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A brief recap on kernel methods

 A way to achieve non-linear classification by using a kernel that computes 
inner products of data after non-linear transformation.
► Given the transformation, we can derive the kernel function.

 Conversely, if a kernel is positive definite, it is known to compute a dot-
product in a (not necessarily finite dimensional) feature space. 
► Given the kernel, we can determine the feature mapping function.

Φ:  x → φ(x)

k (x1, x2)=〈ϕ (x1),ϕ (x2)〉



A brief recap on kernel methods

 So far, we considered starting with data in a vector space, and mapping it into 
another vector space to facilitate linear classification

 Kernels can also be used to represent non-vectorial data, and to make them 
amenable to linear classification (or other linear data analysis) techniques

 For example, suppose we want to classify sets of points in a vector space, 
where the size of each set may vary

 We can, for example, define a representation of sets by concatenating the 
mean and variance of the set in each dimension

► Fixed size representation of sets in 2d dimensions
► Use kernel to compare different sets:

k (X 1, X2)=〈ϕ (X 1),ϕ (X 2)〉

X={x1, x2, ... , xN } with xi∈R
d

ϕ (X )=(mean (X )
var (X ) )



Fisher kernels

 Motivated by the need to represent variably sized objects in a vector space, 
such as sequences, sets, trees, graphs, etc., such that they become 
amenable to be used with linear classifiers, and other data analysis tools 

 A generic method to define kernels over arbitrary data types based on 
statistical model of the items we want to represent

 Parameters and/or structure of the model p(x) estimated from data
► Typically in unsupervised manner

 Automatic data-driven configuration of kernel instead of manual design
► Kernel typically used for supervised task 

[Jaakkola & Haussler, “Exploiting generative models in discriminative classifiers”,In 
Advances in Neural Information Processing Systems 11, 1998.]

p( x ;θ) , x∈X , θ∈RD



Fisher kernels

 Given a generative data model 

 Data representation with gradient of the data log-likelihood, or “Fisher score”

 Define a kernel over X by taking the scaled inner product between the Fisher 
score vectors: 

 Where F is the Fisher information matrix F:

 F is positive definite since

g ( x)=∇θ ln p( x) ,

g (x)∈RD

p( x ;θ) , x∈X , θ∈RD

k (x , y)=g(x)T F−1 g( y)

F=Ep (x ) [g(x)g(x)
T ]

α
T Fα=Ep (x) [(g(x)

T
α)

2 ]>0



Fisher vector

 Since F is positive definite we can decompose its inverse as 

 Therefore, we can write the kernel as 

► Where phi is known as the Fisher vector

 From this explicit finite-dimensional data embedding it follows immediately 
that the Fisher kernel is a positive-semidefinite 

 Since F is covariance of Fisher score, normalization by L makes the Fisher 
vector have unit covariance matrix under p(x)

F−1
=LT L

ϕ (xi)=L g(xi)

k (xi , x j)=g(xi)
T F−1g(x j)=ϕ (xi)

T
ϕ (x j)



Normalization with inverse Fisher information matrix

 Gradient of log-likelihood w.r.t. parameters

 Fisher information matrix 

 Normalized Fisher kernel 
► Renders Fisher kernel invariant for parametrization 

 Consider different parametrization given by some invertible function 

 Jacobian matrix relating the parametrizations

 Gradient of log-likelihood w.r.t. new parameters, via chainrule

 Fisher information matrix 

 Normalized Fisher kernel 

Fθ=∫ g(x)g(x)
T p(x)dx

λ= f (θ)

g(x)=∇ θ ln p(x)

k (x1, x2)=g(x1)
T Fθ

−1 g(x2)

[J ]ij=
∂θ j
∂ λi

h(x)=∇ λ ln p(x)=J∇θ ln p(x)=J g(x)

h(x1)
T Fλ

−1h(x2)=g(x1)
T JT (JFθ J

T
)
−1 J g(x2)

Fλ=∫ h(x)h(x)
T p(x)dx=J F θJ

T

=g(x1)
T J T J−T F θ

−1 J−1 J g(x2)

=g(x1)
T F θ

−1 g(x2)



Fisher kernels – relation to generative classification

 Suppose we make use of generative model for classification via Bayes' rule
► Where x is the data to be classified, and y is the discrete class label

and

 Classification with the Fisher kernel obtained using the marginal distribution 
p(x) is at least as powerful as classification with Bayes' rule

 This becomes useful when the class conditional models are poorly estimated, 
either due to bias or variance type of errors

 In practice often used without class-conditional models, but direct generative 
model for the marginal distribution on X

p( y∣x)= p( x∣y) p( y)/ p( x) ,

p( x)=∑k=1

K
p( y=k ) p(x∣y=k )

p( x∣y)= p(x ;θy) ,

p( y=k )=πk=
exp(αk )

∑k '=1

K
exp(αk ' )



Fisher kernels – relation to generative classification

 Consider the Fisher score vector with respect to the marginal distribution on X

 In particular for the alpha that model the class prior probabilities we have

∇θ ln p(x)=
1
p( x)

∇θ∑k=1

K
p(x , y=k )

=
1
p( x)

∑k=1

K
p( x , y=k )∇θ ln p(x , y=k )

=∑k=1

K
p( y=k∣x) [∇θ ln p( y=k )+∇θ ln p(x∣y=k ) ]

∂ ln p( x)
∂αk

= p( y=k∣x)−πk



Fisher kernels – relation to generative classification

 Consider discriminative multi-class classifier.

 Let the weight vector for the k-th class to be zero, except for the position that 
corresponds to  the alpha of the k-th class where it is one. And let the bias 
term for the k-th class be equal to the prior probability of that class

 Then

and thus

 Thus the Fisher kernel based classifier can implement classification via 
Bayes' rule, and generalizes it to other classification functions

∂ ln p( x)
∂αk

= p( y=k∣x)−πk

f k ( x)=wk
T g ( x)+bk= p( y=k∣x)

g(x)=∇ θ ln p(x)=(∂ ln p(x)
∂α1

, ... ,
∂ ln p(x)
∂αK

, ...)

argmaxk f k (x)=argmax k p( y=k∣x)
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Fisher vector GMM image representation: Motivation 

• Suppose we want to refine a given visual vocabulary to obtain a 
richer image representation

• Bag-of-word histogram stores # patches assigned to each word
– Need more words to refine the representation
– But this directly increases the computational cost
– And leads to many empty bins: redundancy

0
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Fisher vector representation in a nutshell

• Fisher Vector derived from Gaussian mixture also records the 
mean and variance of the points per dimension in each cell

– More information for same # visual words 
– Does not increase computational time significantly 
– Leads to high-dimensional feature vectors

 Even when the counts are the same,

 the position and variance of the points in the cell can vary



Application of FV for Gaussian mixture model of local features

 Gaussian mixture models for local image descriptors
[Perronnin & Dance, CVPR 2007]

► State-of-the-art feature pooling for image/video classification/retrieval

 Offline: Train k-component GMM on collection of local features

 Each mixture component corresponds to a visual word
► Parameters of each component: mean, variance, mixing weight
► We use diagonal covariance matrix for simplicity

 Coordinates assumed independent, per Gaussian

p(x)=∑k=1

K
πkN (x ;μk ,σk)



Application of FV for Gaussian mixture model of local features

 Representation: gradient of data log-likelihood 

 For the means and variances we have:

 Soft-assignments given by component posteriors

F−1/2∇μk
ln p(x1 :N)=

1
√πk
∑n=1

N
p(k∣xn)

(xn−μk)
σk

F−1/2∇σ k
ln p(x1 :N)=

1

√2πk
∑n=1

N

p(k∣xn){(xn−μk)
2

σk
2 −1}

p(k∣xn)=
πkN (xn;μk ,σk)

p(xn)



Image representation using Fisher kernels

 Data representation

 In total K(1+2D) dimensional representation, since for each visual 
word / Gaussian we have
► Mixing weight (1 scalar)
► Mean (D dimensions)
► Variances (D dimensions, since single variance per dimension)

 Gradient with respect to mixing weights often dropped in practice 
since it adds little discriminative information for classification.
► Results in 2KD dimensional image descriptor

G(X ,Θ)=F−1/2( ∂ L
∂α1

, ... ,
∂ L
∂αK

, ∇μ1
L, ... ,∇μK

L , ∇σ 1
L, ... , ∇σK

L )
T



Illustration of gradient w.r.t. means of Gaussians



Fisher vectors: classification performance VOC'07

• Fisher vector representation yields better performance for a 
given number of Gaussians / visual words than Bag-of-words.

• For a fixed dimensionality Fisher vectors perform better, and are 
more efficient to compute



Normalization of the Fisher vector

 Inverse Fisher information matrix F
► Renders FV invariant for re-parametrization
► Linear projection, analytical approximation for MoG gives diagonal matrix 

[Jaakkola, Haussler, NIPS 1999], [Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

 Power-normalization, applied independently per dimension 
► Renders Fisher vector less sparse (typically rho=0.5)

[Perronnin, Sanchez, Mensink, ECCV'10]
► Corrects for poor independence assumption on local descriptors

[Cinbis, Verbeek, Schmid, PAMI'15]

 L2-normalization
► Makes representation invariant to number of local features
► Among other Lp norms the most effective with linear classifier

[Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

F=E[g (x)g(x)T ]
f (x)=F−1/2g(x)

f (x)← sign(f (x)) |f (x)|
ρ

0<ρ<1

f (x)←
f (x)

√ f (x)T f (x)



Effect of power and L2 normalization in practice

 Classification results on the PASCAL VOC 2007 benchmark dataset.

 Regular dense sampling of local SIFT descriptors in the image
► PCA projected to 64 dimensions to de-correlate and compress

 Using mixture of 256 Gaussians over the SIFT descriptors
► FV dimensionality: 2*64*256 = 32 * 1024

Power 
Nomalization

L2 
normalization

Performance 
(mAP)

Improvement 
over baseline

No No 51.5 0

Yes No 59.8 8.3

No Yes 57.3 5.8

Yes Yes 61.8 10.3



PCA dimension reduction of local descriptors

 We use diagonal covariance model

in GMM for simplicity and efficiency

 But dimensions might be correlated

 Apply PCA projection to
► De-correlate features
► Reduce dimension of final FV

 FV with 256 Gaussians over local 

SIFT descriptors of dimension 128

Results on PASCAL VOC’07:



Bag-of-words vs. Fisher vector representation

 Bag-of-words image representation
► k-means clustering
► histogram of visual word counts, K dimensions

 Fisher vector image representation
► GMM clustering
► Local first and second order moments, 2KD dimensions

 For a given dimension of the representation
► FV needs less clusters, and is faster to compute
► FV gives better performance since it is a smoother function of 

the local descriptors.

 Review article on Fisher Vector image representation
Image Classification with the Fisher Vector: Theory and Practice

Sanchez, Perronnin, Mensink, Verbeek 

International Journal of Computer Vision, 2013
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