
Introduction to Neural Networks

Machine Learning and Object Recognition 2016-2017

Course website:

http://thoth.inrialpes.fr/~verbeek/MLOR.16.17.php

Biological motivation

 Neuron is basic computational unit of the brain
► about 10^11 neurons in human brain

 Simplified neuron model as linear threshold unit (McCulloch & Pitts, 1943)
► Firing rate of electrical spikes modeled as continuous output quantity
► Multiplicative interaction of input and connection strength (weight)
► Multiple inputs accumulated in cell activation
► Output is non linear function of activation

 Basic component in neural circuits for complex tasks

Rosenblatt's Perceptron

 One of the earliest works on artificial neural networks: 1957
► Computational model of natural neural learning

 Binary classification based on sign of generalized linear function
► Weight vector w learned using special purpose machines
► Associative units in firs layer fixed by lack of learning rule at the time

wTϕ(x)

sign (wT ϕ(x))

ϕi(x)=sign (vT x)

Rosenblatt's Perceptron

20x20 pixel sensor Random wiring of associative units

Rosenblatt's Perceptron

 Objective function linear in score over misclassified patterns

 Perceptron learning via stochastic gradient descent

► Eta is the learning rate

Potentiometers as weights, adjusted by motors during learning

E(w)=−∑t i≠sign(f (xi))
t i f (xi)=∑i

max (0,−t i f (x i))

w n+1=wn+η× t i ϕ(x i)× [t i f (x i)<0]

t i∈ {−1,+1}

Limitations of the Perceptron

 Perceptron convergence theorem (Rosenblatt, 1962) states that
► If training data is linearly separable, then learning algorithm will find a

solution in a finite number of iterations
► Faster convergence for larger margin (at fixed data scale)

 If training data is linearly separable then the found solution will depend on the
initialization and ordering of data in the updates

 If training data is not linearly separable, then the perceptron learning
algorithm will not converge

 No direct multi-class extension

 No probabilistic output or confidence on classification

Relation to SVM and logistic regression

 Perceptron loss similar to hinge loss without the notion of margin
► Cost function is not a bound on the zero-one loss

 All are either based on linear function or generalized linear function by relying
on pre-defined non-linear data transformation

f (x)=wTϕ(x)

Kernels to go beyond linear classification

 Representer theorem states that in all these cases optimal weight vector is
linear combination of training data

 Kernel trick allows us to compute dot-products between (high-dimensional)
embedding of the data

 Classification function is linear in data representation given by kernel
evaluations over the training data

f (x)=wT ϕ(x)=∑i
αi ⟨ϕ(xi) ,ϕ(x) ⟩

w=∑i
αiϕ(x i)

k (xi , x)=⟨ϕ(xi) ,ϕ(x)⟩

f (x)=∑i
αi k (x , x i)=αT k(x ,.)

Limitation of kernels

 Classification based on weighted “similarity” to training samples
► Design of kernel based on domain knowledge and experimentation

► Some kernels are data adaptive, for example the Fisher kernel
► Still kernel is designed before and separately from classifier training

 Number of free variables grows linearly in the size of the training data
► Unless a finite dimensional explicit embedding is available
► Sometimes kernel PCA is used to obtain such a explicit embedding

 Alternatively: fix the number of “basis functions” in advance
► Choose a family of non-linear basis functions
► Learn the parameters, together with those of linear function

f (x)=∑i
αi k (x , x i)=αT k(x ,.)

f (x)=∑i
αi ϕi(x ;θi)

ϕ(x)

Feed-forward neural networks

 Define outputs of one layer as scalar non-linearity of linear function of input

 Known as “multi-layer perceptron”
► Perceptron has a step non-linearity of linear function (historical)
► Other non-linearities are used in practice (see below)

z j=h(∑i
x i wij

(1))

yk=σ(∑ j
z j w jk

(2))

Feed-forward neural networks

 If “hidden layer” activation function is taken to be linear than a single-layer
linear model is obtained

 Two-layer networks can uniformly approximate any continuous function on a
compact input domain to arbitrary accuracy provided the network has a
sufficiently large number of hidden units
► Holds for many non-linearities, but not for polynomials

Classification over binary inputs

 Consider simple case with binary units
► Inputs and activations are all +1 or -1
► Total number of inputs is 2D

► Classification problem into two classes

 Use a hidden unit for each positive sample x
m

► Activation is +1 if and only if input is x
m

 Let output implement an “or” over hidden units

 Problem: may need exponential number of
hidden units

y=sign (∑m=1

M
zm+M−1)

wmi=xmi

zm=sign(∑i=1

D
wmi xi−D+1)

Feed-forward neural networks

 Architecture can be generalized
► More than two layers of computation
► Skip-connections from previous layers

 Feed-forward nets are restricted to directed acyclic graphs of connections
► Ensures that output can be computed from the input in a single feed-

forward pass from the input to the output

 Main issues:
► Designing network architecture

 Nr nodes, layers, non-linearities, etc
► Learning the network parameters

 Non-convex optimization

An example: multi-class classifiction

 One output score for each target class

 Multi-class logistic regression loss
► Define probability of classes by softmax over scores
► Maximize log-probability of correct class

 Precisely as before, but we are now learning the data representation
concurrently with the linear classifier

p(y=c∣x)=
exp yc

∑k
exp y k

 Representation learning in
discriminative and coherent manner

 Fisher kernel also data adaptive but
not discriminative and task dependent

 More generally, we can choose a loss
function for the problem of interest and
optimize all network parameters w.r.t.
this objective (regression, metric
learning, ...)

Activation functions

Activation functions

Sigmoid

tanh

ReLU

Maxout

Leaky ReLU1 /(1+e−x)

max (0, x)

max (α x , x)

max (w1
T x , w2

T x)

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Sigmoid

1. Saturated neurons “kill” the
 gradients

2. Sigmoid outputs are not zero-
 centered

3. exp() is a bit compute
expensive

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

[LeCun et al., 1991]

Activation Functions

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

ReLU
(Rectified Linear Unit)

Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

Activation Functions

[Nair & Hinton, 2010]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Leaky ReLU

Activation Functions

[Mass et al., 2013] [He et al., 2015]

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

- Does not saturate
- Computationally efficient
- Will not “die”
- Maxout networks can implement
ReLU networks and vice-versa
- More parameters per node

Maxout

Activation Functions

[Goodfellow et al., 2013]

max (w1
T x , w2

T x)

Training feed-forward neural network

 Non-convex optimization problem in general (or at least in useful cases)
► Typically number of weights is (very) large (millions in vision applications)
► Seems that many different local minima exist with similar quality

 Regularization
► L2 regularization: sum of squares of weights
► “Drop-out”: deactivate random subset of weights in each iteration

 Similar to using many networks with less weights (shared among them)

 Training using simple gradient descend techniques
► Stochastic gradient descend for large datasets (large N)
► Estimate gradient of loss terms by averaging over a relatively small

number of samples

1
N
∑i=1

N
L(f (x i) , y i ;W)+λΩ(W)

Training the network: forward propagation

 Forward propagation from input nodes to output nodes
► Accumulate inputs into weighted sum
► Apply scalar non-linear activation function f

 Use Pre(j) to denote all nodes feeding into j

a j=∑i∈Pre (j)
wij x i

x j=f (a j)

Training the network: backward propagation

 Input aggregation and activation

 Partial derivative of loss w.r.t. input

 Partial derivative w.r.t. learnable weights

 Gradient of weights between two layers
given by outer-product of x and g

g j=
∂ L
∂a j

∂L
∂ wij

= ∂ L
∂ a j

∂a j

∂w ij

=g j xi

a j=∑i∈Pre (j)
wij x i

x j=f (a j)

x i
w ij

Training the network: backward propagation

 Backward propagation of loss gradient from output nodes to input nodes
► Application of chainrule of derivatives

 Accumulate gradients from downstream nodes
► Post(i) denotes all nodes that i feeds into
► Weights propagate gradient back

 Multiply with derivative of local activation

gi=
∂ x i

∂ai

∂ L
∂ xi

=f ' (ai)∑ j∈Post (i)
wij g j

gi=
∂ L
∂ai

a j=∑i∈Pre (j)
wij x i

x j=f (a j)

∂ L
∂ xi

=∑ j∈Post (i)

∂ L
∂a j

∂a j

∂ x i

=∑ j∈Post (i)
g j w ij

Training the network: forward and backward propagation

 Special case for Rectified Linear Unit (ReLU) activations

 Sub-gradient is step function

 Sum gradients from downstream nodes

► Set to zero if in ReLU zero-regime
► Compute sum only for active units

 Note how gradient on incoming weights is “killed” by inactive units
► Generates tendency for those units

to remain inactive

f (a)=max (0,a)

f ' (a)={0 ifa≤0
1 otherwise

gi={ 0 if ai≤0

∑ j∈Post (i)
w ij g j otherwise

∂ L
∂w ij

= ∂ L
∂a j

∂a j

∂ wij

=g j x i

airplane
automobile
bird
cat
deer

dog
frog
horse
ship
truck

Input example : an image Output example : one class

Neural Networks

How to represent the image at the network input?

Convolutional neural networks

 A convolutional neural network is a feedforward network where
► Hidden units are organizes into images or “response maps”
► Linear mapping from layer to layer is replaced by convolution

Convolutional neural networks

 Local connections: motivation from findings in early vision
► Simple cells detect local features
► Complex cells pool simple cells in retinotopic region

 Convolutions: motivated by translation invariance
► Same processing should be useful in different image regions

Local connectivity

Locally connected layer

Convolutional layer

Fully connected layer

The convolution operation

The convolution operation

Convolutional neural networks

 Hidden units form another “image” or “response map”
► Result of convolution: translation invariant linear funcion of local inputs
► Followed by non-linearity

 Different convolutions can be computed “in parallel”
► Gives a “stack” of response maps
► Similarly, convolutional filters “read” across different maps
► Input may also be multi-channel, e.g. RGB image

 Sharing of weights across hidden units
► Number of parameters decoupled from input and representation size

32

3

Convolution Layer

32x32x3 image

width

height

32

depth

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
 computing dot products”

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
 computing dot products”

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Filters always extend the full
 depth of the input volume

32

32

3

32x32x3 image
 5x5x3 filter

1 hidden unit:
dot product between 5x5x3=75 input
patch and weight vector + bias

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

wT x+b

32

32

3

32x32x3 image
 5x5x3 filter

activation maps

1

28

28

convolve (slide) over all
 spatial locations

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

32

32

3

32x32x3 image
 5x5x3 filter

activation maps

1

28

28

convolve (slide) over all
 spatial locations

consider a second, green filter

Convolution Layer

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Convolution with 1x1 filters makes perfect sense

64

56

56
1x1 CONV
with 32 filters

32

56

56

(each filter has size
1x1x64, and performs a
 64-dimensional dot
product)

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Stride

(Zero)-Padding

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Example:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params
=> 76*10 = 760

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Effect = invariance to small translations of the input

Pooling

- makes the representations smaller and computationally less expensive
- operates over each activation map independently

Pooling

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson

Receptive fields

 “Receptive field” is area in original image impacting a certain unit
► Later layers can capture more complex patterns over larger areas

 Receptive field size grows linearly over convolutional layers
► If we use a convolutional filter of size w x w, then each layer the receptive

field increases by (w-1)

 Receptive field size increases exponentially over pooling layers
► It is the stride that makes the difference, not pooling vs convolution

Fully connected layers

 Convolutional and pooling layers typically followed by several “fully
connected” (FC) layers, i.e. standard multi-layer network
► FC layer connects all units in previous layer to all units in next layer
► Assembles all local information into global vectorial representation

 FC layers followed by softmax over outputs to generate distribution over
image class labels

 First FC layer that connects response map to vector has many parameters
► Conv layer of size 16x16x256 with following FC layer with 4096 units

leads to a connection with 256 million parameters !

Convolutional neural network architectures

 Surprisingly little difference between todays architectures and those of late
eighties and nineties
► Convolutional layers, same
► Nonlinearities: ReLU dominant now, tanh before
► Subsampling: more strided convolution now than max/average pooling

Handwritten digit recognition network. LeCun, Bottou, Bengio, Haffner, Proceedings IEEE, 1998

Convolutional neural network architectures

 Recent success with deeper networks
► 19 layers in Simonyan & Zisserman, ICLR 2015
► Hundreds of layers in residual networks, He et al. ECCV 2016

 More filters per layer: hundreds to thousands instead of tens

 More parameters: tens or hundreds of millions

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge

Other factors that matter

 More training data
► 1.2 millions of 1000 classes in ImageNet challenge
► 200 million faces in Schroff et al, CVPR 2015

 GPU-based implementations
► Massively parallel computation of convolutions
► Krizhevsky & Hinton, 2012: six days of training on two GPUs
► Rapid progress in GPU compute performance

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge

Understanding convolutional neural network activations

 Architecture consists of
► 5 convolutional layers
► 2 fully connected layers

 Visualization of patches that yield maximum response for certain units
► We will look at each of the 5 convolutional layers

Krizhevsky & Hinton, NIPS 2012, Winning model ImageNet 2012 challenge

Understanding convolutional neural network activations

 Patches generating highest response for a selection of convolutional filters,
► Showing 9 patches per filter
► Zeiler and Fergus, ECCV 2014

 Layer 1: simple edges and color detectors

 Layer 2: corners, center-surround, ...

Understanding convolutional neural network activations

 Layer 3: various object parts

Understanding convolutional neural network activations

 Layer 4+5: selective units for entire objects or large parts of them

Convolutional neural networks for other tasks

 Object category localization

 Semantic segmentation

CNNs for object category localization

 Apply CNN image classification model to image sub-windows
► For each window decide if it represents a car, sheep, ...

 Resize detection windows to fit CNN input size

 Unreasonably many image regions to consider if applied in naive manner
► Use detection proposals based on low-level image contours

R-CNN, Girshick et al., CVPR 2014

Detection proposal methods

 Many methods exist, some based on learning others not

 Selective search method [Uijlings et al., IJCV, 2013]
► Unsupervised multi-resolution hierarchical segmentation
► Detections proposals generated as bounding box of segments
► 1500 windows per image suffice to cover over 95% of true objects

with sufficient accuracy

CNNs for object category localization

 On some datasets too little training data to learn CNN from scratch
► Only few hundred objects instances labeled with bounding box
► Pre-train AlexNet on large ImageNet classification problem
► Replace last classification layer with classification over N categories +

background
► Fine-tune CNN weights for classification of detection proposals

CNNs for object category localization

 Comparison with state of the art non-CNN models
► Object detection is correct if window has intersection/union with ground-

truth window of at least 50%

 Significant increase in performance of 10 points mean-average-precision
(mAP)

Efficient object category localization with CNN

 R-CNN recomputes convolutions many times across overlapping regions

 Instead: compute convolutional part only once across entire image

 For each window:
► Pool convolutional features using max-pooling into fixed-size

representation
► Fully connected layers up to classification computed per window

SPP-net, He et al., ECCV 2014

Efficient object category localization with CNN

 Refinement: Compute convolutional filters at multiple scales
► For given window use scale at which window has roughly size 224x224

 Similar performance as explicit window rescaling, and re-computing
convolutional filters

 Speedup of about 2 orders of magnitude

Convolutional neural networks for other tasks

 Object category localization

 Semantic segmentation

Application to semantic segmentation

 Assign each pixel to an object or background category
► Consider running CNN on small image patch to determine its category
► Train by optimizing per-pixel classification loss

 Similar to SPP-net: want to avoid wasteful computation of convolutional filters
► Compute convolutional layers once per image
► Here all local image patches are at the same scale
► Many more local regions: dense, at every pixel

Long et al., CVPR 2015

Application to semantic segmentation

 Interpret fully connected layers as 1x1 sized convolutions
► Function of features in previous layer, but only at own position
► Still same function is applied at all positions

 Five sub-sampling layers reduce the resolution of output map by factor 32

Application to semantic segmentation

 Idea 1: up-sampling via bi-linear interpolation
► Gives blurry predictions

 Idea 2: weighted sum of response maps at different resolutions
► Upsampling of the later and coarser layer
► Concatenate fine layers and upsampled coarser ones for prediction
► Train all layers in integrated manner

Long et al., CVPR 2015

Upsampling of coarse activation maps

 Simplest form: use bilinear interpolation or nearest neighbor interpolation
► Note that these can be seen as upsampling by zero-padding,

followed by convolution with specific filters, no channel interactions

 Idea can be generalized by learning the convolutional filter
► No need to hand-pick the interpolation scheme
► Can include channel interactions, if those turn out be useful

 Resolution-increasing counterpart of strided convolution
► Average and max pooling can be written in terms of convolutions
► See: “Convolutional Neural Fabrics”, Saxena & Verbeek, NIPS 2016.

Application to semantic segmentation

 Results obtained at different resolutions
► Detail better preserved at finer resolutions

Semantic segmentation: further improvements

 Beyond independent
prediction of pixel labels
► Integrate conditional

random field (CRF)
models with CNN
Zheng et al., ICCV’15

 Using more sophisticated
upsampling schemes to
maintain high-resolution
signals

Lin et al., arXiv 2016

Summary feed-forward neural networks

 Construction of complex functions with circuits of simple building blocks
► Linear function of previous layers
► Scalar non-linearity

 Learning via back-propagation of error gradient throughout network
► Need directed acyclic graph

 Convolutional neural networks (CNNs) extremely useful for image data
► State-of-the-art results in a wide variety of computer vision tasks
► Spatial invariance of processing (also useful for video, audio, ...)
► Stages of aggregation of local features into more complex patterns
► Same weights shared for many units organized in response maps

 Applications for object localization and semantic segmentation
► Local classification at level of detection windows or pixels
► Computation of low-level convolutions can be shared across regions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Computes f(x) = max(0,x)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	The convolution operation
	Slide 34
	Slide 35
	Convolution Layer
	Slide 37
	Slide 38
	Slide 39
	consider a second, green filter
	Slide 41
	Slide 42
	(btw, 1x1 convolution layers make perfect sense)
	Stride
	Zero-Padding
	Slide 46
	Slide 47
	Slide 48
	Examples time:
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 64
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

