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A brief recap on kernel methods

A way to achieve non-linear classification by using a kernel that computes
inner products of data after non-linear transformation.

» Given the transformation, we can derive the kernel function.

Conversely, if a kernel is positive definite, it is known to compute a dot-
product in a (not necessarily finite dimensional) feature space.

» Given the kernel, we can determine the feature mapping function.
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A brief recap on kernel methods

So far, we considered starting with data in a vector space, and mapping it into
another vector space to facilitate linear classification

Kernels can also be used to represent non-vectorial data, and to make them
amenable to linear classification (or other linear data analysis) techniques

For example, suppose we want to classify sets of points in a vector space,
where the size of each set may vary

X=(x, X, ...,xy] with x,€R’

We can, for example, define a representation of sets by concatenating the
mean and variance of the set in each dimension

_[mean (X
¢ (X)= Var(x<) |

Fixed size representation of sets in 2d dimensions
Use kernel to compare different sets:

k(Xl,Xz):<¢<X1))¢(X2>>



Fisher kernels

Motivated by the need to represent variably sized objects in a vector space,
such as sequences, sets, trees, graphs, etc., such that they become
amenable to be used with linear classifiers, and other data analysis tools

A generic method to define kernels over arbitrary data types based on
statistical model of the items we want to represent

plx;0), xeX, R’

Parameters and/or structure of the model p(x) estimated from data
Typically in unsupervised manner

Automatic data-driven configuration of kernel instead of manual design
Kernel typically used for supervised task

[Jaakkola & Haussler, “Exploiting generative models in discriminative classifiers”,In
Advances in Neural Information Processing Systems 11, 1998.]



Fisher kernels

Given a generative data model  p(x;0), x€X, 0€R’

Data representation with gradient of the data log-likelihood, or “Fisher score”

g(x)=Vylnp(x),
g(x)ERD

Define a kernel over X by taking the scaled inner product between the Fisher

score vectors: S
k(x,y)=g(x) F g(y)

Where F is the Fisher information matrix F:

F:Ep(x) g(x)g(x)T}

F is positive definite since

OLTFOL:Ep(x) (g(x)Toc)z}>O



Fisher vector

Since F is positive definite we can decompose its inverse as
F'=L"L
Therefore, we can write the kernel as
k(xox,)=g(x) F ' glx)=0 (x) o (x)
Where phi is known as the Fisher vector
¢ (x;)=Lg(x;)

From this explicit finite-dimensional data embedding it follows immediately
that the Fisher kernel is a positive-semidefinite

Since F is covariance of Fisher score, normalization by L makes the Fisher
vector have unit covariance matrix under p(x)



Normalization with inverse Fisher information matrix

Gradient of log-likelihood w.r.t. parameters  g(x)=V,ln p(x)
Fisher information matrix ~ F,=[ g(x)g(x)" p(x)dx

Normalized Fisher kernel  k(x, x,)=g(x,)" Fy' g(x,)
» Renders Fisher kernel invariant for parametrization

Consider different parametrization given by some invertible function A=f(0)
_09;
i 0N\,
Gradient of log-likelihood w.r.t. new parameters, via chainrule
h(x)=V,Inp(x)=JV,lnp(x)=Jg(x)

Jacobian matrix relating the parametrizations [J]

Fisher information matrix F;\:f h(x)h(x) p(x)dx=JF,J"

Normalized Fisher kernel h(xl)Tth(xz):g



Fisher kernels — relation to generative classification

Suppose we make use of generative model for classification via Bayes' rule
» Where x is the data to be classified, and y is the discrete class label

p(ylx)=p(xly)p(y)p(x),

K

p(x)=2. _ ply=k)p(xly=k)
and
plxly)=p(x;0)),
eXp(“k)

K
Zk'Zl eXp<(X’k ’>

ply=k)=m,=

Classification with the Fisher kernel obtained using the marginal distribution
p(x) is at least as powerful as classification with Bayes' rule

This becomes useful when the class conditional models are poorly estimated,
either due to bias or variance type of errors

In practice often used without class-conditional models, but direct generative
model for the marginal distribution on X



Fisher kernels — relation to generative classification

Consider the Fisher score vector with respect to the marginal distribution on X

Voln p(x px ezkl (x, y=k)

1 K

=5 2. rlx.y=k)Vynp(x, y=k)

=Z,ilp(y=kIX)Welnp(y=k)+Velnp(x|y=k)}

In particular for the alpha that model the class prior probabilities we have

oln p(x)
oo,

=ply=kl|x)-



Fisher kernels — relation to generative classification

oln p(x)
oo,

=p(y=kl|x)—m=,

Oln p(x) Oln p(x)
oo, ' Oog

9 e

g(x)=Vynp(x)=

Consider discriminative multi-class classifier.

Let the weight vector for the k-th class to be zero, except for the position that
corresponds to the alpha of the k-th class where it is one. And let the bias
term for the k-th class be equal to the prior probability of that class

Then  f (x)=w; g(x)+b,=p(y=k|x)
and thus argmax, f,(x)=argmax, p(y=kl|x)

Thus the Fisher kernel based classifier can implement classification via
Bayes' rule, and generalizes it to other classification functions



Fisher vector GMM image representation: Motivation

Suppose we want to refine a given visual vocabulary to obtain a
richer image representation

Bag-of-word histogram stores # patches assigned to each word
— Need more words to refine the representation
— But this directly increases the computational cost
— And leads to many empty bins: redundancy




Fisher vector representation in a nutshell

Fisher Vector derived from Gaussian mixture also records the
mean and variance of the points per dimension in each cell

— More information for same # visual words
— Does not increase computational time significantly
— Leads to high-dimensional feature vectors

Even when the counts are the same,

the position and varlance of the pomts in the ceII can vary




Application of FV for Gaussian mixture model of local features

Gaussian mixture models for local image descriptors
[Perronnin & Dance, CVPR 2007]
» State-of-the-art feature pooling for image/video classification/retrieval

Offline: Train k-component GMM on collection of local features
p(x)=2,_ N (x5, 0,)

Each mixture component corresponds to a visual word
» Parameters of each component: mean, variance, mixing weight

» We use diagonal covariance matrix for simplicity
Coordinates assumed independent, per Gaussian

v




Application of FV for Gaussian mixture model of local features

Representation: gradient of data log-likelihood

For the means and variances we have:

(%, —M)
1/2V 1np<X1N \/_Zn 1p k|X) O, :

(X _Mk)Z_I]

F_1/2V0klnp(X1N \/—Zn P (k|x,)

Oy

Soft-assignments given by component posteriors

nkN(Xn;Mk’0k>
p(x,)

p(klx,)=



Image representation using Fisher kernels

Data representation

T

_ oL oL
G(X,0)=F " o’ v Bol V.L, .. .V, L, V,L, ..., V,L
1 K

In total K(1+2D) dimensional representation, since for each visual
word / Gaussian we have

Mixing weight (1 scalar)
Mean (D dimensions)
Variances (D dimensions, since single variance per dimension)

Gradient with respect to mixing weights often dropped in practice
since it adds little discriminative information for classification.

Results in 2KD dimensional image descriptor



lllustration of gradient w.r.t. means of Gaussians

New Data Points



Mean AP (in %)
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Fisher vectors: classification performance VOC'07

* Fisher vector representation yields better performance for a
given number of Gaussians / visual words than Bag-of-words.

* For a fixed dimensionality Fisher vectors perform better, and are

more efficient to compute
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Normalization of the Fisher vector

Inverse Fisher information matrix F F=E[g(x)g(x)"]
Renders FV invariant for re-parametrization f(x)=F " g(x)

Linear projection, analytical approximation for MoG gives diagonal matrix
[Jaakkola, Haussler, NIPS 1999], [Sanchez, Perronnin, Mensink, Verbeek |JCV'13]

e Power-normalization, applied independently per dimension

Renders Fisher vector less sparse (typically rho=0.5) f(x)€sign(f(x)) |f (x)]
[Perronnin, Sanchez, Mensink, ECCV'10] 0<p<1

Corrects for poor independence assumption on local descriptors
[Cinbis, Verbeek, Schmid, PAMI'15]

e | 2-normalization (x)¢ f(x

)
Makes representation invariant to number of local features \/f(x)Tf(x)

Among other Lp norms the most effective with linear classifier
[Sanchez, Perronnin, Mensink, Verbeek |JCV'13]



Effect of power and L2 normalization in practice

e (lassification results on the PASCAL VOC 2007 benchmark dataset.

e Regular dense sampling of local SIFT descriptors in the image
PCA projected to 64 dimensions to de-correlate and compress

e Using mixture of 256 Gaussians over the SIFT descriptors

FV dimensionality: 2*64*256 = 32 * 1024

Power
Nomalization

No
Yes
No
Yes

L2
normalization

No
NoO
Yes
Yes

Performance
(MAP)

51.5
59.8
57.3
61.8

Improvement
over baseline

0
8.3
5.8
10.3



PCA dimension reduction of local descriptors

e \We use diagonal covariance model
in GMM for simplicity and efficiency

e But dimensions might be correlated

e Apply PCA projection to
» De-correlate features
» Reduce dimension of final FV

e [V with 256 Gaussians over local

SIFT descriptors of dimension 128

Mean AP (in %)

Results on PASCAL VOC'07:
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Bag-of-words vs. Fisher vector representation

Bag-of-words image representation
» k-means clustering
» histogram of visual word counts, K dimensions

Fisher vector image representation
» GMM clustering
» Local first and second order moments, 2KD dimensions

For a given dimension of the representation
> FV needs less clusters, and is faster to compute

» FV gives better performance since it is a smoother function of
the local descriptors.

Review article on Fisher Vector image representation
Image Classification with the Fisher Vector: Theory and Practice
Sanchez, Perronnin, Mensink, Verbeek
International Journal of Computer Vision, 2013
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