Instance-level recognition

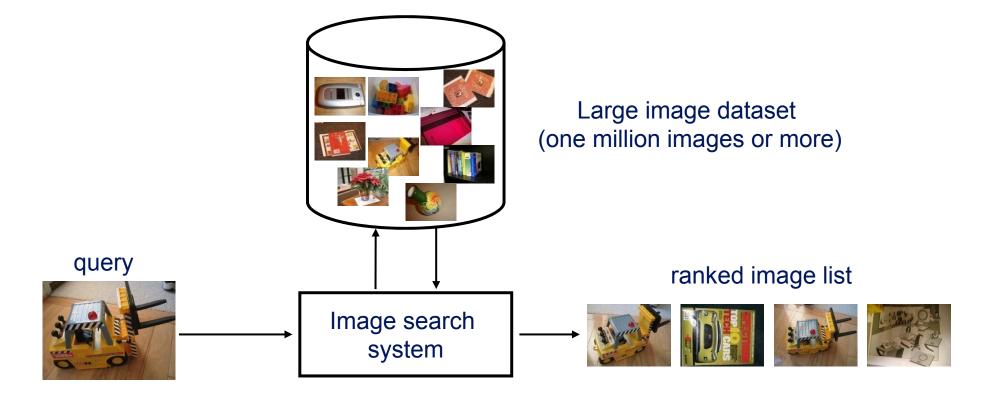
- 1) Local invariant features
- 2) Matching and recognition with local features

3) Efficient visual search

4) Very large scale indexing

Visual search

Image search system for large datasets

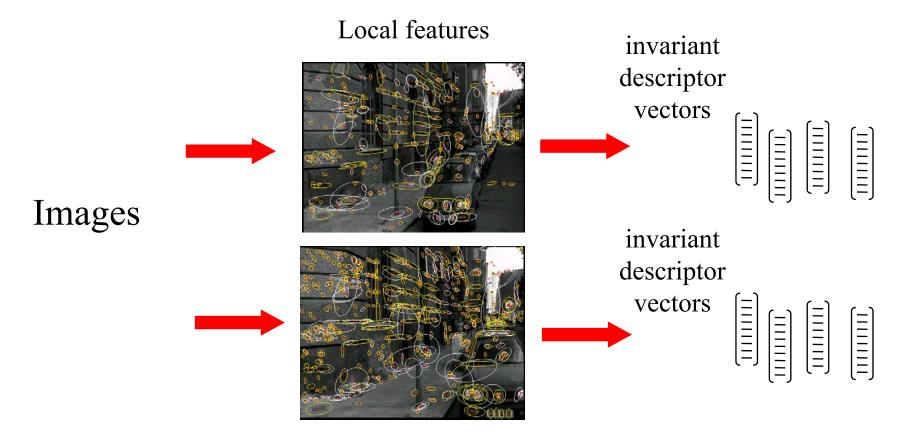


- Issues for very large databases
 - to reduce the query time
 - to reduce the storage requirements
 - with minimal loss in retrieval accuracy

Two strategies

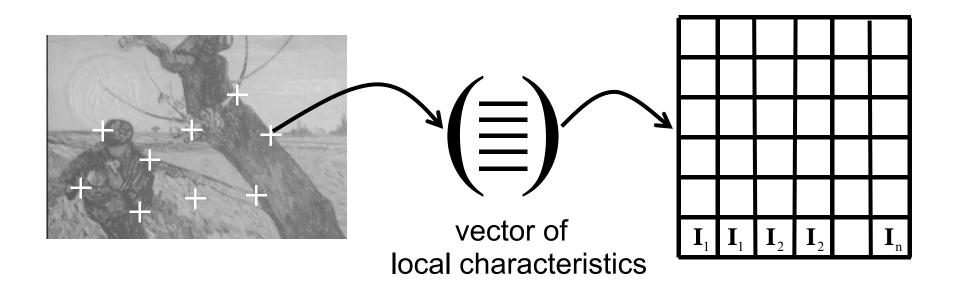
- 1. Efficient approximate nearest neighbor search on local feature descriptors
- Quantize descriptors into a "visual vocabulary" and use efficient techniques from text retrieval (Bag-of-words representation)

Strategy 1: Efficient approximate NN search

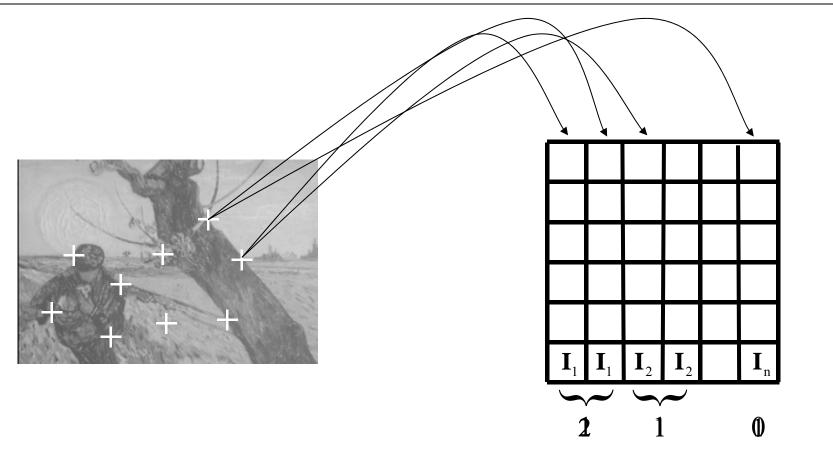


- 1. Compute local features in each image independently
- 2. Describe each feature by a descriptor vector
- 3. Find nearest neighbour vectors between query and database
- 4. Rank matched images by number of (tentatively) corresponding regions
- 5. Verify top ranked images based on spatial consistency

Voting algorithm



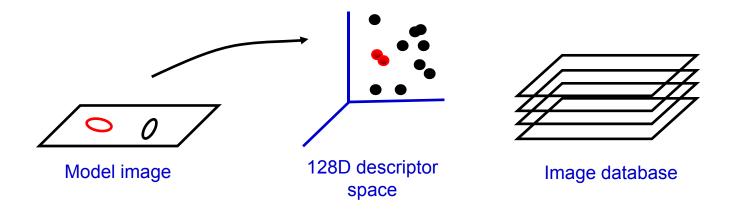
Voting algorithm



 I_1 is the corresponding model image

Finding nearest neighbour vectors

Establish correspondences between query image and images in the database by **nearest neighbour matching** on SIFT vectors



Solve following problem for all feature vectors, $\mathbf{x}_j \in \mathcal{R}^{128}$, in the query image:

$$\forall j \ NN(j) = \arg\min_i ||\mathbf{x}_i - \mathbf{x}_j|$$

where, $\mathbf{x}_i \in \mathcal{R}^{128}$, are features from all the database images.

Quick look at the complexity of the NN-search

N ... images

- M ... regions per image (~1000)
- D ... dimension of the descriptor (~128)

Exhaustive linear search: O(M NMD)

Example:

- Matching two images (N=1), each having 1000 SIFT descriptors Nearest neighbors search: 0.4 s (2 GHz CPU, implemenation in C)
- Memory footprint: 1000 * 128 = 128kB / image

# of images	CPU time	Mem	ory req.	
N = 1,000 N = 10,000		•	00MB) 1GB)	
N = 10 ⁷	~115 days	(~	1TB)	
All images on Facebook: $N = 10^{10} \dots \sim 300$ years (~ 1PB)				

Nearest-neighbor matching

Solve following problem for all feature vectors, \mathbf{x}_{i} , in the query image:

$$\forall j \ NN(j) = \arg\min_{i} ||\mathbf{x}_i - \mathbf{x}_j||$$

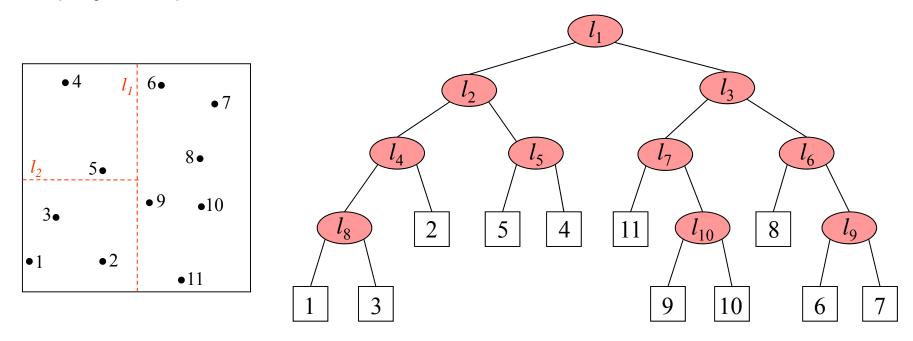
where x_i are features in database images.

Nearest-neighbour matching is the major computational bottleneck

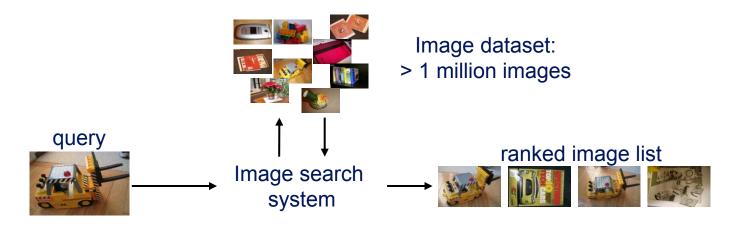
- Linear search performs *dn* operations for *n* features in the database and *d* dimensions
- No exact methods are faster than linear search for d>10
- Approximate methods can be much faster, but at the cost of missing some correct matches

K-d tree

- K-d tree is a binary tree data structure for organizing a set of points
- Each internal node is associated with an axis aligned hyper-plane splitting its associated points into two sub-trees
- Dimensions with high variance are chosen first
- Position of the splitting hyper-plane is chosen as the mean/median of the projected points balanced tree

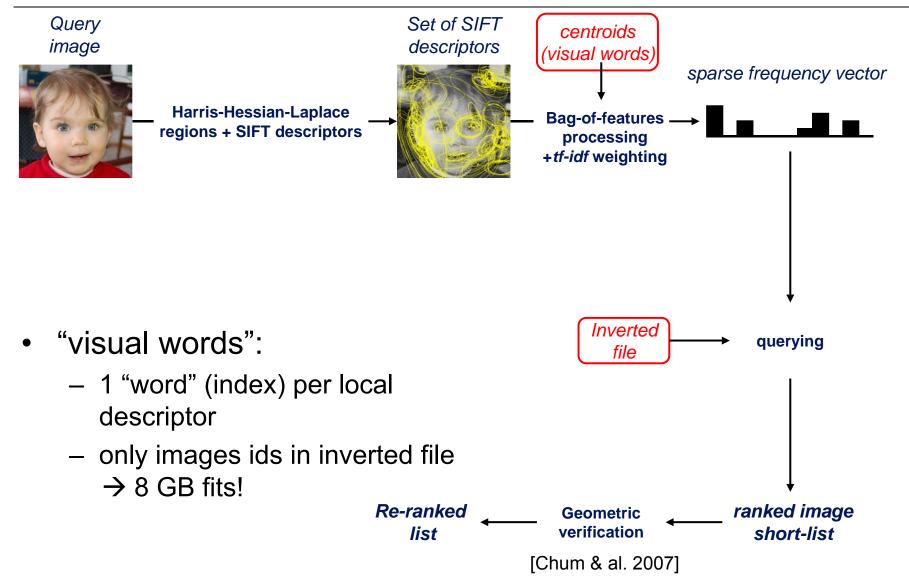


Large scale object/scene recognition

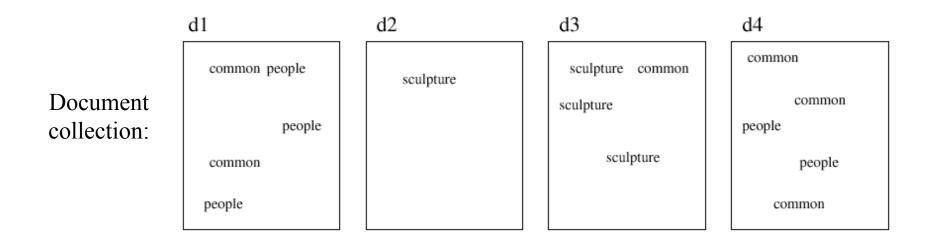


- Each image described by approximately 1000 descriptors
 - -10^9 descriptors to index for one million images!
- Database representation in RAM:
 - Size of descriptors : 1 TB, search+memory intractable

Bag-of-features [Sivic&Zisserman'03]



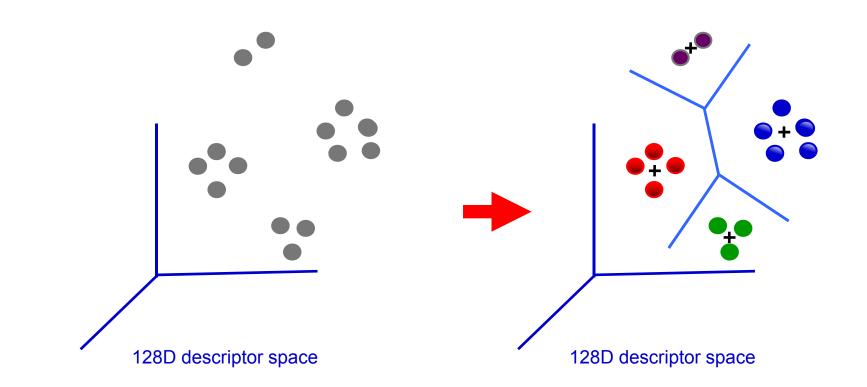
Indexing text with inverted files



Inverted file:	Term	List of hits (occurrences in documents)	
	People	[d1:hit hit hit], [d4:hit hit]	
	Common	[d1:hit hit], [d3: hit], [d4: hit hit hit]	
	Sculpture	[d2:hit], [d3: hit hit hit]	

Need to map feature descriptors to "visual words"

Build a visual vocabulary



Vector quantize descriptors

- Compute SIFT features from a subset of images
- K-means clustering (need to choose K)

[Sivic and Zisserman, ICCV 2003]

K-means clustering

Minimizing sum of squared Euclidean distances between points x_i and their nearest cluster centers

Algorithm:

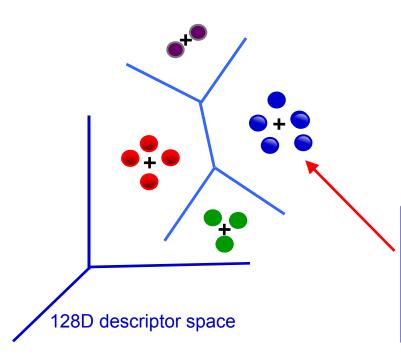
- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each data point to the nearest center
 - Recompute each cluster center as the mean of all points assigned to it

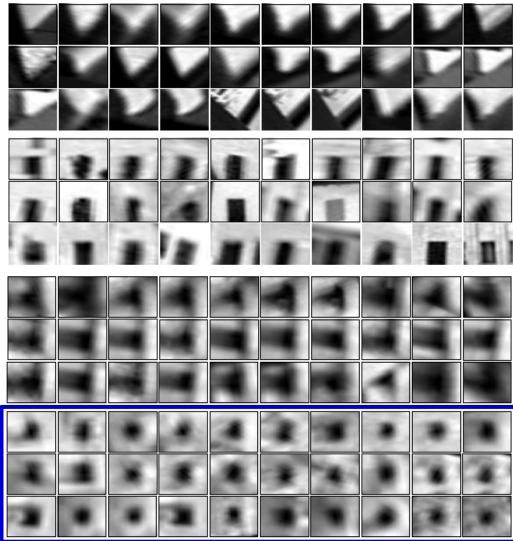
Local minimum, solution dependent on initialization

Initialization important, run several times, select best

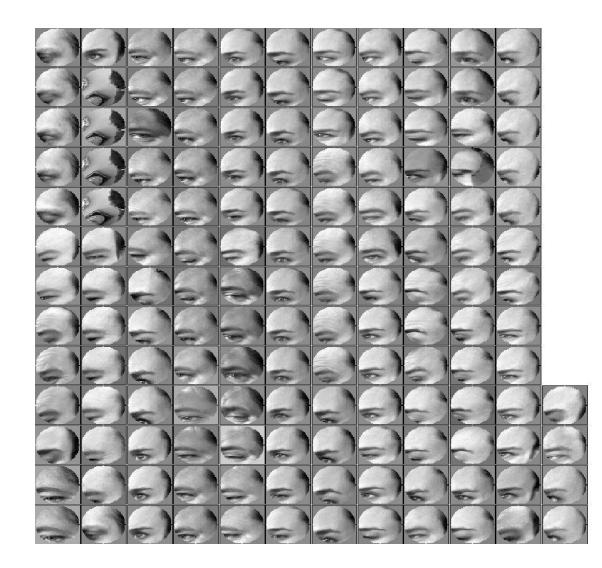
Visual words

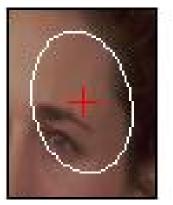
Example: each group of patches belongs to the same visual word



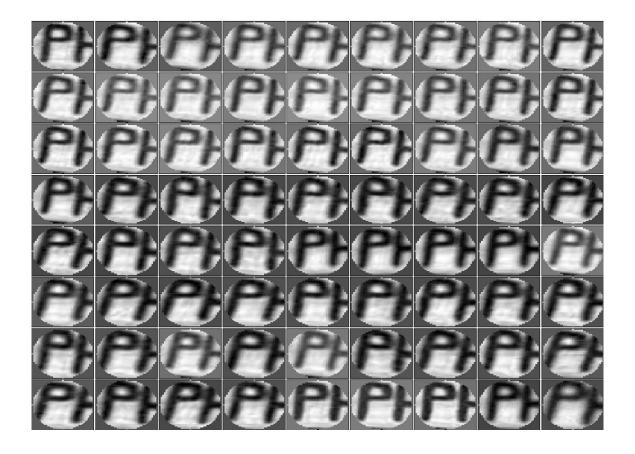


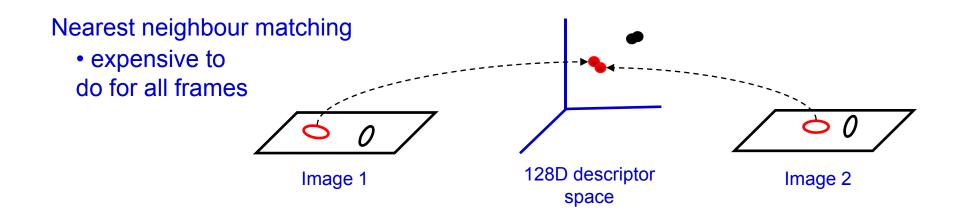
Samples of visual words (clusters on SIFT descriptors):

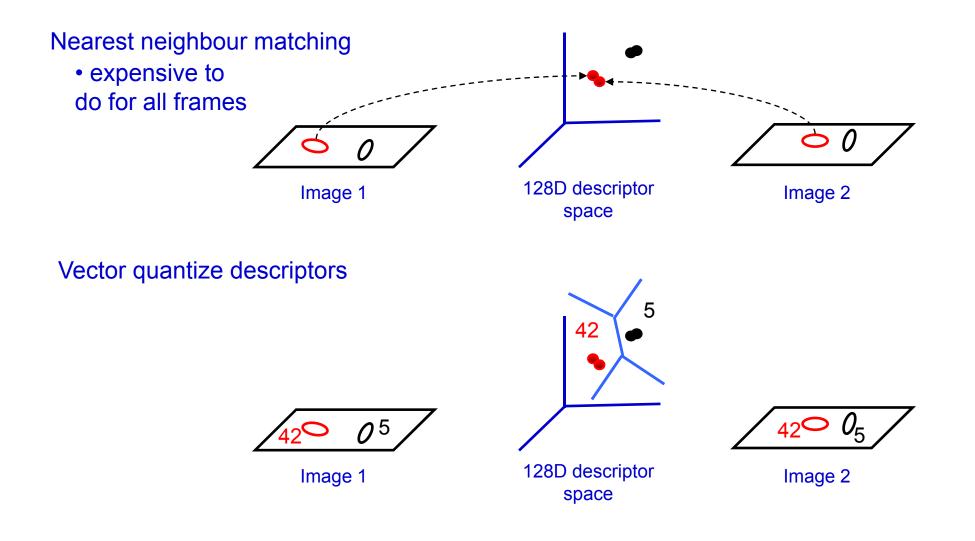


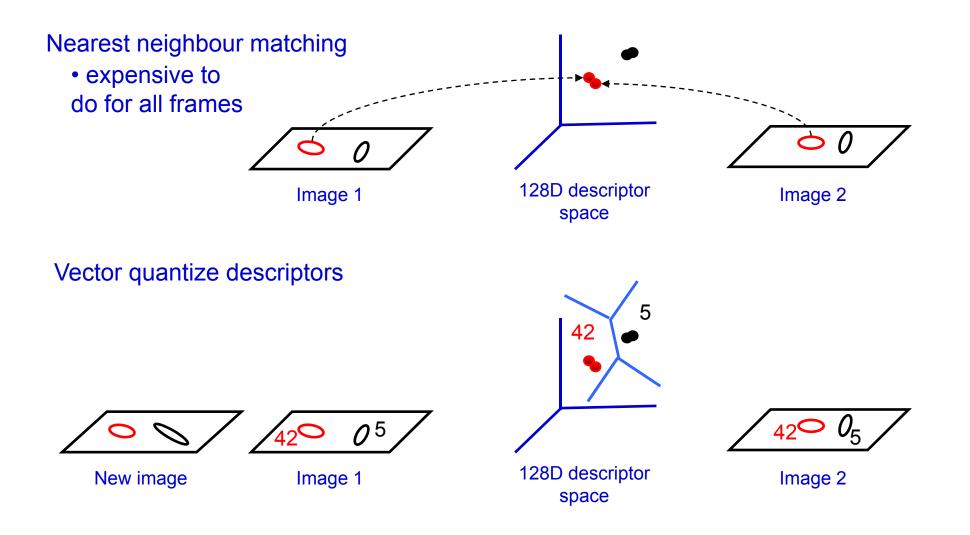


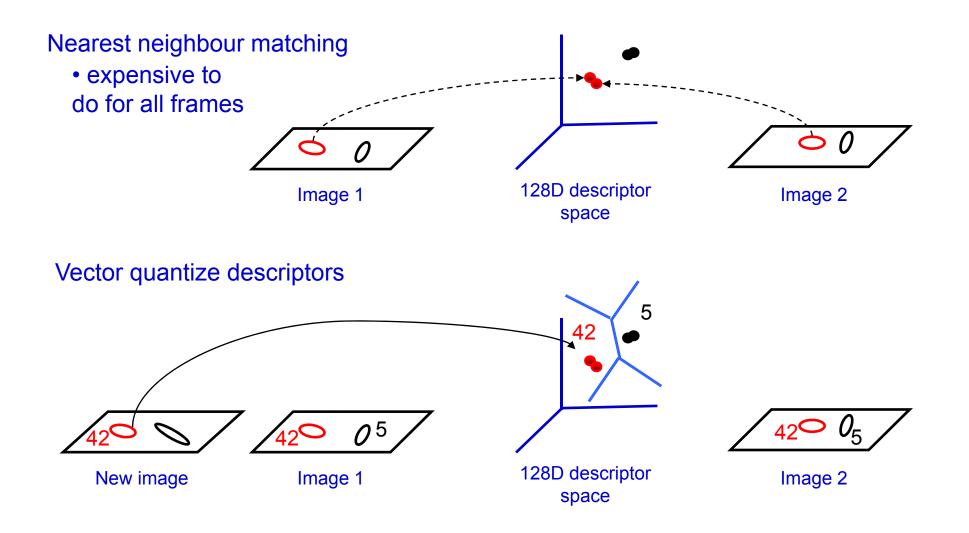
Samples of visual words (clusters on SIFT descriptors):



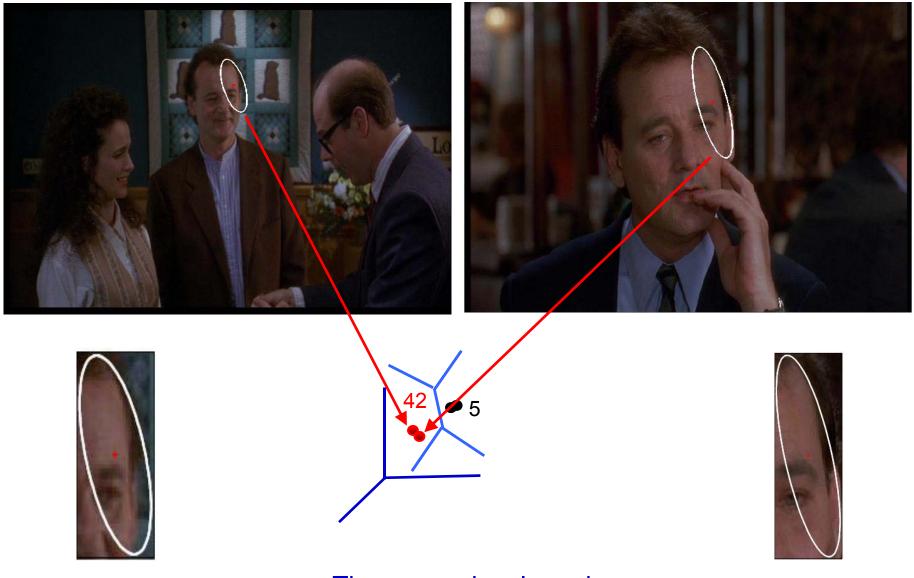








Vector quantize the descriptor space (SIFT)



The same visual word

Representation: bag of (visual) words

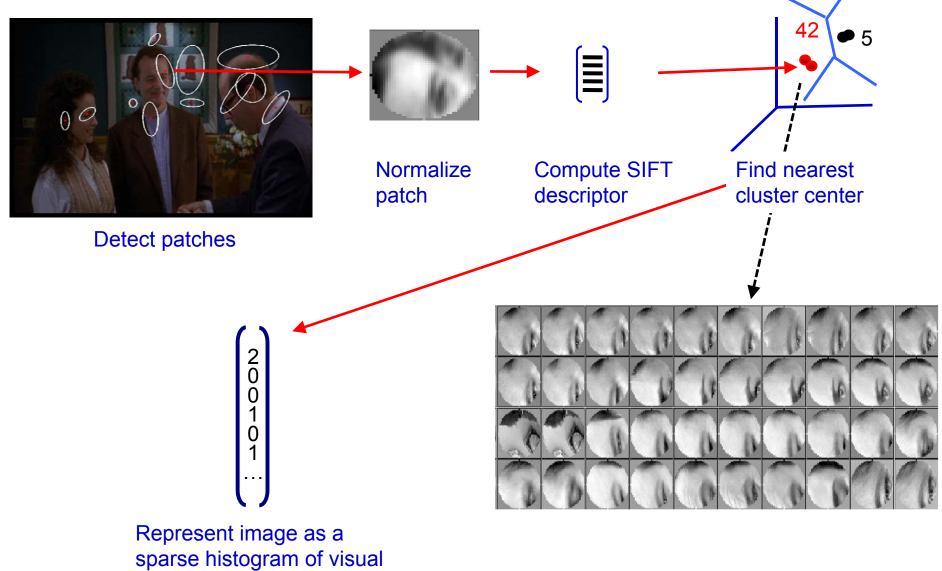
Visual words are 'iconic' image patches or fragments

- represent their frequency of occurrence
- but not their position

ColeIction of visual words

Image

Offline: Assign visual words and compute histograms for each image



word occurrences

Offline: create an index

- For fast search, store a "posting list" for the dataset
- This maps visual word occurrences to the images they occur in (i.e. like the "book index")

At run time

- User specifies a query region
- Generate a short-list of images using visual words in the region
 - 1. Accumulate all visual words within the query region
 - 2. Use "book index" to find other images with these words
 - 3. Compute similarity for images sharing at least one word

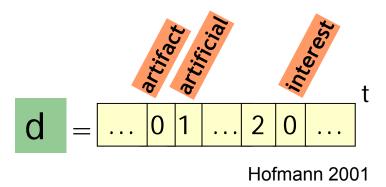
At run time

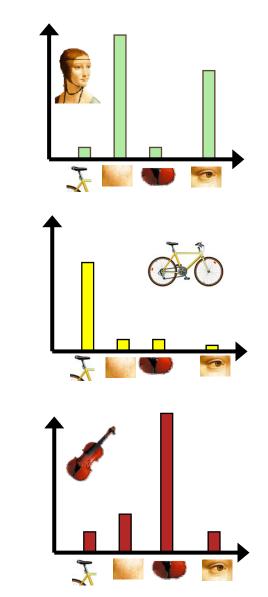
- Score each image by the (weighted) number of common visual words (tentative correspondences)
- Worst case complexity is linear in the number of images N
- In practice, it is linear in the length of the lists (<< N)

Another interpretation: Bags of visual words

Summarize entire image based on its distribution (histogram) of visual word occurrences

Analogous to bag of words representation commonly used for text documents





Another interpretation: the bag-of-visual-words model

For a vocabulary of size K, each image is represented by a K-vector

$$\mathbf{v}_d = (t_1, \ldots, t_i, \ldots, t_K)^\top$$

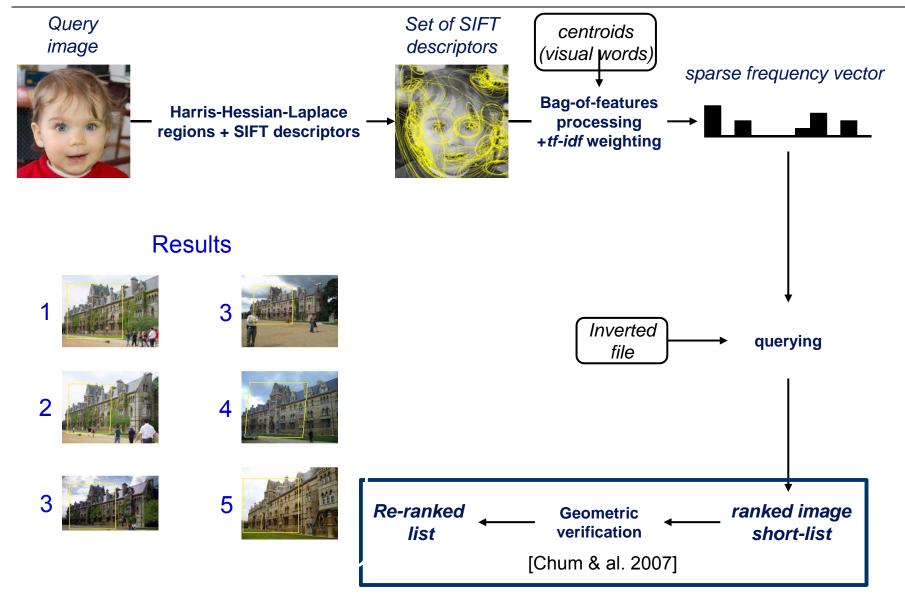
where t_i is the number of occurrences of visual word i

Images are ranked by the normalized scalar product between the query vector v_{α} and all vectors in the database v_{d} :

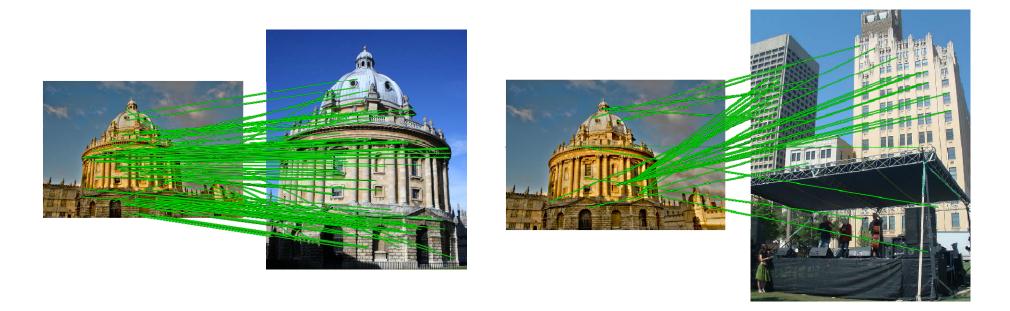
$$f_d = \frac{\mathbf{v}_q^{\top} \mathbf{v}_d}{\|\mathbf{v}_q\|_2 \|\mathbf{v}_d\|_2}$$

Scalar product can be computed efficiently using inverted file

Bag-of-features [Sivic&Zisserman'03]



Use the **position** and **shape** of the underlying features to improve retrieval quality



Both images have many matches – which is correct?

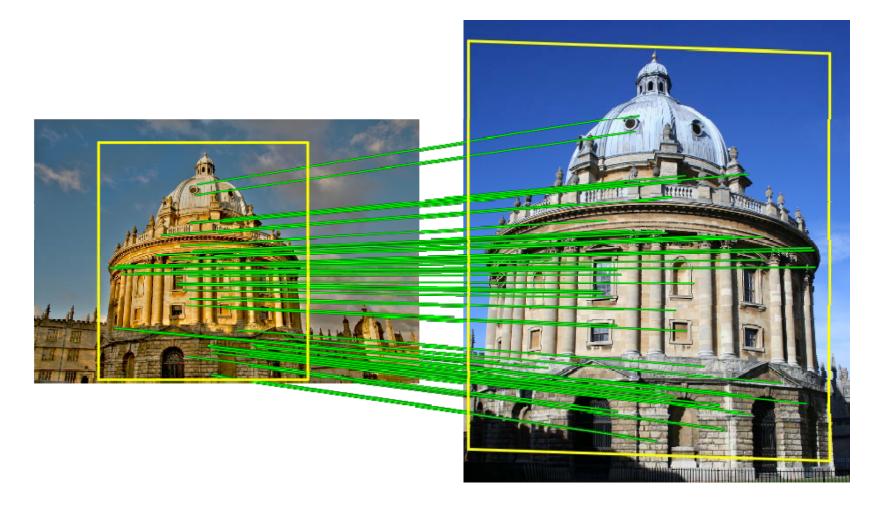
- Remove outliers, many matches are incorrect
- Estimate geometric transformation
- Robust strategies
 - RANSAC
 - Hough transform

We can measure **spatial consistency** between the query and each result to improve retrieval quality, re-rank

Many spatially consistent matches – **correct result**

Few spatially consistent matches – **incorrect result**

Gives localization of the object

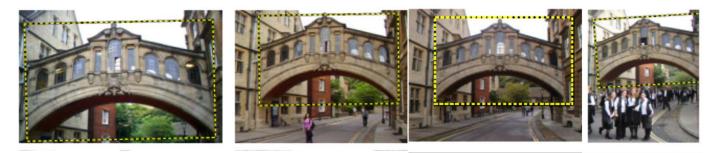


Geometric verification – example

1. Query

2. Initial retrieval set (bag of words model)

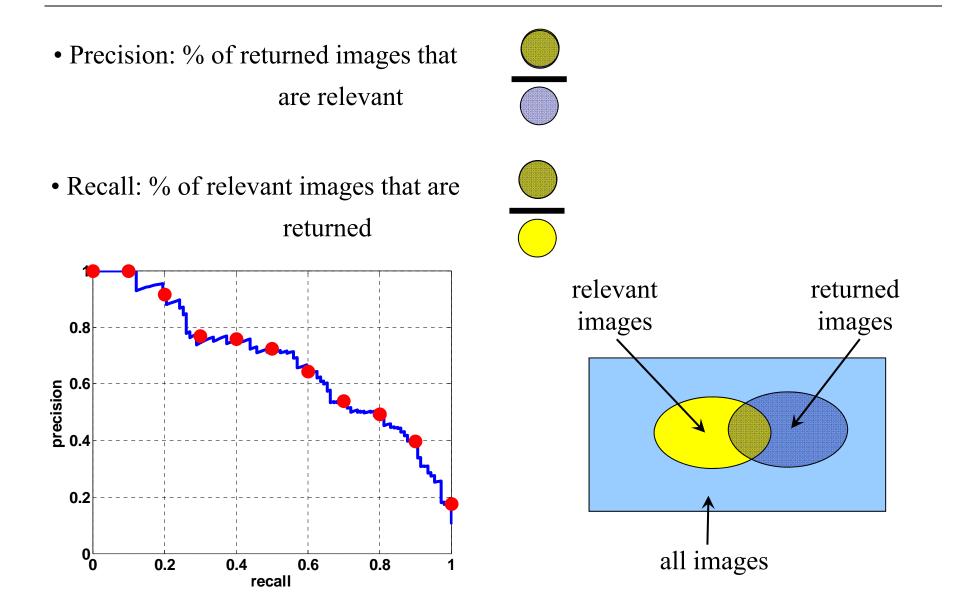
3. Spatial verification (re-rank on # of inliers)



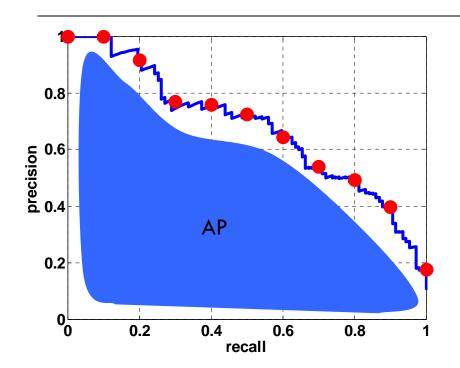
Evaluation dataset: Oxford buildings

- Ground truth obtained for 11 landmarks
- Evaluate performance by mean Average Precision

Measuring retrieval performance: Precision - Recall

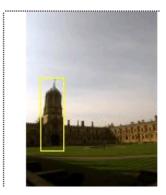


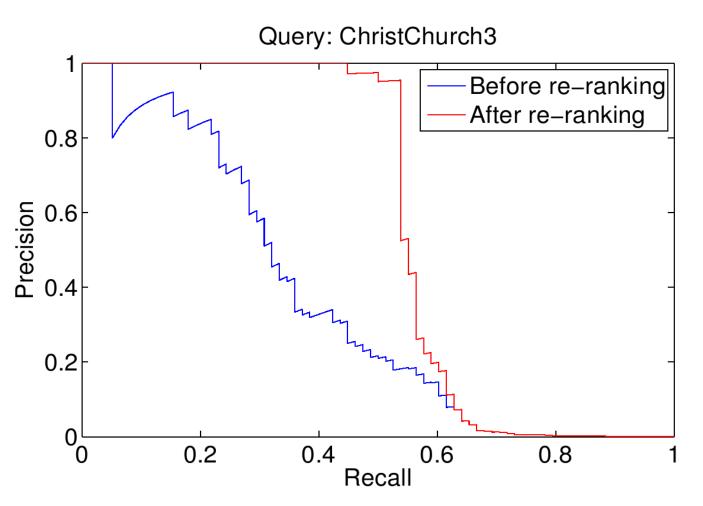
Average Precision

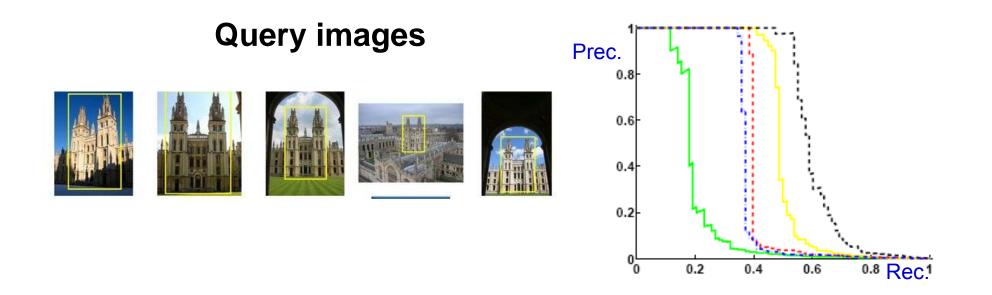


- A good AP score requires both high recall and high precision
- Application-independent

Performance measured by mean Average Precision (mAP) over 55 queries on 100K or 1.1M image datasets

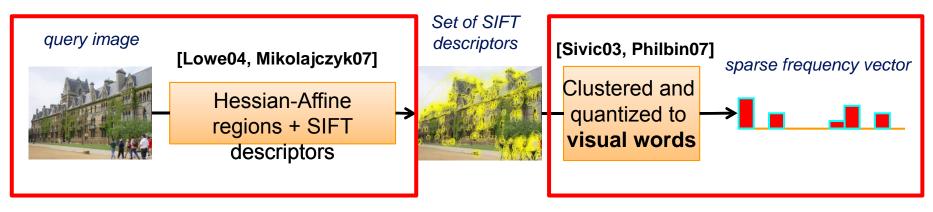






- high precision at low recall (like google)
- variation in performance over queries
- does not retrieve all instances

Why aren't all objects retrieved?



Obtaining visual words is like a sensor measuring the image

"noise" in the measurement process means that some visual words are missing or incorrect, e.g. due to

- Missed detections
- Changes beyond built in invariance
- Quantization effects

Query expansion
 Better quantization

Consequence: Visual word in query is missing

Query Expansion in text

In text :

- Reissue top n responses as queries
- Blind relevance feedback
- Danger of topic drift

In vision:

• Reissue spatially verified image regions as queries

Automatic query expansion

Visual word representations of two images of the same object may differ (due to e.g. detection/quantization noise) resulting in missed returns

Initial returns may be used to add new relevant visual words to the query

Strong spatial model prevents 'drift' by discarding false positives

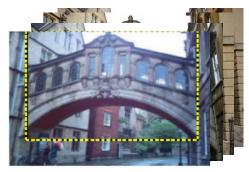
[Chum, Philbin, Sivic, Isard, Zisserman, ICCV'07; Chum, Mikulik, Perdoch, Matas, CVPR'11]

Visual query expansion - overview

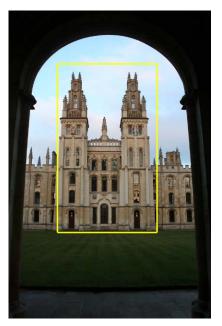
1. Original query

3. Spatial verification

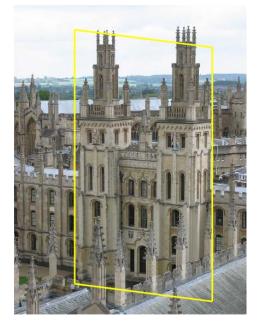
4. New enhanced query



5. Additional retrieved images

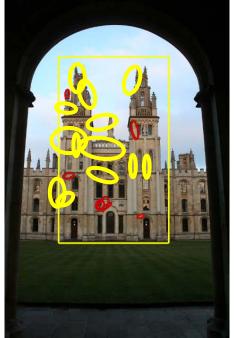


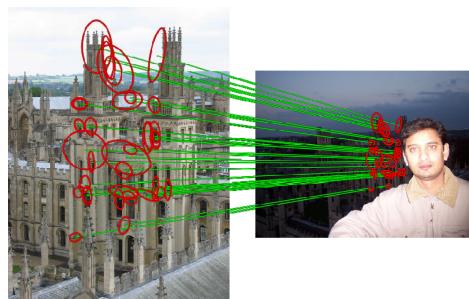
Query Image

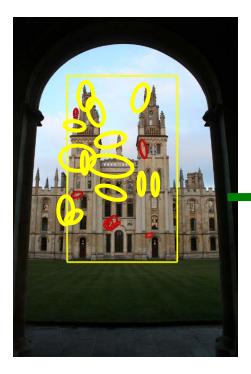


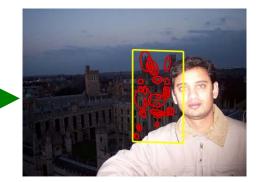
Originally retrieved image

Originally not retrieved

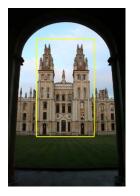




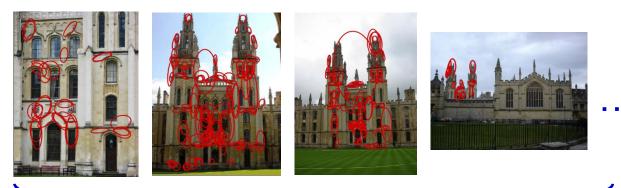




Query Image



Spatially verified retrievals with matching regions overlaid



New expanded query

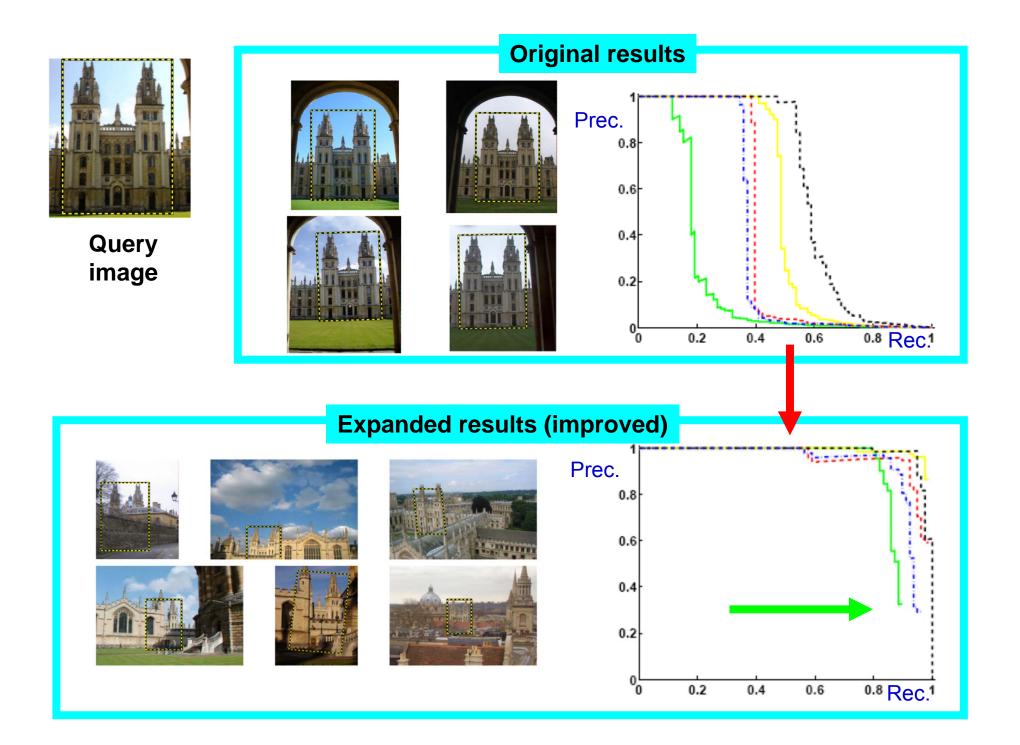
New expanded query is formed as

- the average of visual word vectors of spatially verified returns
- only inliers are considered
- regions are back-projected to the original query image

Query image

Originally retrieved

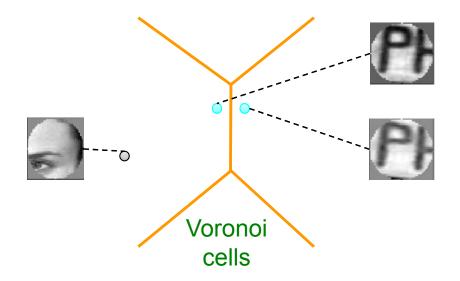
Retrieved only after expansion



Quantization errors

Typically, quantization has a significant impact on the final performance of the system [Sivic03,Nister06,Philbin07]

Quantization errors split features that should be grouped together and confuse features that should be separated



Visual words – approximate NN search

- Map descriptors to words by quantizing the feature space
 - Quantize via k-means clustering to obtain visual words
 - Assign descriptors to closest visual words
- Bag-of-features as approximate nearest neighbor search Descriptor matching with *k*-nearest neighbors $f_{k-NN}(x, y) = \begin{cases} 1 & \text{if } x \text{ is a } k-\text{NN of } y \\ 0 & \text{otherwise} \end{cases}$

Bag-of-features matching function $f_q(x, y) = \delta_{q(x), q(y)}$

where q(x) is a quantizer, i.e., assignment to a visual word and $\delta_{a,b}$ is the Kronecker operator ($\delta_{a,b}$ =1 iff a=b)

Approximate nearest neighbor search evaluation

•ANN algorithms usually returns a short-list of nearest neighbors

- this short-list is supposed to contain the NN with high probability
- exact search may be performed to re-order this short-list

•Proposed quality evaluation of ANN search: trade-off between

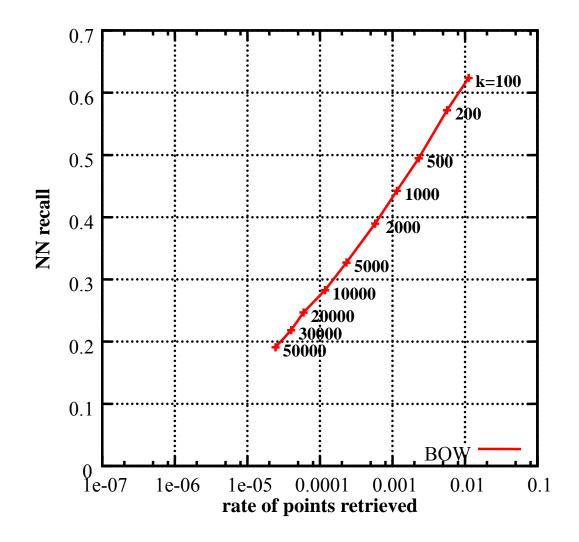
– NN recall = probability that the NN is in this list

against

- NN precision = proportion of vectors in the short-list
 - the lower this proportion
 - the more information we have about the vector
 - the lower the complexity if we perform exact search on the short-list

•ANN search algorithms usually have some parameters to handle this trade-off

ANN evaluation of bag-of-features



•ANN algorithms returns a list of potential neighbors

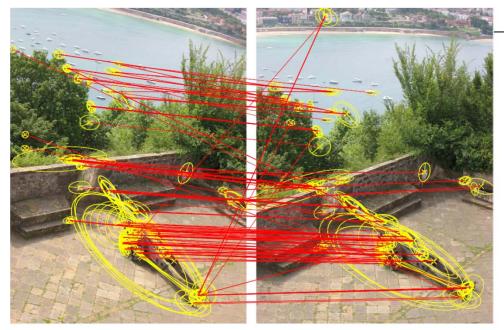
•NN recall = probability that *the* NN is in this list

•NN precision:

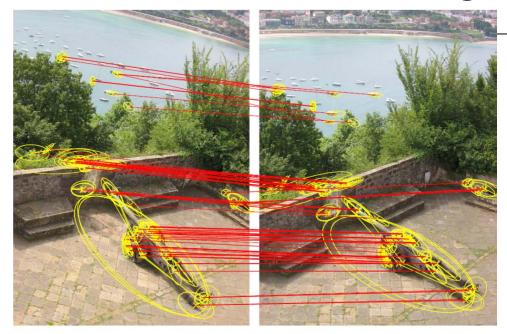
= proportion of vectors
in the short-list

•In BOF, this trade-off is managed by the number of clusters *k*

20K visual word: false matches



200K visual word: good matches missed

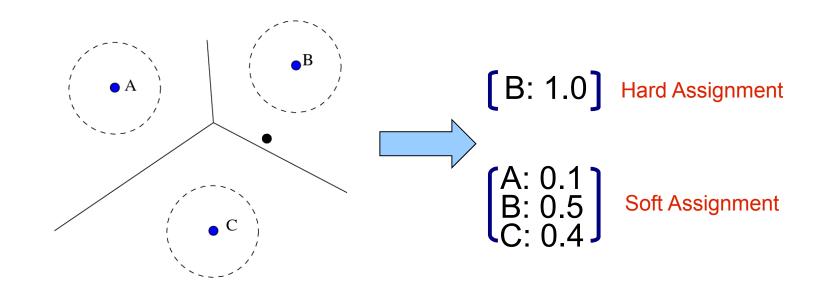


Problem with bag-of-features

- The matching performed by BOF is weak
 - for a "small" visual dictionary: too many false matches
 - for a "large" visual dictionary: many true matches are missed
- No good trade-off between "small" and "large" !
 - either the Voronoi cells are too big
 - or these cells can't absorb the descriptor noise
 - → intrinsic approximate nearest neighbor search of BOF is not sufficient
 - possible solutions
 - soft assignment [Philbin et al. CVPR'08]
 - ➤ additional short codes [Jegou et al. ECCV'08]

Beyond bags-of-visual-words

Soft-assign each descriptor to multiple cluster centers
 [Philbin et al. 2008, Van Gemert et al. 2008]



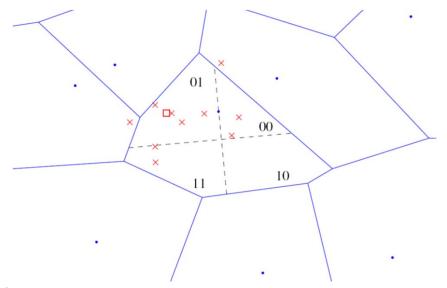
Beyond bag-of-visual-words

Hamming embedding [Jegou et al. 2008]

- Standard quantization using bag-of-visual-words
- Additional localization in the Voronoi cell by a binary signature



Hamming Embedding



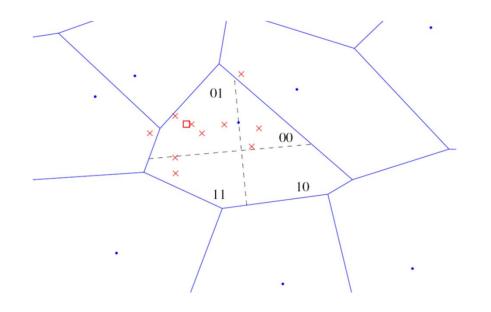
Representation of a descriptor x

- Vector-quantized to q(x) as in standard BOF
- + short binary vector b(x) for an additional localization in the Voronoi cell

Two descriptors x and y match iif

 $f_{\rm HE}(x,y) = \begin{cases} ({\rm tf-idf}(q(x)))^2 & {\rm if} \ q(x) = q(y) \\ & {\rm and} \ h \ (b(x), b(y)) \le h_t & {\rm where} \ {\rm h}({\it a},{\it b}) \ {\rm Hamming} \ {\rm distance} \\ 0 & {\rm otherwise} \end{cases}$

Hamming Embedding



•Nearest neighbors for Hamming distance \approx those for Euclidean distance \rightarrow a metric in the embedded space reduces dimensionality curse effects

- •Efficiency
 - Hamming distance = very few operations
 - Fewer random memory accesses: 3 x faster that BOF with same dictionary size!

Hamming Embedding

•Off-line (given a quantizer)

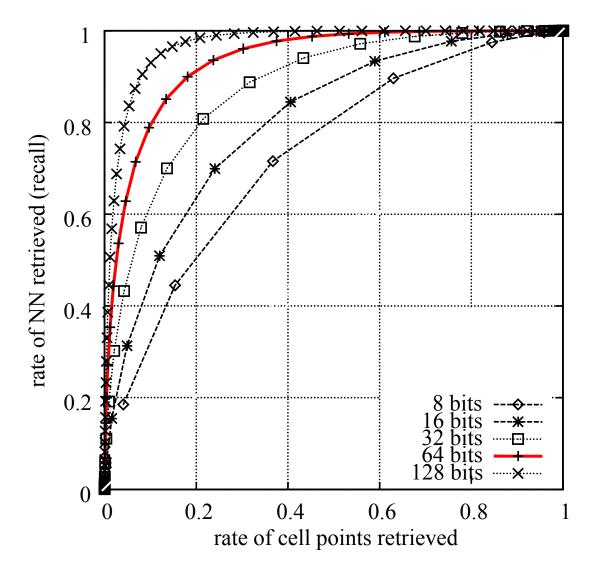
- draw an orthogonal projection matrix P of size $d_b \times d$
- \rightarrow this defines d_b random projection directions
- for each Voronoi cell and projection direction, compute the median value for a training set

•**On-line**: compute the binary signature b(x) of a given descriptor

- project x onto the projection directions as $z(x) = (z_1, \dots z_{db})$
- $-b_i(x) = 1$ if $z_i(x)$ is above the learned median value, otherwise 0

[H. Jegou et al., Improving bag of features for large scale image search, ECCV'08, ICJV'10]

Hamming neighborhood

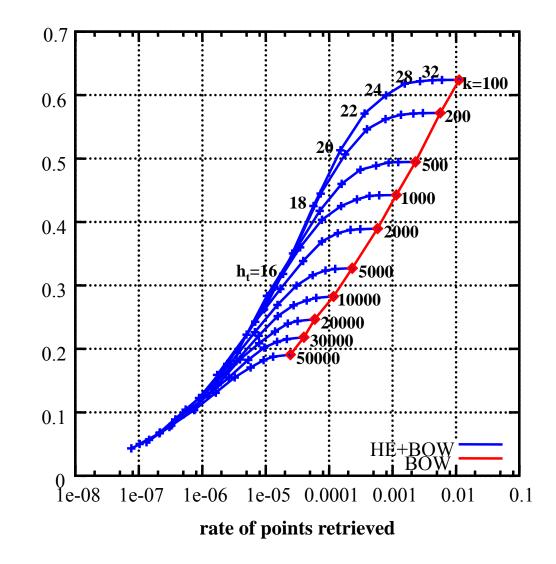


Trade-off between memory usage and accuracy

→More bits yield higher accuracy

In practice, 64 bits (8 byte)

ANN evaluation of Hamming Embedding



NN recall

compared to BOW: at least 10 times less points in the short-list for the same level of NN recall

Hamming Embedding provides a much better trade-off between recall and ambiguity removal

Matching points - 20k word vocabulary

201 matches

240 matches

Many matches with the non-corresponding image!

Matching points - 200k word vocabulary

69 matches

35 matches

Still many matches with the non-corresponding one

Matching points - 20k word vocabulary + HE

83 matches

8 matches

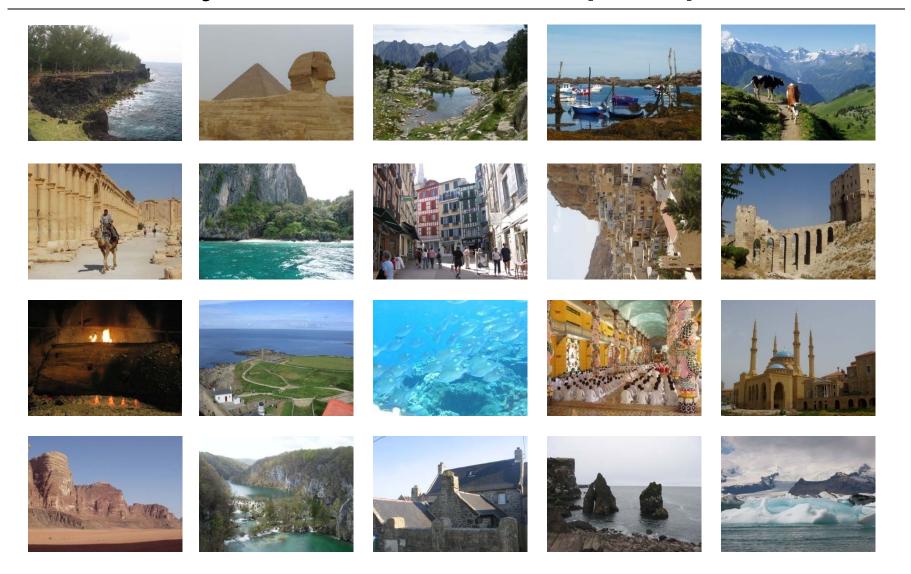
10x more matches with the corresponding image!

INRIA holidays dataset

- Evaluation for the INRIA holidays dataset, 1491 images
 - 500 query images + 991 annotated true positives
 - Most images are holiday photos of friends and family
- 1 million & 10 million distractor images from Flickr
- Vocabulary construction on a different Flickr set

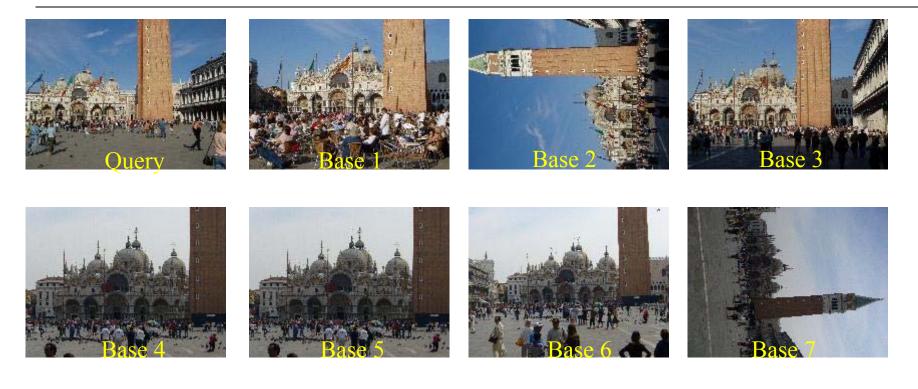
- Evaluation metric: mean average precision (in [0,1], bigger = better)
 - Average over precision/recall curve

Holiday dataset – example queries

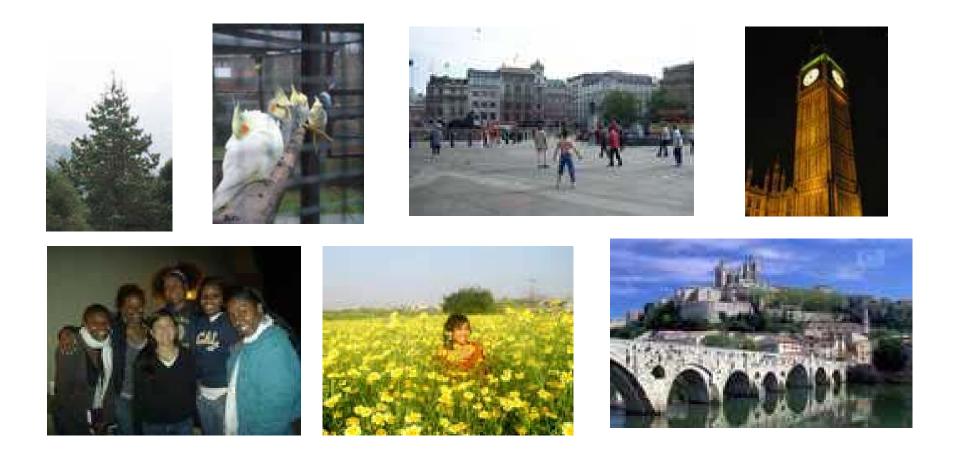


Dataset : Venice Channel

Dataset : San Marco square

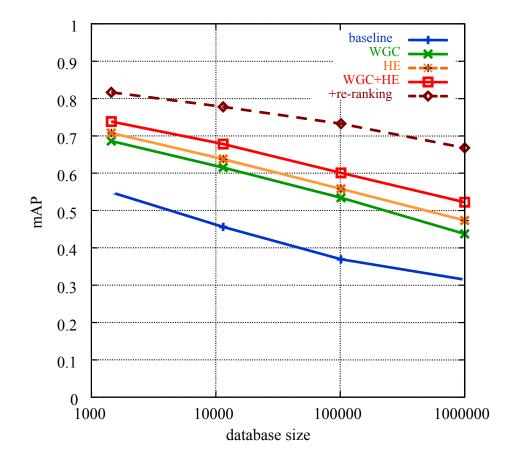


Example distractors - Flickr



Experimental evaluation

- Evaluation on our holidays dataset, 500 query images, 1 million distracter images
- Metric: mean average precision (in [0,1], bigger = better)



Average query time (4 CPU cores)					
Compute descriptors	880 ms				
Quantization	600 ms				
Search – baseline	620 ms				
Search – WGC	2110 ms				
Search – HE	200 ms				
Search – HE+WGC	650 ms				

Results – Venice Channel

Image retrieval - products

- Search for places and particular objects
 - For example on a smart phone

Courtesy Google

Google image search

Google	oours_example.png ×			mannequin ta			
	Tous	Images	Maps	Shopping	Plus *	Outlis de recherche	
	Environ	25 270 000 0	000 résultat	ts (1,63 second	es)		

100

Tallie de l'image : 183 X 275

Trouver d'autres talles de l'image : Toutes les talles - Petite - Moyennes - Grandes

Hypothèse la plus probable pour cette image : mannequin tache de rousseur

Les taches de rousseur font leur come-back ! - Cosmopolitan.fr www.cosmopolitan.fr > Beauté > Maquillage > Tendances maquillage ~ En effet, les taobes de rousseur sont en passe de devenir le ll-truc beauté du moment. Entraperçues sur le visage de queiques manneguins lors de la Fashion ...

Les taches de rousseur ne se sont jamais aussi bien portées www.20mlnutes.ft) Style +

16 janv. 2016 - La taobe de rousseur, ça peut être un complexe. ... en font un atout », explique Sylvie Fabregon, directrice de l'agence de manneguins Wanted.

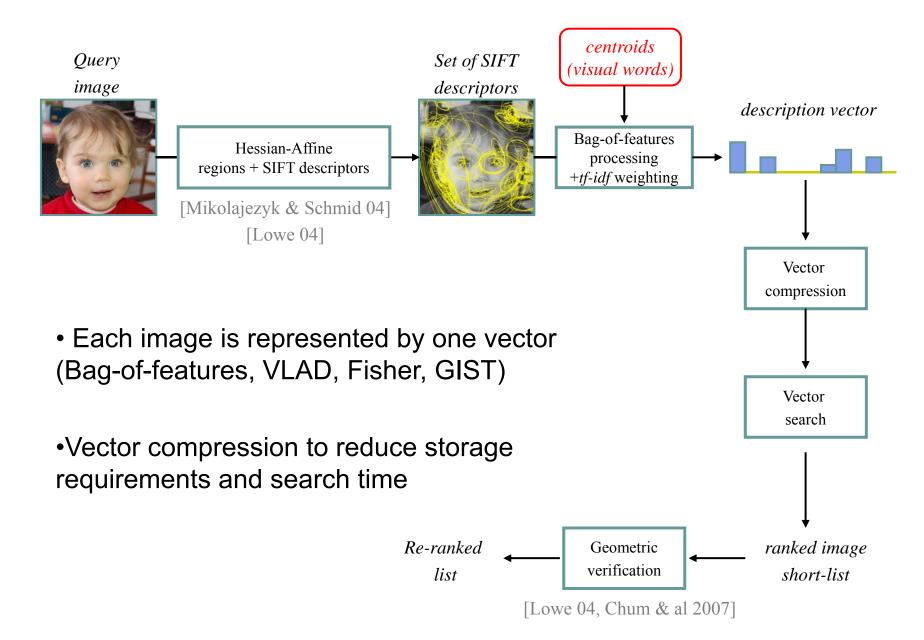
Images similaires

Signaler des images inappropriées

Towards large-scale image search

- BOF+inverted file can handle up to ~10 millions images
 - with a limited number of descriptors per image \rightarrow RAM: 40GB
 - search: 2 seconds
- Web-scale = billions of images
 - − with 100 M per machine \rightarrow search: 20 seconds, RAM: 400 GB
 - not tractable
- Solution: represent each image by one compressed vector

Very large scale image search

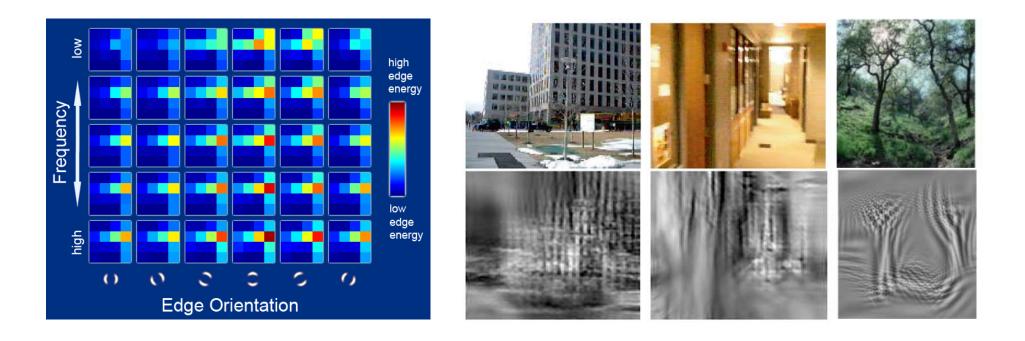


Aggregating local descriptors

- Set of n local descriptors \rightarrow 1 vector
- Popular approach: bag of features, often with SIFT features
- Recently improved aggregation schemes
 - Fisher vector [Perronnin & Dance '07]
 - VLAD descriptor [Jegou, Douze, Schmid, Perez '10]
 - Supervector [Zhou et al. '10]
 - Sparse coding [Wang et al. '10, Boureau et al.'10]
- Used in very large-scale retrieval and classification

Global scene context – GIST descriptor

• The "gist" of a scene: Oliva & Torralba (2001)



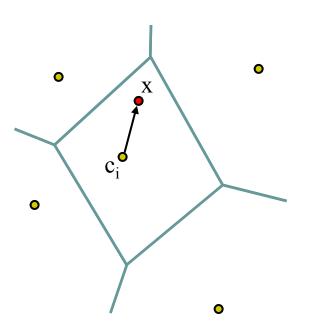
- 5 frequency bands and 6 orientations for each image location
- Tiling of the image for the description
- Global representation

Aggregating local descriptors

- Most popular approach: BoF representation [Sivic & Zisserman 03]
 - sparse vector
 - highly dimensional
- \rightarrow significant dimensionality reduction introduces loss
- Vector of locally aggregated descriptors (VLAD) [Jegou et al. 10]
 - non sparse vector
 - fast to compute
 - excellent results with a small vector dimensionality
- Fisher vector [Perronnin & Dance 07]
 - probabilistic version of VLAD
 - initially used for image classification
 - comparable performance to VLAD for image retrieval

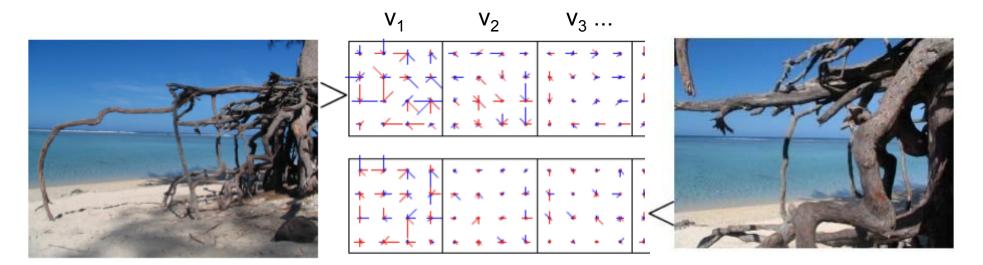
VLAD : vector of locally aggregated descriptors

- Determine a vector quantifier (*k*-means)
 - output: *k* centroids (visual words): $c_1, ..., c_i, ..., c_k$
 - centroid c_i has dimension d
- For a given image
 - assign each descriptor to closest center c_i
 - accumulate (sum) descriptors per cell
 v_i := v_i + (x c_i)
- VLAD (dimension $D = k \times d$)
- The vector is square-root + L2-normalized
- Alternative: Fisher vector



[Jegou, Douze, Schmid, Perez, CVPR'10]

VLADs for corresponding images

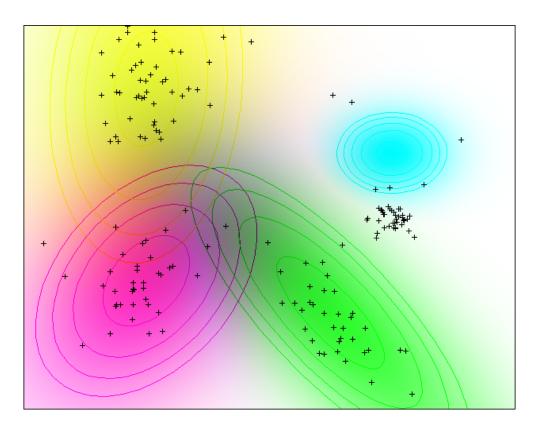


SIFT-like representation per centroid (+ components: blue, - components: red)

• good coincidence of energy & orientations

Fisher vector

- Use a Gaussian Mixture Model as vocabulary
- Statistical measure of the descriptors of the image w.r.t the GMM
- Derivative of likelihood w.r.t. GMM parameters



GMM parameters:

- w_i weight
- μ_i mean
- σ_i variance (diagonal)

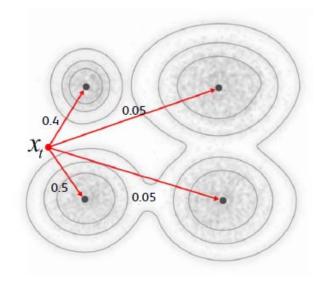
Translated cluster \rightarrow large derivative on μ_i for this component

[Perronnin & Dance 07]

Fisher vector

FV formulas:

$$\mathcal{G}_{\mu,i}^{X} = \frac{1}{T\sqrt{w_i}} \sum_{t=1}^{T} \gamma_t(i) \left(\frac{x_t - \mu_i}{\sigma_i}\right)$$
$$\mathcal{G}_{\sigma,i}^{X} = \frac{1}{T\sqrt{2w_i}} \sum_{t=1}^{T} \gamma_t(i) \left[\frac{(x_t - \mu_i)^2}{\sigma_i^2} - 1\right]$$



 $\gamma_t(i)$ = soft-assignment of patch x_t to Gaussian i

Fisher Vector = concatenation of per-Gaussian gradient vectors

For image retrieval in our experiments:

- only deviation wrt mean, dim: K*D [K number of Gaussians, D dim of descriptor]
- variance does not improve for comparable vector length

VLAD/Fisher/BOF performance and dimensionality reduction

- We compare Fisher, VLAD and BoF on INRIA Holidays Dataset (mAP %)
- Dimension is reduced to D' dimensions with PCA

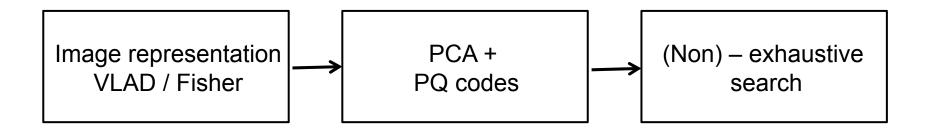
Descriptor	K	D	Holidays (mAP)						
			D' = D	$\rightarrow D'$ =2048	\rightarrow D'=512	$\rightarrow D'$ =128	$\rightarrow D'$ =64	$\rightarrow D'=32$	
BOW	1 000	1 000	40.1		43.5	44.4	43.4	40.8	
	20000	20000	43.7	41.8	44.9	45.2	44.4	41.8	
Fisher (μ)	16	1 0 2 4	54.0		54.6	52.3	49.9	46.6	
	64	4 0 9 6	59.5	60.7	61.0	56.5	52.0	48.0	
	256	16384	62.5	62.6	57.0	53.8	50.6	48.6	
VLAD	16	1 0 2 4	52.0		52.7	52.6	50.5	47.7	
	64	4 0 9 6	55.6	57.6	59.8	55.7	52.3	48.4	
	256	16384	58.7	62.1	56.7	54.2	51.3	48.1	
GIST		960	36.5						

- Observations:
 - ► Fisher, VLAD better than BoF for a given descriptor size
 - Choose a small D if output dimension D' is small
 - Performance of GIST not competitive

[Jegou, Perronnin, Douze, Sanchez, Perez, Schmid, PAMI'12]

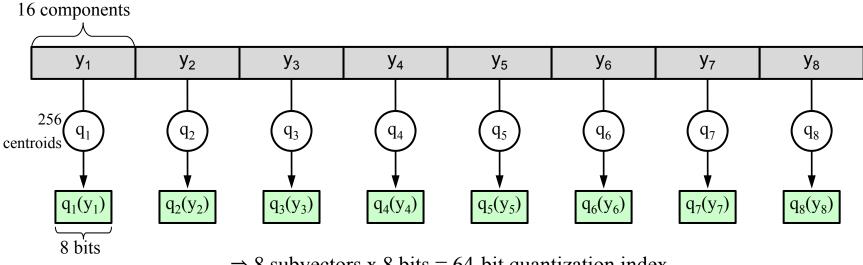
Compact image representation

- Aim: improving the tradeoff between
 - search speed
 - memory usage
 - search quality
- Approach: joint optimization of three stages
 - local descriptor aggregation
 - dimension reduction
 - indexing algorithm



Product quantization for nearest neighbor search

- Vector split into *m* subvectors: $y \rightarrow [y_1| \dots |y_m]$
- Subvectors are quantized separately by quantizers $q(y) = [q_1(y_1)| \dots |q_m(y_m)]$ where each q_i is learned by *k*-means with a limited number of centroids
- Example: y = 128-dim vector split in 8 subvectors of dimension 16
 - each subvector is quantized with 256 centroids -> 8 bit
 - very large codebook 256^8 ~ 1.8x10^19



 \Rightarrow 8 subvectors x 8 bits = 64-bit quantization index

[Jegou, Douze, Schmid, PAMI'11]

Deep image retrieval [Gordo et al. 2016]

- Learns to represent images for retrieval
 - Deep network which focuses on retrieval
- Requires train data
 - Introduces an automatic cleaning procedure based on geometric constraints
- State-of-the-art results
- Details in student presentation