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A brief recap on kernel methods

 A way to achieve non-linear classification by using a kernel that computes 
inner products of data after non-linear transformation.
► Given the transformation, we can derive the kernel function.

 Conversely, if a kernel is positive definite, it is known to compute a dot-
product in a (not necessarily finite dimensional) feature space. 
► Given the kernel, we can determine the feature mapping function.

Φ:  x → φ(x)

k (x1, x2)=〈ϕ (x1),ϕ (x2)〉



A brief recap on kernel methods

 So far, we considered starting with data in a vector space, and mapping it into 
another vector space to facilitate linear classification

 Kernels can also be used to represent non-vectorial data, and to make them 
amenable to linear classification (or other linear data analysis) techniques

 For example, suppose we want to classify sets of points in a vector space, 
where the size of each set may vary

 We can, for example, define a representation of sets by concatenating the 
mean and variance of the set in each dimension

► Fixed size representation of sets in 2d dimensions
► Use kernel to compare different sets:

k (X 1, X2)=〈ϕ (X 1),ϕ (X 2)〉

X={x1, x2, ... , xN } with xi∈R
d

ϕ (X )=(mean (X )
var (X ) )



Fisher kernels

 Motivated by the need to represent variably sized objects in a vector space, 
such as sequences, sets, trees, graphs, etc., such that they become 
amenable to be used with linear classifiers, and other data analysis tools 

 A generic method to define kernels over arbitrary data types based on 
statistical model of the items we want to represent

 Parameters and/or structure of the model p(x) estimated from data
► Typically in unsupervised manner

 Automatic data-driven configuration of kernel instead of manual design
► Kernel typically used for supervised task 

[Jaakkola & Haussler, “Exploiting generative models in discriminative classifiers”,In 
Advances in Neural Information Processing Systems 11, 1998.]

p( x ;θ) , x∈X , θ∈RD



Fisher kernels

 Given a generative data model 

 Data representation with gradient of the data log-likelihood, or “Fisher score”

 Define a kernel over X by taking the scaled inner product between the Fisher 
score vectors: 

 Where F is the Fisher information matrix F:

 F is positive definite since

g ( x)=∇θ ln p( x) ,

g (x)∈RD

p( x ;θ) , x∈X , θ∈RD

k (x , y)=g(x)T F−1 g( y)

F=Ep (x ) [g(x)g(x)
T ]

α
T Fα=Ep (x) [(g(x)

T
α)

2 ]>0



Fisher vector

 Since F is positive definite we can decompose its inverse as 

 Therefore, we can write the kernel as 

► Where phi is known as the Fisher vector

 From this explicit finite-dimensional data embedding it follows immediately 
that the Fisher kernel is a positive-semidefinite 

 Since F is covariance of Fisher score, normalization by L makes the Fisher 
vector have unit covariance matrix under p(x)

F−1
=LT L

ϕ (xi)=L g(xi)

k (xi , x j)=g(xi)
T F−1g(x j)=ϕ (xi)

T
ϕ (x j)



Normalization with inverse Fisher information matrix

 Gradient of log-likelihood w.r.t. parameters

 Fisher information matrix 

 Normalized Fisher kernel 
► Renders Fisher kernel invariant for parametrization 

 Consider different parametrization given by some invertible function 

 Jacobian matrix relating the parametrizations

 Gradient of log-likelihood w.r.t. new parameters, via chainrule

 Fisher information matrix 

 Normalized Fisher kernel 

Fθ=∫ g(x)g(x)
T p(x)dx

λ= f (θ)

g(x)=∇ θ ln p(x)

k (x1, x2)=g(x1)
T Fθ

−1 g(x2)

[J ]ij=
∂θ j
∂ λi

h(x)=∇ λ ln p(x)=J∇θ ln p(x)=J g(x)

h(x1)
T Fλ

−1h(x2)=g(x1)
T JT (JFθ J

T
)
−1 J g(x2)

Fλ=∫ h(x)h(x)
T p(x)dx=J F θJ

T

=g(x1)
T J T J−T F θ

−1 J−1 J g(x2)

=g(x1)
T F θ

−1 g(x2)



Fisher kernels – relation to generative classification

 Suppose we make use of generative model for classification via Bayes' rule
► Where x is the data to be classified, and y is the discrete class label

and

 Classification with the Fisher kernel obtained using the marginal distribution 
p(x) is at least as powerful as classification with Bayes' rule

 This becomes useful when the class conditional models are poorly estimated, 
either due to bias or variance type of errors

 In practice often used without class-conditional models, but direct generative 
model for the marginal distribution on X

p( y∣x)= p( x∣y) p( y)/ p( x) ,

p( x)=∑k=1

K
p( y=k ) p(x∣y=k )

p( x∣y)= p(x ;θy) ,

p( y=k )=πk=
exp(αk )

∑k '=1

K
exp(αk ' )



Fisher kernels – relation to generative classification

 Consider the Fisher score vector with respect to the marginal distribution on X

 In particular for the alpha that model the class prior probabilities we have

∇θ ln p(x)=
1
p( x)

∇θ∑k=1

K
p(x , y=k )

=
1
p( x)

∑k=1

K
p( x , y=k )∇θ ln p(x , y=k )

=∑k=1

K
p( y=k∣x) [∇θ ln p( y=k )+∇θ ln p(x∣y=k ) ]

∂ ln p( x)
∂αk

= p( y=k∣x)−πk



Fisher kernels – relation to generative classification

 Consider discriminative multi-class classifier.

 Let the weight vector for the k-th class to be zero, except for the position that 
corresponds to  the alpha of the k-th class where it is one. And let the bias 
term for the k-th class be equal to the prior probability of that class

 Then

and thus

 Thus the Fisher kernel based classifier can implement classification via 
Bayes' rule, and generalizes it to other classification functions

∂ ln p( x)
∂αk

= p( y=k∣x)−πk

f k ( x)=wk
T g ( x)+bk= p( y=k∣x)

g(x)=∇ θ ln p(x)=(∂ ln p(x)
∂α1

, ... ,
∂ ln p(x)
∂αK

, ...)

argmaxk f k (x)=argmax k p( y=k∣x)
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Fisher vector GMM image representation: Motivation 

• Suppose we want to refine a given visual vocabulary to obtain a 
richer image representation

• Bag-of-word histogram stores # patches assigned to each word
– Need more words to refine the representation
– But this directly increases the computational cost
– And leads to many empty bins: redundancy
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Fisher vector representation in a nutshell

• Fisher Vector derived from Gaussian mixture also records the 
mean and variance of the points per dimension in each cell

– More information for same # visual words 
– Does not increase computational time significantly 
– Leads to high-dimensional feature vectors

 Even when the counts are the same,

 the position and variance of the points in the cell can vary



Application of FV for Gaussian mixture model of local features

 Gaussian mixture models for local image descriptors
[Perronnin & Dance, CVPR 2007]

► State-of-the-art feature pooling for image/video classification/retrieval

 Offline: Train k-component GMM on collection of local features

 Each mixture component corresponds to a visual word
► Parameters of each component: mean, variance, mixing weight
► We use diagonal covariance matrix for simplicity

 Coordinates assumed independent, per Gaussian

p(x)=∑k=1

K
πkN (x ;μk ,σk)



Application of FV for Gaussian mixture model of local features

 Representation: gradient of data log-likelihood 

 For the means and variances we have:

 Soft-assignments given by component posteriors

F−1/2∇μk
ln p(x1 :N)=

1
√πk
∑n=1

N
p(k∣xn)

(xn−μk)
σk

F−1/2∇σ k
ln p(x1 :N)=

1

√2πk
∑n=1

N

p(k∣xn){(xn−μk)
2

σk
2 −1}

p(k∣xn)=
πkN (xn;μk ,σk)

p(xn)



Image representation using Fisher kernels

 Data representation

 In total K(1+2D) dimensional representation, since for each visual 
word / Gaussian we have
► Mixing weight (1 scalar)
► Mean (D dimensions)
► Variances (D dimensions, since single variance per dimension)

 Gradient with respect to mixing weights often dropped in practice 
since it adds little discriminative information for classification.
► Results in 2KD dimensional image descriptor

G(X ,Θ)=F−1/2( ∂ L
∂α1

, ... ,
∂ L
∂αK

, ∇μ1
L, ... ,∇μK

L , ∇σ 1
L, ... , ∇σK

L )
T



Illustration of gradient w.r.t. means of Gaussians



Fisher vectors: classification performance VOC'07

• Fisher vector representation yields better performance for a 
given number of Gaussians / visual words than Bag-of-words.

• For a fixed dimensionality Fisher vectors perform better, and are 
more efficient to compute



Normalization of the Fisher vector

 Inverse Fisher information matrix F
► Renders FV invariant for re-parametrization
► Linear projection, analytical approximation for MoG gives diagonal matrix 

[Jaakkola, Haussler, NIPS 1999], [Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

 Power-normalization, applied independently per dimension 
► Renders Fisher vector less sparse (typically rho=0.5)

[Perronnin, Sanchez, Mensink, ECCV'10]
► Corrects for poor independence assumption on local descriptors

[Cinbis, Verbeek, Schmid, PAMI'15]

 L2-normalization
► Makes representation invariant to number of local features
► Among other Lp norms the most effective with linear classifier

[Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

F=E[g (x)g(x)T ]
f (x)=F−1/2g(x)

f (x)← sign(f (x)) |f (x)|
ρ

0<ρ<1

f (x)←
f (x)

√ f (x)T f (x)



Effect of power and L2 normalization in practice

 Classification results on the PASCAL VOC 2007 benchmark dataset.

 Regular dense sampling of local SIFT descriptors in the image
► PCA projected to 64 dimensions to de-correlate and compress

 Using mixture of 256 Gaussians over the SIFT descriptors
► FV dimensionality: 2*64*256 = 32 * 1024

Power 
Nomalization

L2 
normalization

Performance 
(mAP)

Improvement 
over baseline

No No 51.5 0

Yes No 59.8 8.3

No Yes 57.3 5.8

Yes Yes 61.8 10.3



PCA dimension reduction of local descriptors

 We use diagonal covariance model

in GMM for simplicity and efficiency

 But dimensions might be correlated

 Apply PCA projection to
► De-correlate features
► Reduce dimension of final FV

 FV with 256 Gaussians over local 

SIFT descriptors of dimension 128

Results on PASCAL VOC’07:



Bag-of-words vs. Fisher vector representation

 Bag-of-words image representation
► k-means clustering
► histogram of visual word counts, K dimensions

 Fisher vector image representation
► GMM clustering
► Local first and second order moments, 2KD dimensions

 For a given dimension of the representation
► FV needs less clusters, and is faster to compute
► FV gives better performance since it is a smoother function of 

the local descriptors.

 Review article on Fisher Vector image representation
Image Classification with the Fisher Vector: Theory and Practice

Sanchez, Perronnin, Mensink, Verbeek 

International Journal of Computer Vision, 2013
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