 2003]

Spatial pyramid representation

Locally orderless representation at several levels of spatial resolution

Spatial pyramid representation

Locally orderless representation at several levels of spatial resolution

Spatial pyramid representation

Scene dataset [Labzenik et al.'06]

4385 images15 categories

Scene classification

mountain*

forest*

suburb

L	Single-level	Pyramid
0(1x1)	72.2±0.6	
1(2x2)	77.9±0.6	79.0 ±0.5
2(4x4)	79.4±0.3	81.1 ±0.3
3(8x8)	77.2±0.4	80.7 ±0.3

Category classification – CalTech101

L	Single-level	Pyramid
0(1x1)	41.2±1.2	
1(2x2)	55.9±0.9	57.0 ±0.8
2(4x4)	63.6±0.9	64.6 ±0.8
3(8x8)	60.3±0.9	64.6 ±0.7

CalTech101

Easiest and hardest classes

minaret (97.6%)

cougar body (27.6%)

windsor chair (94.6%)

beaver (27.5%)

okapi (87.8%)

crocodile (25.0%)

ant (25.0%)

- Sources of difficulty: ullet
 - Lack of texture
 - Camouflage
 - Thin, articulated limbs —
 - Highly deformable shape

Evaluation BoF – spatial

Image classification results on PASCAL'07 train/val set

(SH, Lap, MSD) x (SIFT,SIFTC)	AP
spatial layout	
1	0.53
2x2	0.52
3x1	0.52
1,2x2,3x1	0.54

Spatial layout not dominant for PASCAL'07 dataset Combination improves average results, i.e., it is appropriate for some classes

Discussion

- Summary
 - Spatial pyramid representation: appearance of local image patches + coarse global position information
 - Substantial improvement over bag of features
 - Depends on the similarity of image layout
- Recent extensions
 - Flexible, object-centered grid
 - Shape masks [Marszalek'12] => additional annotations
 - Weakly supervised localization of objects
 - [Russakovsky et al.'12, Oquab'14, Cinbis'16]

Extensions

- Improved aggregation schemes, such as the Fisher vector, Perronnin et al., ECCV'10
 - More discriminative descriptor, power normalization, linear SVM
- ImageNet classification with deep convolutional neural networks, Krizhevsky, Sutskever, Hinton, NIPS 2012

Fisher vector

- Use a Gaussian Mixture Model as vocabulary
- Statistical measure of the descriptors of the image w.r.t the GMM
- Derivative of likelihood w.r.t. GMM parameters

GMM parameters:

- w_i weight
- μ_i mean
- σ_i co-variance (diagonal)

Translated cluster \rightarrow large derivative on μ_i for this component

Fisher vector image representation

 Mixture of Gaussian/ k-means stores nbr of points per cell

- Fisher vector adds 1st & 2nd order moments
 - More precise description of regions assigned to cluster
 - Fewer clusters needed for same accuracy
 - Per cluster store: mean and variance of data in cell
 - Representation 2D times larger, at same computational cost
 - High dimensional, robust representation

Fisher vector image representation

 $X = \{x_t, t = 1 \dots T\}$ is the set of T i.i.d. D-dim local descriptors (e.g. SIFT) extracted from an image:

 $u_{\lambda}(x) = \sum_{i=1}^{K} w_i u_i(x)$ is a Gaussian Mixture Model (GMM) with parameters $\lambda = \{w_i, \mu_i, \Sigma_i, i = 1 \dots N\}$ trained on a large set of local descriptors: a visual vocabulary

FV formulas:

$$\mathcal{G}_{\mu,i}^{X} = \frac{1}{T\sqrt{w_i}} \sum_{t=1}^{T} \gamma_t(i) \left(\frac{x_t - \mu_i}{\sigma_i}\right)$$
$$\mathcal{G}_{\sigma,i}^{X} = \frac{1}{T\sqrt{2w_i}} \sum_{t=1}^{T} \gamma_t(i) \left[\frac{(x_t - \mu_i)^2}{\sigma_i^2} - 1\right]$$

 $\gamma_t(i)$ = soft-assignment of patch x_t to Gaussian i

Fisher Vector = concatenation of per-Gaussian gradient vectors

Relation to BOF

FV formulas:

$$\begin{aligned} \mathcal{G}_{\mu,i}^{X} &= \frac{1}{T\sqrt{w_i}} \sum_{t=1}^{T} \gamma_t(i) \left(\frac{x_t - \mu_i}{\sigma_i}\right) \\ \mathcal{G}_{\sigma,i}^{X} &= \frac{1}{T\sqrt{2w_i}} \sum_{t=1}^{T} \gamma_t(i) \left[\frac{(x_t - \mu_i)^2}{\sigma_i^2} - 1\right] \end{aligned}$$

Soft BOV formula:

 $\frac{1}{T}\sum_{t=1}^{T}\gamma_t(i)$

Like the (original) BOV the FV is an average of local statistics.

The FV extends the BOV and includes higher-order statistics (up to 2nd order)

Results on VOC 2007: BOV = 43.6 % \rightarrow FV = 57.7 % $\rightarrow \sqrt{FV}$ = 62.1 %

Large-scale image classification

• Image classification: assigning a class label to the image

Car: present Cow: present Bike: not present Horse: not present ...

- What makes it large-scale?
 - number of images
 - number of classes
 - dimensionality of descriptor

IM GENET has 14M images from 22k classes

Current state of the art – image classification

•Deep convolutional neural networks

•Convolutional networks [LeCun'98 ...]

AlexNet [Krizhevsky'12]

•VGG Net [Simonyan'14]

•Google Inception [Szegedy'15]

•ResNet [He'16]